Spaces:
Running
Running
File size: 5,350 Bytes
e11e4fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
from abc import abstractmethod
from typing import Dict, List, Optional
import numpy as np
from mlagents_envs.base_env import ActionTuple, BehaviorSpec, DecisionSteps
from mlagents_envs.exception import UnityException
from mlagents.trainers.action_info import ActionInfo
from mlagents.trainers.settings import NetworkSettings
from mlagents.trainers.behavior_id_utils import GlobalAgentId
class UnityPolicyException(UnityException):
"""
Related to errors with the Trainer.
"""
pass
class Policy:
def __init__(
self,
seed: int,
behavior_spec: BehaviorSpec,
network_settings: NetworkSettings,
):
self.behavior_spec = behavior_spec
self.network_settings: NetworkSettings = network_settings
self.seed = seed
self.previous_action_dict: Dict[str, np.ndarray] = {}
self.previous_memory_dict: Dict[str, np.ndarray] = {}
self.memory_dict: Dict[str, np.ndarray] = {}
self.normalize = network_settings.normalize
self.use_recurrent = self.network_settings.memory is not None
self.m_size = 0
self.sequence_length = 1
if self.use_recurrent:
self.m_size = self.network_settings.memory.memory_size
self.sequence_length = self.network_settings.memory.sequence_length
def make_empty_memory(self, num_agents):
"""
Creates empty memory for use with RNNs
:param num_agents: Number of agents.
:return: Numpy array of zeros.
"""
return np.zeros((num_agents, self.m_size), dtype=np.float32)
def save_memories(
self, agent_ids: List[GlobalAgentId], memory_matrix: Optional[np.ndarray]
) -> None:
if memory_matrix is None:
return
# Pass old memories into previous_memory_dict
for agent_id in agent_ids:
if agent_id in self.memory_dict:
self.previous_memory_dict[agent_id] = self.memory_dict[agent_id]
for index, agent_id in enumerate(agent_ids):
self.memory_dict[agent_id] = memory_matrix[index, :]
def retrieve_memories(self, agent_ids: List[GlobalAgentId]) -> np.ndarray:
memory_matrix = np.zeros((len(agent_ids), self.m_size), dtype=np.float32)
for index, agent_id in enumerate(agent_ids):
if agent_id in self.memory_dict:
memory_matrix[index, :] = self.memory_dict[agent_id]
return memory_matrix
def retrieve_previous_memories(self, agent_ids: List[GlobalAgentId]) -> np.ndarray:
memory_matrix = np.zeros((len(agent_ids), self.m_size), dtype=np.float32)
for index, agent_id in enumerate(agent_ids):
if agent_id in self.previous_memory_dict:
memory_matrix[index, :] = self.previous_memory_dict[agent_id]
return memory_matrix
def remove_memories(self, agent_ids: List[GlobalAgentId]) -> None:
for agent_id in agent_ids:
if agent_id in self.memory_dict:
self.memory_dict.pop(agent_id)
if agent_id in self.previous_memory_dict:
self.previous_memory_dict.pop(agent_id)
def make_empty_previous_action(self, num_agents: int) -> np.ndarray:
"""
Creates empty previous action for use with RNNs and discrete control
:param num_agents: Number of agents.
:return: Numpy array of zeros.
"""
return np.zeros(
(num_agents, self.behavior_spec.action_spec.discrete_size), dtype=np.int32
)
def save_previous_action(
self, agent_ids: List[GlobalAgentId], action_tuple: ActionTuple
) -> None:
for index, agent_id in enumerate(agent_ids):
self.previous_action_dict[agent_id] = action_tuple.discrete[index, :]
def retrieve_previous_action(self, agent_ids: List[GlobalAgentId]) -> np.ndarray:
action_matrix = self.make_empty_previous_action(len(agent_ids))
for index, agent_id in enumerate(agent_ids):
if agent_id in self.previous_action_dict:
action_matrix[index, :] = self.previous_action_dict[agent_id]
return action_matrix
def remove_previous_action(self, agent_ids: List[GlobalAgentId]) -> None:
for agent_id in agent_ids:
if agent_id in self.previous_action_dict:
self.previous_action_dict.pop(agent_id)
def get_action(
self, decision_requests: DecisionSteps, worker_id: int = 0
) -> ActionInfo:
raise NotImplementedError
@staticmethod
def check_nan_action(action: Optional[ActionTuple]) -> None:
# Fast NaN check on the action
# See https://stackoverflow.com/questions/6736590/fast-check-for-nan-in-numpy for background.
if action is not None:
d = np.sum(action.continuous)
has_nan = np.isnan(d)
if has_nan:
raise RuntimeError("Continuous NaN action detected.")
@abstractmethod
def increment_step(self, n_steps):
pass
@abstractmethod
def get_current_step(self):
pass
@abstractmethod
def load_weights(self, values: List[np.ndarray]) -> None:
pass
@abstractmethod
def get_weights(self) -> List[np.ndarray]:
return []
@abstractmethod
def init_load_weights(self) -> None:
pass
|