File size: 20,985 Bytes
375a1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

# reference python implementations for C ops
import torch

from functorch._C import dim as _C
from . import op_properties
from .batch_tensor import _enable_layers
from .tree_map import tree_flatten, tree_map

DimList = _C.DimList
import operator
from functools import reduce


# use dict to avoid writing C++ bindings for set
pointwise = set(op_properties.pointwise)


def prod(x):
    return reduce(operator.mul, x, 1)


def _wrap_dim(d, N, keepdim):
    from . import Dim

    if isinstance(d, Dim):
        assert not keepdim, "cannot preserve first-class dimensions with keepdim=True"
        return d
    elif d >= 0:
        return d - N
    else:
        return d


def _dims(d, N, keepdim, single_dim):
    from . import Dim

    if isinstance(d, (Dim, int)):
        return ltuple((_wrap_dim(d, N, keepdim),))
    assert not single_dim, f"expected a single dimension or int but found: {d}"
    return ltuple(_wrap_dim(x, N, keepdim) for x in d)


def _bind_dims_to_size(lhs_size, rhs, lhs_debug):
    from . import DimensionMismatchError

    not_bound = tuple((i, r) for i, r in enumerate(rhs) if not r.is_bound)
    if len(not_bound) == 1:
        idx, d = not_bound[0]
        rhs_so_far = prod(r.size for r in rhs if r.is_bound)
        if lhs_size % rhs_so_far != 0:
            rhs_s = tuple("?" if not r.is_bound else str(r.size) for r in rhs)
            raise DimensionMismatchError(
                f"inferred dimension does not evenly fit into larger dimension: {lhs_size} vs {rhs_s}"
            )
        new_size = lhs_size // rhs_so_far
        d.size = new_size
    elif len(not_bound) > 1:
        rhs_s = tuple("?" if not r.is_bound else str(r.size) for r in rhs)
        raise DimensionMismatchError(
            f"cannot infer the size of two dimensions at once: {rhs} with sizes {rhs_s}"
        )
    else:
        rhs_size = prod(r.size for r in rhs)
        if lhs_size != rhs_size:
            raise DimensionMismatchError(
                f"Dimension sizes to do not match ({lhs_size} != {rhs_size}) when matching {lhs_debug} to {rhs}"
            )


def _tensor_levels(inp):
    from . import _Tensor

    if isinstance(inp, _Tensor):
        return inp._tensor, llist(inp._levels), inp._has_device
    else:
        return inp, llist(range(-inp.ndim, 0)), True


def _match_levels(v, from_levels, to_levels):
    view = []
    permute = []
    requires_view = False
    size = v.size()
    for t in to_levels:
        try:
            idx = from_levels.index(t)
            permute.append(idx)
            view.append(size[idx])
        except ValueError:
            view.append(1)
            requires_view = True
    if permute != list(range(len(permute))):
        v = v.permute(*permute)
    if requires_view:
        v = v.view(*view)
    return v


# make a single dimension positional but do not permute it,
# used to do multi-tensor operators where the dim being acted on
# should not physically move if possible
def _positional_no_permute(self, dim, expand_dim=False):
    from . import Tensor

    ptensor, levels = self._tensor, llist(self._levels)
    try:
        idx = levels.index(dim)
    except ValueError:
        if not expand_dim:
            raise
        idx = 0
        ptensor = ptensor.expand(dim.size, *ptensor.size())
        levels.insert(0, 0)
    idx_batched = 0
    for i in range(idx):
        if isinstance(levels[i], int):
            levels[i] -= 1
            idx_batched += 1
    levels[idx] = -idx_batched - 1
    return Tensor.from_positional(ptensor, levels, self._has_device), idx_batched


def seq(a, b):
    from . import Dim

    if isinstance(a, Dim) != isinstance(b, Dim):
        return False
    if isinstance(a, Dim):
        return a is b
    else:
        return a == b


class isin:
    def __contains__(self, item):
        for x in self:
            if seq(item, x):
                return True
        return False

    def index(self, item):
        for i, x in enumerate(self):
            if seq(item, x):
                return i
        raise ValueError


class llist(isin, list):
    pass


class ltuple(isin, tuple):
    pass


empty_dict = {}


@classmethod
def __torch_function__(self, orig, cls, args, kwargs=empty_dict):
    from . import _Tensor, Tensor, TensorLike
    from .delayed_mul_tensor import DelayedMulTensor

    if orig is torch.Tensor.__mul__:
        lhs, rhs = args
        if (
            isinstance(lhs, _Tensor)
            and isinstance(rhs, _Tensor)
            and lhs.ndim == 0
            and rhs.ndim == 0
        ):
            return DelayedMulTensor(lhs, rhs)
    all_dims = llist()
    flat_args, unflatten = tree_flatten((args, kwargs))
    device_holding_tensor = None
    for f in flat_args:
        if isinstance(f, _Tensor):
            if f._has_device:
                device_holding_tensor = f._batchtensor
            for d in f.dims:
                if d not in all_dims:
                    all_dims.append(d)

    def unwrap(t):
        if isinstance(t, _Tensor):
            r = t._batchtensor
            if device_holding_tensor is not None and not t._has_device:
                r = r.to(device=device_holding_tensor.device)
            return r
        return t

    if orig in pointwise:
        result_levels = llist()
        arg_levels = llist()
        to_expand = []
        for i, f in enumerate(flat_args):
            if isinstance(f, TensorLike):
                ptensor, levels, _ = _tensor_levels(f)
                if (
                    isinstance(f, _Tensor)
                    and not f._has_device
                    and device_holding_tensor is not None
                ):
                    ptensor = ptensor.to(device=device_holding_tensor.device)
                flat_args[i] = ptensor
                for l in levels:
                    if l not in result_levels:
                        result_levels.append(l)
                to_expand.append((i, levels))

        for i, levels in to_expand:
            flat_args[i] = _match_levels(flat_args[i], levels, result_levels)
        args, kwargs = unflatten(flat_args)
        result = orig(*args, **kwargs)

        def wrap(t):
            if isinstance(t, TensorLike):
                return Tensor.from_positional(
                    t, result_levels, device_holding_tensor is not None
                )
            return t

        return tree_map(wrap, result)
    else:

        def wrap(t):
            if isinstance(t, TensorLike):
                return Tensor.from_batched(t, device_holding_tensor is not None)
            return t

        with _enable_layers(all_dims):
            print(f"batch_tensor for {orig}")
            args, kwargs = unflatten(unwrap(f) for f in flat_args)
            result = orig(*args, **kwargs)
            # print("END", orig)
            return tree_map(wrap, result)


def positional(self, *dims):
    from . import Dim, DimensionBindError, Tensor

    ptensor, levels = self._tensor, llist(self._levels)
    flat_dims = llist()
    view = []
    needs_view = False
    ndim = self.ndim
    for d in dims:
        if isinstance(d, DimList):
            flat_dims.extend(d)
            view.extend(e.size for e in d)
        elif isinstance(d, Dim):
            flat_dims.append(d)
            view.append(d.size)
        elif isinstance(d, int):
            d = _wrap_dim(d, ndim, False)
            flat_dims.append(d)
            view.append(ptensor.size(d))
        else:
            flat_dims.extend(d)
            view.append(prod(e.size for e in d))
            needs_view = True

    permute = list(range(len(levels)))
    nflat = len(flat_dims)
    for i, d in enumerate(flat_dims):
        try:
            idx = levels.index(d)
        except ValueError as e:
            raise DimensionBindError(
                f"tensor of dimensions {self.dims} does not contain dim {d}"
            ) from e
        p = permute[idx]
        del levels[idx]
        del permute[idx]
        levels.insert(i, 0)
        permute.insert(i, p)
    ptensor = ptensor.permute(*permute)
    seen = 0
    for i in range(len(levels) - 1, -1, -1):
        if isinstance(levels[i], int):
            seen += 1
            levels[i] = -seen
    result = Tensor.from_positional(ptensor, levels, self._has_device)
    if needs_view:
        result = result.reshape(*view, *result.size()[len(flat_dims) :])
    return result


def _contains_dim(input):
    from . import Dim

    for i in input:
        if isinstance(i, Dim):
            return True


def expand(self, *sizes):
    if not _contains_dim(sizes):
        return self.__torch_function__(torch.Tensor.expand, None, (self, *sizes))
    dims = sizes
    sizes = [d.size for d in dims] + [-1] * self.ndim
    self = self.expand(*sizes)
    return self[dims]


_not_present = object()


def _getarg(name, offset, args, kwargs, default):
    if len(args) > offset:
        return args[offset]
    return kwargs.get(name, default)


def _patcharg(name, offset, args, kwargs, value):
    if len(args) > offset:
        args[offset] = value
    else:
        kwargs[name] = value


def _wrap(

    orig, dim_offset=0, keepdim_offset=1, dim_name="dim", single_dim=False, reduce=True

):
    from . import Dim, Tensor, TensorLike

    def fn(self, *args, **kwargs):
        dim = _getarg(dim_name, dim_offset, args, kwargs, _not_present)
        if dim is _not_present or (single_dim and not isinstance(dim, Dim)):
            with _enable_layers(self.dims):
                print(f"dim fallback batch_tensor for {orig}")
                return Tensor.from_batched(
                    orig(self._batchtensor, *args, **kwargs), self._has_device
                )
        keepdim = (
            _getarg("keepdim", keepdim_offset, args, kwargs, False) if reduce else False
        )
        t, levels = self._tensor, llist(self._levels)
        dims = _dims(dim, self._batchtensor.ndim, keepdim, single_dim)
        dim_indices = tuple(levels.index(d) for d in dims)
        if reduce and not keepdim:
            new_levels = [l for i, l in enumerate(levels) if i not in dim_indices]
        else:
            new_levels = levels

        if len(dim_indices) == 1:
            dim_indices = dim_indices[
                0
            ]  # so that dims that really only take a single argument work...
        args = list(args)
        _patcharg(dim_name, dim_offset, args, kwargs, dim_indices)

        def wrap(t):
            if isinstance(t, TensorLike):
                return Tensor.from_positional(t, new_levels, self._has_device)
            return t

        with _enable_layers(new_levels):
            print(f"dim used batch_tensor for {orig}")
            r = orig(t, *args, **kwargs)
            return tree_map(wrap, r)

    return fn


def _def(name, *args, **kwargs):
    from . import _Tensor

    orig = getattr(torch.Tensor, name)
    setattr(_Tensor, name, _wrap(orig, *args, **kwargs))


no_slice = slice(None)

_orig_getitem = torch.Tensor.__getitem__


class dim_tracker:
    def __init__(self):
        self.dims = llist()
        self.count = []

    def record(self, d):
        if d not in self.dims:
            self.dims.append(d)
            self.count.append(1)

    def __getitem__(self, d):
        return self.count[self.dims.index(d)]


def t__getitem__(self, input):
    from . import _Tensor, Dim, DimensionBindError, DimList, Tensor, TensorLike

    # * bail to original example if we have a single non-Dim tensor, or a non-tensor
    # * locate ... or an unbound tensor list, and determine its size, bind dim list
    #   (remember that None does not count to the total dim count)
    # * bind simple dims and dim-packs to their sizes, count the number of uses of each dim,
    #   produce the re-view if needed
    # * for each single-use dim index, replace with no_slice and mark that it will be added
    #   (keep track of whether we have to call super)
    # * call super if needed
    # * if we have dims to bind, bind them (it will help if we eliminated ... and None before)

    # this handles bool indexing handling, as well as some other simple cases.

    is_simple = (
        not isinstance(input, Dim)
        and not isinstance(input, (tuple, list))
        and
        # WAR for functorch bug where zero time tensors in getitem are not handled correctly.
        not (isinstance(input, TensorLike) and input.ndim == 0)
    )

    if is_simple:
        if isinstance(self, _Tensor):
            return _Tensor.__torch_function__(_orig_getitem, None, (self, input))
        else:
            return _orig_getitem(self, input)

    # can further optimize this case
    if not isinstance(input, tuple):
        input = [input]
    else:
        input = list(input)

    dims_indexed = 0
    expanding_object = None
    dimlists = []
    for i, s in enumerate(input):
        if s is ... or isinstance(s, DimList) and not s.is_bound:
            if expanding_object is not None:
                msg = (
                    "at most one ... or unbound dimension list can exist in indexing list but"
                    f" found 2 at offsets {i} and {expanding_object}"
                )
                raise DimensionBindError(msg)
            expanding_object = i

        if isinstance(s, DimList):
            dims_indexed += len(s) if s.is_bound else 0
            dimlists.append(i)
        elif s is not None and s is not ...:
            dims_indexed += 1

    ndim = self.ndim
    if dims_indexed > ndim:
        raise IndexError(
            f"at least {dims_indexed} indices were supplied but the tensor only has {ndim} dimensions."
        )
    if expanding_object is not None:
        expanding_ndims = ndim - dims_indexed
        obj = input[expanding_object]
        if obj is ...:
            input[expanding_object : expanding_object + 1] = [
                no_slice
            ] * expanding_ndims
        else:
            obj.bind_len(expanding_ndims)
    # flatten the dimslists into the indexing
    for i in reversed(dimlists):
        input[i : i + 1] = input[i]
    dims_indexed = 0
    requires_view = False
    size = self.size()
    view_sizes = []
    dims_seen = dim_tracker()

    def add_dims(t):
        if not isinstance(t, _Tensor):
            return
        for d in t.dims:
            dims_seen.record(d)

    add_dims(self)
    dim_packs = []
    for i, idx in enumerate(input):
        if idx is None:
            input[i] = no_slice
            view_sizes.append(1)
            requires_view = True
        else:
            sz = size[dims_indexed]
            if isinstance(idx, Dim):
                idx.size = sz
                dims_seen.record(idx)
                view_sizes.append(sz)
            elif isinstance(idx, (tuple, list)) and idx and isinstance(idx[0], Dim):
                for d in idx:
                    dims_seen.record(idx)
                _bind_dims_to_size(sz, idx, f"offset {i}")
                view_sizes.extend(d.size for d in idx)
                requires_view = True
                dim_packs.append(i)
            else:
                add_dims(idx)
                view_sizes.append(sz)
            dims_indexed += 1
    if requires_view:
        self = self.view(*view_sizes)
    for i in reversed(dim_packs):
        input[i : i + 1] = input[i]

    # currenty:
    # input is flat, containing either Dim, or Tensor, or something valid for standard indexing
    # self may have first-class dims as well.

    # to index:
    # drop the first class dims from self, they just become direct indices of their positions

    # figure out the dimensions of the indexing tensors: union of all the dims in the tensors in the index.
    # these dimensions will appear and need to be bound at the first place tensor occures

    if isinstance(self, _Tensor):
        ptensor_self, levels = self._tensor, list(self._levels)
        # indices to ptensor rather than self which has first-class dimensions
        input_it = iter(input)
        flat_inputs = [next(input_it) if isinstance(l, int) else l for l in levels]
        has_device = self._has_device
        to_pad = 0
    else:
        ptensor_self, flat_inputs = self, input
        to_pad = ptensor_self.ndim - len(flat_inputs)
        has_device = True

    result_levels = []
    index_levels = []
    tensor_insert_point = None
    to_expand = {}
    requires_getindex = False
    for i, inp in enumerate(flat_inputs):
        if isinstance(inp, Dim) and dims_seen[inp] == 1:
            flat_inputs[i] = no_slice
            result_levels.append(inp)
        elif isinstance(inp, TensorLike):
            requires_getindex = True
            if tensor_insert_point is None:
                tensor_insert_point = len(result_levels)
            ptensor, levels, _ = _tensor_levels(inp)
            to_expand[i] = levels
            flat_inputs[i] = ptensor
            for l in levels:
                if l not in index_levels:
                    index_levels.append(l)
        else:
            requires_getindex = True
            result_levels.append(0)

    if tensor_insert_point is not None:
        result_levels[tensor_insert_point:tensor_insert_point] = index_levels

    for i, levels in to_expand.items():
        flat_inputs[i] = _match_levels(flat_inputs[i], levels, index_levels)

    if requires_getindex:
        result = _orig_getitem(ptensor_self, flat_inputs)
    else:
        result = ptensor_self

    next_positional = -1
    if to_pad > 0:
        result_levels.extend([0] * to_pad)
    for i, r in enumerate(reversed(result_levels)):
        if isinstance(r, int):
            result_levels[-1 - i] = next_positional
            next_positional -= 1

    return Tensor.from_positional(result, result_levels, has_device)


# XXX - dim is optional and can be the outer-most dimension...
def stack(tensors, new_dim, dim=0, out=None):
    if isinstance(dim, int):
        return torch.stack(tensors, dim, out).index(dim, new_dim)
    index = None
    if out is not None:
        out, index = _positional_no_permute(out, dim, expand_dim=True)
    ptensors = []
    for t in tensors:
        pt, pi = _positional_no_permute(t, dim, expand_dim=True)
        if index is not None and pi != index:
            pt = pt.move_dim(pi, index)
        else:
            index = pi
        ptensors.append(pt)
    pr = torch.stack(ptensors, index, out=out)
    return pr.index((index, index + 1), (new_dim, dim))


_orig_split = torch.Tensor.split


def split(self, split_size_or_sections, dim=0):
    from . import _Tensor, Dim

    if isinstance(split_size_or_sections, int) or any(
        isinstance(t, int) for t in split_size_or_sections
    ):
        if isinstance(dim, Dim):
            raise ValueError(
                "when dim is specified as a Dim object, split sizes must also be dimensions."
            )
        return _orig_split(self, split_size_or_sections, dim=dim)

    if isinstance(dim, Dim):
        assert isinstance(self, _Tensor), f"Tensor does not have dimension {dim}"
        self, dim = _positional_no_permute(self, dim)

    size = self.size(dim)
    total_bound_size = 0
    unbound = []
    sizes = []
    for i, d in enumerate(split_size_or_sections):
        if d.is_bound:
            sizes.append(d.size)
            total_bound_size += d.size
        else:
            sizes.append(0)
            unbound.append(i)

    if unbound:
        assert (
            total_bound_size <= size
        ), f"result dimensions are larger than original: {total_bound_size} vs {size} ({split_size_or_sections})"
        remaining_size = size - total_bound_size
        chunk_size = -(-remaining_size // len(unbound))
        for u in unbound:
            sz = min(chunk_size, remaining_size)
            split_size_or_sections[u].size = sz
            sizes[u] = sz
            remaining_size -= sz
    else:
        assert (
            total_bound_size == size
        ), f"result dimensions do not match original: {total_bound_size} vs {size} ({split_size_or_sections})"
    return tuple(
        t.index(dim, d)
        for d, t in zip(split_size_or_sections, _orig_split(self, sizes, dim=dim))
    )