File size: 26,225 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
"""
Limited tests of the elliptic functions module.  A full suite of
extensive testing can be found in elliptic_torture_tests.py

Author of the first version: M.T. Taschuk

References:

[1] Abramowitz & Stegun. 'Handbook of Mathematical Functions, 9th Ed.',
    (Dover duplicate of 1972 edition)
[2] Whittaker 'A Course of Modern Analysis, 4th Ed.', 1946,
    Cambridge University Press

"""

import mpmath
import random
import pytest

from mpmath import *

def mpc_ae(a, b, eps=eps):
    res = True
    res = res and a.real.ae(b.real, eps)
    res = res and a.imag.ae(b.imag, eps)
    return res

zero = mpf(0)
one = mpf(1)

jsn = ellipfun('sn')
jcn = ellipfun('cn')
jdn = ellipfun('dn')

calculate_nome = lambda k: qfrom(k=k)

def test_ellipfun():
    mp.dps = 15
    assert ellipfun('ss', 0, 0) == 1
    assert ellipfun('cc', 0, 0) == 1
    assert ellipfun('dd', 0, 0) == 1
    assert ellipfun('nn', 0, 0) == 1
    assert ellipfun('sn', 0.25, 0).ae(sin(0.25))
    assert ellipfun('cn', 0.25, 0).ae(cos(0.25))
    assert ellipfun('dn', 0.25, 0).ae(1)
    assert ellipfun('ns', 0.25, 0).ae(csc(0.25))
    assert ellipfun('nc', 0.25, 0).ae(sec(0.25))
    assert ellipfun('nd', 0.25, 0).ae(1)
    assert ellipfun('sc', 0.25, 0).ae(tan(0.25))
    assert ellipfun('sd', 0.25, 0).ae(sin(0.25))
    assert ellipfun('cd', 0.25, 0).ae(cos(0.25))
    assert ellipfun('cs', 0.25, 0).ae(cot(0.25))
    assert ellipfun('dc', 0.25, 0).ae(sec(0.25))
    assert ellipfun('ds', 0.25, 0).ae(csc(0.25))
    assert ellipfun('sn', 0.25, 1).ae(tanh(0.25))
    assert ellipfun('cn', 0.25, 1).ae(sech(0.25))
    assert ellipfun('dn', 0.25, 1).ae(sech(0.25))
    assert ellipfun('ns', 0.25, 1).ae(coth(0.25))
    assert ellipfun('nc', 0.25, 1).ae(cosh(0.25))
    assert ellipfun('nd', 0.25, 1).ae(cosh(0.25))
    assert ellipfun('sc', 0.25, 1).ae(sinh(0.25))
    assert ellipfun('sd', 0.25, 1).ae(sinh(0.25))
    assert ellipfun('cd', 0.25, 1).ae(1)
    assert ellipfun('cs', 0.25, 1).ae(csch(0.25))
    assert ellipfun('dc', 0.25, 1).ae(1)
    assert ellipfun('ds', 0.25, 1).ae(csch(0.25))
    assert ellipfun('sn', 0.25, 0.5).ae(0.24615967096986145833)
    assert ellipfun('cn', 0.25, 0.5).ae(0.96922928989378439337)
    assert ellipfun('dn', 0.25, 0.5).ae(0.98473484156599474563)
    assert ellipfun('ns', 0.25, 0.5).ae(4.0624038700573130369)
    assert ellipfun('nc', 0.25, 0.5).ae(1.0317476065024692949)
    assert ellipfun('nd', 0.25, 0.5).ae(1.0155017958029488665)
    assert ellipfun('sc', 0.25, 0.5).ae(0.25397465134058993408)
    assert ellipfun('sd', 0.25, 0.5).ae(0.24997558792415733063)
    assert ellipfun('cd', 0.25, 0.5).ae(0.98425408443195497052)
    assert ellipfun('cs', 0.25, 0.5).ae(3.9374008182374110826)
    assert ellipfun('dc', 0.25, 0.5).ae(1.0159978158253033913)
    assert ellipfun('ds', 0.25, 0.5).ae(4.0003906313579720593)




def test_calculate_nome():
    mp.dps = 100

    q = calculate_nome(zero)
    assert(q == zero)

    mp.dps = 25
    # used Mathematica's EllipticNomeQ[m]
    math1 = [(mpf(1)/10, mpf('0.006584651553858370274473060')),
             (mpf(2)/10, mpf('0.01394285727531826872146409')),
             (mpf(3)/10, mpf('0.02227743615715350822901627')),
             (mpf(4)/10, mpf('0.03188334731336317755064299')),
             (mpf(5)/10, mpf('0.04321391826377224977441774')),
             (mpf(6)/10, mpf('0.05702025781460967637754953')),
             (mpf(7)/10, mpf('0.07468994353717944761143751')),
             (mpf(8)/10, mpf('0.09927369733882489703607378')),
             (mpf(9)/10, mpf('0.1401731269542615524091055')),
             (mpf(9)/10, mpf('0.1401731269542615524091055'))]

    for i in math1:
        m = i[0]
        q = calculate_nome(sqrt(m))
        assert q.ae(i[1])

    mp.dps = 15

def test_jtheta():
    mp.dps = 25

    z = q = zero
    for n in range(1,5):
        value = jtheta(n, z, q)
        assert(value == (n-1)//2)

    for q in [one, mpf(2)]:
        for n in range(1,5):
            pytest.raises(ValueError, lambda: jtheta(n, z, q))

    z = one/10
    q = one/11

    # Mathematical N[EllipticTheta[1, 1/10, 1/11], 25]
    res = mpf('0.1069552990104042681962096')
    result = jtheta(1, z, q)
    assert(result.ae(res))

    # Mathematica N[EllipticTheta[2, 1/10, 1/11], 25]
    res = mpf('1.101385760258855791140606')
    result = jtheta(2, z, q)
    assert(result.ae(res))

    # Mathematica N[EllipticTheta[3, 1/10, 1/11], 25]
    res = mpf('1.178319743354331061795905')
    result = jtheta(3, z, q)
    assert(result.ae(res))

    # Mathematica N[EllipticTheta[4, 1/10, 1/11], 25]
    res = mpf('0.8219318954665153577314573')
    result = jtheta(4, z, q)
    assert(result.ae(res))

    # test for sin zeros for jtheta(1, z, q)
    # test for cos zeros for jtheta(2, z, q)
    z1 = pi
    z2 = pi/2
    for i in range(10):
        qstring = str(random.random())
        q = mpf(qstring)
        result = jtheta(1, z1, q)
        assert(result.ae(0))
        result = jtheta(2, z2, q)
        assert(result.ae(0))
    mp.dps = 15


def test_jtheta_issue_79():
    # near the circle of covergence |q| = 1 the convergence slows
    # down; for |q| > Q_LIM the theta functions raise ValueError
    mp.dps = 30
    mp.dps += 30
    q = mpf(6)/10 - one/10**6 - mpf(8)/10 * j
    mp.dps -= 30
    # Mathematica run first
    # N[EllipticTheta[3, 1, 6/10 - 10^-6 - 8/10*I], 2000]
    # then it works:
    # N[EllipticTheta[3, 1, 6/10 - 10^-6 - 8/10*I], 30]
    res = mpf('32.0031009628901652627099524264') + \
          mpf('16.6153027998236087899308935624') * j
    result = jtheta(3, 1, q)
    # check that for abs(q) > Q_LIM a ValueError exception is raised
    mp.dps += 30
    q = mpf(6)/10 - one/10**7 - mpf(8)/10 * j
    mp.dps -= 30
    pytest.raises(ValueError, lambda: jtheta(3, 1, q))

    # bug reported in issue 79
    mp.dps = 100
    z = (1+j)/3
    q = mpf(368983957219251)/10**15 + mpf(636363636363636)/10**15 * j
    # Mathematica N[EllipticTheta[1, z, q], 35]
    res = mpf('2.4439389177990737589761828991467471') + \
          mpf('0.5446453005688226915290954851851490') *j
    mp.dps = 30
    result = jtheta(1, z, q)
    assert(result.ae(res))
    mp.dps = 80
    z = 3 + 4*j
    q = 0.5 + 0.5*j
    r1 = jtheta(1, z, q)
    mp.dps = 15
    r2 = jtheta(1, z, q)
    assert r1.ae(r2)
    mp.dps = 80
    z = 3 + j
    q1 = exp(j*3)
    # longer test
    # for n in range(1, 6)
    for n in range(1, 2):
        mp.dps = 80
        q = q1*(1 - mpf(1)/10**n)
        r1 = jtheta(1, z, q)
        mp.dps = 15
        r2 = jtheta(1, z, q)
    assert r1.ae(r2)
    mp.dps = 15
    # issue 79 about high derivatives
    assert jtheta(3, 4.5, 0.25, 9).ae(1359.04892680683)
    assert jtheta(3, 4.5, 0.25, 50).ae(-6.14832772630905e+33)
    mp.dps = 50
    r = jtheta(3, 4.5, 0.25, 9)
    assert r.ae('1359.048926806828939547859396600218966947753213803')
    r = jtheta(3, 4.5, 0.25, 50)
    assert r.ae('-6148327726309051673317975084654262.4119215720343656')

def test_jtheta_identities():
    """
    Tests the some of the jacobi identidies found in Abramowitz,
    Sec. 16.28, Pg. 576. The identities are tested to 1 part in 10^98.
    """
    mp.dps = 110
    eps1 = ldexp(eps, 30)

    for i in range(10):
        qstring = str(random.random())
        q = mpf(qstring)

        zstring = str(10*random.random())
        z = mpf(zstring)
        # Abramowitz 16.28.1
        # v_1(z, q)**2 * v_4(0, q)**2 =   v_3(z, q)**2 * v_2(0, q)**2
        #                               - v_2(z, q)**2 * v_3(0, q)**2
        term1 = (jtheta(1, z, q)**2) * (jtheta(4, zero, q)**2)
        term2 = (jtheta(3, z, q)**2) * (jtheta(2, zero, q)**2)
        term3 = (jtheta(2, z, q)**2) * (jtheta(3, zero, q)**2)
        equality = term1 - term2 + term3
        assert(equality.ae(0, eps1))

        zstring = str(100*random.random())
        z = mpf(zstring)
        # Abramowitz 16.28.2
        # v_2(z, q)**2 * v_4(0, q)**2 =   v_4(z, q)**2 * v_2(0, q)**2
        #                               - v_1(z, q)**2 * v_3(0, q)**2
        term1 = (jtheta(2, z, q)**2) * (jtheta(4, zero, q)**2)
        term2 = (jtheta(4, z, q)**2) * (jtheta(2, zero, q)**2)
        term3 = (jtheta(1, z, q)**2) * (jtheta(3, zero, q)**2)
        equality = term1 - term2 + term3
        assert(equality.ae(0, eps1))

        # Abramowitz 16.28.3
        # v_3(z, q)**2 * v_4(0, q)**2 =   v_4(z, q)**2 * v_3(0, q)**2
        #                               - v_1(z, q)**2 * v_2(0, q)**2
        term1 = (jtheta(3, z, q)**2) * (jtheta(4, zero, q)**2)
        term2 = (jtheta(4, z, q)**2) * (jtheta(3, zero, q)**2)
        term3 = (jtheta(1, z, q)**2) * (jtheta(2, zero, q)**2)
        equality = term1 - term2 + term3
        assert(equality.ae(0, eps1))

        # Abramowitz 16.28.4
        # v_4(z, q)**2 * v_4(0, q)**2 =   v_3(z, q)**2 * v_3(0, q)**2
        #                               - v_2(z, q)**2 * v_2(0, q)**2
        term1 = (jtheta(4, z, q)**2) * (jtheta(4, zero, q)**2)
        term2 = (jtheta(3, z, q)**2) * (jtheta(3, zero, q)**2)
        term3 = (jtheta(2, z, q)**2) * (jtheta(2, zero, q)**2)
        equality = term1 - term2 + term3
        assert(equality.ae(0, eps1))

        # Abramowitz 16.28.5
        # v_2(0, q)**4 + v_4(0, q)**4 == v_3(0, q)**4
        term1 = (jtheta(2, zero, q))**4
        term2 = (jtheta(4, zero, q))**4
        term3 = (jtheta(3, zero, q))**4
        equality = term1 + term2 - term3
        assert(equality.ae(0, eps1))
    mp.dps = 15

def test_jtheta_complex():
    mp.dps = 30
    z = mpf(1)/4 + j/8
    q = mpf(1)/3 + j/7
    # Mathematica N[EllipticTheta[1, 1/4 + I/8, 1/3 + I/7], 35]
    res = mpf('0.31618034835986160705729105731678285') + \
          mpf('0.07542013825835103435142515194358975') * j
    r = jtheta(1, z, q)
    assert(mpc_ae(r, res))

    # Mathematica N[EllipticTheta[2, 1/4 + I/8, 1/3 + I/7], 35]
    res = mpf('1.6530986428239765928634711417951828') + \
          mpf('0.2015344864707197230526742145361455') * j
    r = jtheta(2, z, q)
    assert(mpc_ae(r, res))

    # Mathematica N[EllipticTheta[3, 1/4 + I/8, 1/3 + I/7], 35]
    res = mpf('1.6520564411784228184326012700348340') + \
          mpf('0.1998129119671271328684690067401823') * j
    r = jtheta(3, z, q)
    assert(mpc_ae(r, res))

    # Mathematica N[EllipticTheta[4, 1/4 + I/8, 1/3 + I/7], 35]
    res = mpf('0.37619082382228348252047624089973824') - \
          mpf('0.15623022130983652972686227200681074') * j
    r = jtheta(4, z, q)
    assert(mpc_ae(r, res))

    # check some theta function identities
    mp.dos = 100
    z = mpf(1)/4 + j/8
    q = mpf(1)/3 + j/7
    mp.dps += 10
    a = [0,0, jtheta(2, 0, q), jtheta(3, 0, q), jtheta(4, 0, q)]
    t = [0, jtheta(1, z, q), jtheta(2, z, q), jtheta(3, z, q), jtheta(4, z, q)]
    r = [(t[2]*a[4])**2 - (t[4]*a[2])**2 + (t[1] *a[3])**2,
        (t[3]*a[4])**2 - (t[4]*a[3])**2 + (t[1] *a[2])**2,
        (t[1]*a[4])**2 - (t[3]*a[2])**2 + (t[2] *a[3])**2,
        (t[4]*a[4])**2 - (t[3]*a[3])**2 + (t[2] *a[2])**2,
        a[2]**4 + a[4]**4 - a[3]**4]
    mp.dps -= 10
    for x in r:
        assert(mpc_ae(x, mpc(0)))
    mp.dps = 15

def test_djtheta():
    mp.dps = 30

    z = one/7 + j/3
    q = one/8 + j/5
    # Mathematica N[EllipticThetaPrime[1, 1/7 + I/3, 1/8 + I/5], 35]
    res = mpf('1.5555195883277196036090928995803201') - \
          mpf('0.02439761276895463494054149673076275') * j
    result = jtheta(1, z, q, 1)
    assert(mpc_ae(result, res))

    # Mathematica N[EllipticThetaPrime[2, 1/7 + I/3, 1/8 + I/5], 35]
    res = mpf('0.19825296689470982332701283509685662') - \
          mpf('0.46038135182282106983251742935250009') * j
    result = jtheta(2, z, q, 1)
    assert(mpc_ae(result, res))

    # Mathematica N[EllipticThetaPrime[3, 1/7 + I/3, 1/8 + I/5], 35]
    res = mpf('0.36492498415476212680896699407390026') - \
          mpf('0.57743812698666990209897034525640369') * j
    result = jtheta(3, z, q, 1)
    assert(mpc_ae(result, res))

    # Mathematica N[EllipticThetaPrime[4, 1/7 + I/3, 1/8 + I/5], 35]
    res = mpf('-0.38936892528126996010818803742007352') + \
          mpf('0.66549886179739128256269617407313625') * j
    result = jtheta(4, z, q, 1)
    assert(mpc_ae(result, res))

    for i in range(10):
        q = (one*random.random() + j*random.random())/2
        # identity in Wittaker, Watson &21.41
        a = jtheta(1, 0, q, 1)
        b = jtheta(2, 0, q)*jtheta(3, 0, q)*jtheta(4, 0, q)
        assert(a.ae(b))

    # test higher derivatives
    mp.dps = 20
    for q,z in [(one/3, one/5), (one/3 + j/8, one/5),
        (one/3, one/5 + j/8), (one/3 + j/7, one/5 + j/8)]:
        for n in [1, 2, 3, 4]:
            r = jtheta(n, z, q, 2)
            r1 = diff(lambda zz: jtheta(n, zz, q), z, n=2)
            assert r.ae(r1)
            r = jtheta(n, z, q, 3)
            r1 = diff(lambda zz: jtheta(n, zz, q), z, n=3)
            assert r.ae(r1)

    # identity in Wittaker, Watson &21.41
    q = one/3
    z = zero
    a = [0]*5
    a[1] = jtheta(1, z, q, 3)/jtheta(1, z, q, 1)
    for n in [2,3,4]:
        a[n] = jtheta(n, z, q, 2)/jtheta(n, z, q)
    equality = a[2] + a[3] + a[4] - a[1]
    assert(equality.ae(0))
    mp.dps = 15

def test_jsn():
    """
    Test some special cases of the sn(z, q) function.
    """
    mp.dps = 100

    # trival case
    result = jsn(zero, zero)
    assert(result == zero)

    # Abramowitz Table 16.5
    #
    # sn(0, m) = 0

    for i in range(10):
        qstring = str(random.random())
        q = mpf(qstring)

        equality = jsn(zero, q)
        assert(equality.ae(0))

    # Abramowitz Table 16.6.1
    #
    # sn(z, 0) = sin(z), m == 0
    #
    # sn(z, 1) = tanh(z), m == 1
    #
    # It would be nice to test these, but I find that they run
    # in to numerical trouble.  I'm currently treating as a boundary
    # case for sn function.

    mp.dps = 25
    arg = one/10
    #N[JacobiSN[1/10, 2^-100], 25]
    res = mpf('0.09983341664682815230681420')
    m = ldexp(one, -100)
    result = jsn(arg, m)
    assert(result.ae(res))

    # N[JacobiSN[1/10, 1/10], 25]
    res = mpf('0.09981686718599080096451168')
    result = jsn(arg, arg)
    assert(result.ae(res))
    mp.dps = 15

def test_jcn():
    """
    Test some special cases of the cn(z, q) function.
    """
    mp.dps = 100

    # Abramowitz Table 16.5
    # cn(0, q) = 1
    qstring = str(random.random())
    q = mpf(qstring)
    cn = jcn(zero, q)
    assert(cn.ae(one))

    # Abramowitz Table 16.6.2
    #
    # cn(u, 0) = cos(u), m == 0
    #
    # cn(u, 1) = sech(z), m == 1
    #
    # It would be nice to test these, but I find that they run
    # in to numerical trouble.  I'm currently treating as a boundary
    # case for cn function.

    mp.dps = 25
    arg = one/10
    m = ldexp(one, -100)
    #N[JacobiCN[1/10, 2^-100], 25]
    res = mpf('0.9950041652780257660955620')
    result = jcn(arg, m)
    assert(result.ae(res))

    # N[JacobiCN[1/10, 1/10], 25]
    res = mpf('0.9950058256237368748520459')
    result = jcn(arg, arg)
    assert(result.ae(res))
    mp.dps = 15

def test_jdn():
    """
    Test some special cases of the dn(z, q) function.
    """
    mp.dps = 100

    # Abramowitz Table 16.5
    # dn(0, q) = 1
    mstring = str(random.random())
    m = mpf(mstring)

    dn = jdn(zero, m)
    assert(dn.ae(one))

    mp.dps = 25
    # N[JacobiDN[1/10, 1/10], 25]
    res = mpf('0.9995017055025556219713297')
    arg = one/10
    result = jdn(arg, arg)
    assert(result.ae(res))
    mp.dps = 15


def test_sn_cn_dn_identities():
    """
    Tests the some of the jacobi elliptic function identities found
    on Mathworld. Haven't found in Abramowitz.
    """
    mp.dps = 100
    N = 5
    for i in range(N):
        qstring = str(random.random())
        q = mpf(qstring)
        zstring = str(100*random.random())
        z = mpf(zstring)

        # MathWorld
        # sn(z, q)**2 + cn(z, q)**2 == 1
        term1 = jsn(z, q)**2
        term2 = jcn(z, q)**2
        equality = one - term1 - term2
        assert(equality.ae(0))

    # MathWorld
    # k**2 * sn(z, m)**2 + dn(z, m)**2 == 1
    for i in range(N):
        mstring = str(random.random())
        m = mpf(qstring)
        k = m.sqrt()
        zstring = str(10*random.random())
        z = mpf(zstring)
        term1 = k**2 * jsn(z, m)**2
        term2 = jdn(z, m)**2
        equality = one - term1 - term2
        assert(equality.ae(0))


    for i in range(N):
        mstring = str(random.random())
        m = mpf(mstring)
        k = m.sqrt()
        zstring = str(random.random())
        z = mpf(zstring)

        # MathWorld
        # k**2 * cn(z, m)**2 + (1 - k**2) = dn(z, m)**2
        term1 = k**2 * jcn(z, m)**2
        term2 = 1 - k**2
        term3 = jdn(z, m)**2
        equality = term3 - term1 - term2
        assert(equality.ae(0))

        K = ellipk(k**2)
        # Abramowitz Table 16.5
        # sn(K, m) = 1; K is K(k), first complete elliptic integral
        r = jsn(K, m)
        assert(r.ae(one))

        # Abramowitz Table 16.5
        # cn(K, q) = 0; K is K(k), first complete elliptic integral
        equality = jcn(K, m)
        assert(equality.ae(0))

        # Abramowitz Table 16.6.3
        # dn(z, 0) = 1, m == 0
        z = m
        value = jdn(z, zero)
        assert(value.ae(one))

    mp.dps = 15

def test_sn_cn_dn_complex():
    mp.dps = 30
    # N[JacobiSN[1/4 + I/8, 1/3 + I/7], 35] in Mathematica
    res = mpf('0.2495674401066275492326652143537') + \
          mpf('0.12017344422863833381301051702823') * j
    u = mpf(1)/4 + j/8
    m = mpf(1)/3 + j/7
    r = jsn(u, m)
    assert(mpc_ae(r, res))

    #N[JacobiCN[1/4 + I/8, 1/3 + I/7], 35]
    res = mpf('0.9762691700944007312693721148331') - \
          mpf('0.0307203994181623243583169154824')*j
    r = jcn(u, m)
    #assert r.real.ae(res.real)
    #assert r.imag.ae(res.imag)
    assert(mpc_ae(r, res))

    #N[JacobiDN[1/4 + I/8, 1/3 + I/7], 35]
    res = mpf('0.99639490163039577560547478589753039') - \
          mpf('0.01346296520008176393432491077244994')*j
    r = jdn(u, m)
    assert(mpc_ae(r, res))
    mp.dps = 15

def test_elliptic_integrals():
    # Test cases from Carlson's paper
    mp.dps = 15
    assert elliprd(0,2,1).ae(1.7972103521033883112)
    assert elliprd(2,3,4).ae(0.16510527294261053349)
    assert elliprd(j,-j,2).ae(0.65933854154219768919)
    assert elliprd(0,j,-j).ae(1.2708196271909686299 + 2.7811120159520578777j)
    assert elliprd(0,j-1,j).ae(-1.8577235439239060056 - 0.96193450888838559989j)
    assert elliprd(-2-j,-j,-1+j).ae(1.8249027393703805305 - 1.2218475784827035855j)
    # extra test cases
    assert elliprg(0,0,0) == 0
    assert elliprg(0,0,16).ae(2)
    assert elliprg(0,16,0).ae(2)
    assert elliprg(16,0,0).ae(2)
    assert elliprg(1,4,0).ae(1.2110560275684595248036)
    assert elliprg(1,0,4).ae(1.2110560275684595248036)
    assert elliprg(0,4,1).ae(1.2110560275684595248036)
    # should be symmetric -- fixes a bug present in the paper
    x,y,z = 1,1j,-1+1j
    assert elliprg(x,y,z).ae(0.64139146875812627545 + 0.58085463774808290907j)
    assert elliprg(x,z,y).ae(0.64139146875812627545 + 0.58085463774808290907j)
    assert elliprg(y,x,z).ae(0.64139146875812627545 + 0.58085463774808290907j)
    assert elliprg(y,z,x).ae(0.64139146875812627545 + 0.58085463774808290907j)
    assert elliprg(z,x,y).ae(0.64139146875812627545 + 0.58085463774808290907j)
    assert elliprg(z,y,x).ae(0.64139146875812627545 + 0.58085463774808290907j)

    for n in [5, 15, 30, 60, 100]:
        mp.dps = n
        assert elliprf(1,2,0).ae('1.3110287771460599052324197949455597068413774757158115814084108519003952935352071251151477664807145467230678763')
        assert elliprf(0.5,1,0).ae('1.854074677301371918433850347195260046217598823521766905585928045056021776838119978357271861650371897277771871')
        assert elliprf(j,-j,0).ae('1.854074677301371918433850347195260046217598823521766905585928045056021776838119978357271861650371897277771871')
        assert elliprf(j-1,j,0).ae(mpc('0.79612586584233913293056938229563057846592264089185680214929401744498956943287031832657642790719940442165621412',
            '-1.2138566698364959864300942567386038975419875860741507618279563735753073152507112254567291141460317931258599889'))
        assert elliprf(2,3,4).ae('0.58408284167715170669284916892566789240351359699303216166309375305508295130412919665541330837704050454472379308')
        assert elliprf(j,-j,2).ae('1.0441445654064360931078658361850779139591660747973017593275012615517220315993723776182276555339288363064476126')
        assert elliprf(j-1,j,1-j).ae(mpc('0.93912050218619371196624617169781141161485651998254431830645241993282941057500174238125105410055253623847335313',
            '-0.53296252018635269264859303449447908970360344322834582313172115220559316331271520508208025270300138589669326136'))
        assert elliprc(0,0.25).ae(+pi)
        assert elliprc(2.25,2).ae(+ln2)
        assert elliprc(0,j).ae(mpc('1.1107207345395915617539702475151734246536554223439225557713489017391086982748684776438317336911913093408525532',
            '-1.1107207345395915617539702475151734246536554223439225557713489017391086982748684776438317336911913093408525532'))
        assert elliprc(-j,j).ae(mpc('1.2260849569072198222319655083097718755633725139745941606203839524036426936825652935738621522906572884239069297',
            '-0.34471136988767679699935618332997956653521218571295874986708834375026550946053920574015526038040124556716711353'))
        assert elliprc(0.25,-2).ae(ln2/3)
        assert elliprc(j,-1).ae(mpc('0.77778596920447389875196055840799837589537035343923012237628610795937014001905822029050288316217145443865649819',
            '0.1983248499342877364755170948292130095921681309577950696116251029742793455964385947473103628983664877025779304'))
        assert elliprj(0,1,2,3).ae('0.77688623778582332014190282640545501102298064276022952731669118325952563819813258230708177398475643634103990878')
        assert elliprj(2,3,4,5).ae('0.14297579667156753833233879421985774801466647854232626336218889885463800128817976132826443904216546421431528308')
        assert elliprj(2,3,4,-1+j).ae(mpc('0.13613945827770535203521374457913768360237593025944342652613569368333226052158214183059386307242563164036672709',
            '-0.38207561624427164249600936454845112611060375760094156571007648297226090050927156176977091273224510621553615189'))
        assert elliprj(j,-j,0,2).ae('1.6490011662710884518243257224860232300246792717163891216346170272567376981346412066066050103935109581019055806')
        assert elliprj(-1+j,-1-j,1,2).ae('0.94148358841220238083044612133767270187474673547917988681610772381758628963408843935027667916713866133196845063')
        assert elliprj(j,-j,0,1-j).ae(mpc('1.8260115229009316249372594065790946657011067182850435297162034335356430755397401849070610280860044610878657501',
            '1.2290661908643471500163617732957042849283739403009556715926326841959667290840290081010472716420690899886276961'))
        assert elliprj(-1+j,-1-j,1,-3+j).ae(mpc('-0.61127970812028172123588152373622636829986597243716610650831553882054127570542477508023027578037045504958619422',
            '-1.0684038390006807880182112972232562745485871763154040245065581157751693730095703406209466903752930797510491155'))
        assert elliprj(-1+j,-2-j,-j,-1+j).ae(mpc('1.8249027393703805304622013339009022294368078659619988943515764258335975852685224202567854526307030593012768954',
            '-1.2218475784827035854568450371590419833166777535029296025352291308244564398645467465067845461070602841312456831'))

        assert elliprg(0,16,16).ae(+pi)
        assert elliprg(2,3,4).ae('1.7255030280692277601061148835701141842692457170470456590515892070736643637303053506944907685301315299153040991')
        assert elliprg(0,j,-j).ae('0.42360654239698954330324956174109581824072295516347109253028968632986700241706737986160014699730561497106114281')
        assert elliprg(j-1,j,0).ae(mpc('0.44660591677018372656731970402124510811555212083508861036067729944477855594654762496407405328607219895053798354',
            '0.70768352357515390073102719507612395221369717586839400605901402910893345301718731499237159587077682267374159282'))
        assert elliprg(-j,j-1,j).ae(mpc('0.36023392184473309033675652092928695596803358846377334894215349632203382573844427952830064383286995172598964266',
            '0.40348623401722113740956336997761033878615232917480045914551915169013722542827052849476969199578321834819903921'))
        assert elliprg(0, mpf('0.0796'), 4).ae('1.0284758090288040009838871385180217366569777284430590125081211090574701293154645750017813190805144572673802094')
    mp.dps = 15

    # more test cases for the branch of ellippi / elliprj
    assert elliprj(-1-0.5j, -10-6j, -10-3j, -5+10j).ae(0.128470516743927699 + 0.102175950778504625j, abs_eps=1e-8)
    assert elliprj(1.987, 4.463 - 1.614j, 0, -3.965).ae(-0.341575118513811305 - 0.394703757004268486j, abs_eps=1e-8)
    assert elliprj(0.3068, -4.037+0.632j, 1.654, -0.9609).ae(-1.14735199581485639 - 0.134450158867472264j, abs_eps=1e-8)
    assert elliprj(0.3068, -4.037-0.632j, 1.654, -0.9609).ae(1.758765901861727 - 0.161002343366626892j, abs_eps=1e-5)
    assert elliprj(0.3068, -4.037+0.0632j, 1.654, -0.9609).ae(-1.17157627949475577 - 0.069182614173988811j, abs_eps=1e-8)
    assert elliprj(0.3068, -4.037+0.00632j, 1.654, -0.9609).ae(-1.17337595670549633 - 0.0623069224526925j, abs_eps=1e-8)

    # these require accurate integration
    assert elliprj(0.3068, -4.037-0.0632j, 1.654, -0.9609).ae(1.77940452391261626 + 0.0388711305592447234j)
    assert elliprj(0.3068, -4.037-0.00632j, 1.654, -0.9609).ae(1.77806722756403055 + 0.0592749824572262329j)
    # issue #571
    assert ellippi(2.1 + 0.94j, 2.3 + 0.98j, 2.5 + 0.01j).ae(-0.40652414240811963438 + 2.1547659461404749309j)

    assert ellippi(2.0-1.0j, 2.0+1.0j).ae(1.8578723151271115 - 1.18642180609983531j)
    assert ellippi(2.0-0.5j, 0.5+1.0j).ae(0.936761970766645807 - 1.61876787838890786j)
    assert ellippi(2.0, 1.0+1.0j).ae(0.999881420735506708 - 2.4139272867045391j)
    assert ellippi(2.0+1.0j, 2.0-1.0j).ae(1.8578723151271115 + 1.18642180609983531j)
    assert ellippi(2.0+1.0j, 2.0).ae(2.78474654927885845 + 2.02204728966993314j)

def test_issue_238():
    assert isnan(qfrom(m=nan))