Spaces:
Running
Running
File size: 10,319 Bytes
e11e4fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
# NOTE: This upgrade script is a temporary measure for the transition between the old-format
# configuration file and the new format. It will be marked for deprecation once the
# Python CLI and configuration files are finalized, and removed the following release.
import attr
import cattr
import yaml
from typing import Dict, Any, Optional
import argparse
from mlagents.trainers.settings import TrainerSettings, NetworkSettings
from mlagents.trainers.cli_utils import load_config
from mlagents.trainers.exception import TrainerConfigError
from mlagents.plugins import all_trainer_settings
# Take an existing trainer config (e.g. trainer_config.yaml) and turn it into the new format.
def convert_behaviors(old_trainer_config: Dict[str, Any]) -> Dict[str, Any]:
all_behavior_config_dict = {}
default_config = old_trainer_config.get("default", {})
for behavior_name, config in old_trainer_config.items():
if behavior_name != "default":
config = default_config.copy()
config.update(old_trainer_config[behavior_name])
# Convert to split TrainerSettings, Hyperparameters, NetworkSettings
# Set trainer_type and get appropriate hyperparameter settings
try:
trainer_type = config["trainer"]
except KeyError:
raise TrainerConfigError(
"Config doesn't specify a trainer type. "
"Please specify trainer: in your config."
)
new_config = {}
new_config["trainer_type"] = trainer_type
hyperparam_cls = all_trainer_settings[trainer_type]
# Try to absorb as much as possible into the hyperparam_cls
new_config["hyperparameters"] = cattr.structure(config, hyperparam_cls)
# Try to absorb as much as possible into the network settings
new_config["network_settings"] = cattr.structure(config, NetworkSettings)
# Deal with recurrent
try:
if config["use_recurrent"]:
new_config[
"network_settings"
].memory = NetworkSettings.MemorySettings(
sequence_length=config["sequence_length"],
memory_size=config["memory_size"],
)
except KeyError:
raise TrainerConfigError(
"Config doesn't specify use_recurrent. "
"Please specify true or false for use_recurrent in your config."
)
# Absorb the rest into the base TrainerSettings
for key, val in config.items():
if key in attr.fields_dict(TrainerSettings):
new_config[key] = val
# Structure the whole thing
all_behavior_config_dict[behavior_name] = cattr.structure(
new_config, TrainerSettings
)
return all_behavior_config_dict
def write_to_yaml_file(unstructed_config: Dict[str, Any], output_config: str) -> None:
with open(output_config, "w") as f:
try:
yaml.dump(unstructed_config, f, sort_keys=False)
except TypeError: # Older versions of pyyaml don't support sort_keys
yaml.dump(unstructed_config, f)
def remove_nones(config: Dict[Any, Any]) -> Dict[str, Any]:
new_config = {}
for key, val in config.items():
if isinstance(val, dict):
new_config[key] = remove_nones(val)
elif val is not None:
new_config[key] = val
return new_config
# Take a sampler from the old format and convert to new sampler structure
def convert_samplers(old_sampler_config: Dict[str, Any]) -> Dict[str, Any]:
new_sampler_config: Dict[str, Any] = {}
for parameter, parameter_config in old_sampler_config.items():
if parameter == "resampling-interval":
print(
"resampling-interval is no longer necessary for parameter randomization and is being ignored."
)
continue
new_sampler_config[parameter] = {}
new_sampler_config[parameter]["sampler_type"] = parameter_config["sampler-type"]
new_samp_parameters = dict(parameter_config) # Copy dict
new_samp_parameters.pop("sampler-type")
new_sampler_config[parameter]["sampler_parameters"] = new_samp_parameters
return new_sampler_config
def convert_samplers_and_curriculum(
parameter_dict: Dict[str, Any], curriculum: Dict[str, Any]
) -> Dict[str, Any]:
for key, sampler in parameter_dict.items():
if "sampler_parameters" not in sampler:
parameter_dict[key]["sampler_parameters"] = {}
for argument in [
"seed",
"min_value",
"max_value",
"mean",
"st_dev",
"intervals",
]:
if argument in sampler:
parameter_dict[key]["sampler_parameters"][argument] = sampler[argument]
parameter_dict[key].pop(argument)
param_set = set(parameter_dict.keys())
for behavior_name, behavior_dict in curriculum.items():
measure = behavior_dict["measure"]
min_lesson_length = behavior_dict.get("min_lesson_length", 1)
signal_smoothing = behavior_dict.get("signal_smoothing", False)
thresholds = behavior_dict["thresholds"]
num_lessons = len(thresholds) + 1
parameters = behavior_dict["parameters"]
for param_name in parameters.keys():
if param_name in param_set:
print(
f"The parameter {param_name} has both a sampler and a curriculum. Will ignore curriculum"
)
else:
param_set.add(param_name)
parameter_dict[param_name] = {"curriculum": []}
for lesson_index in range(num_lessons - 1):
parameter_dict[param_name]["curriculum"].append(
{
f"Lesson{lesson_index}": {
"completion_criteria": {
"measure": measure,
"behavior": behavior_name,
"signal_smoothing": signal_smoothing,
"min_lesson_length": min_lesson_length,
"threshold": thresholds[lesson_index],
},
"value": parameters[param_name][lesson_index],
}
}
)
lesson_index += 1 # This is the last lesson
parameter_dict[param_name]["curriculum"].append(
{
f"Lesson{lesson_index}": {
"value": parameters[param_name][lesson_index]
}
}
)
return parameter_dict
def parse_args():
argparser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
argparser.add_argument(
"trainer_config_path",
help="Path to old format (<=0.18.X) trainer configuration YAML.",
)
argparser.add_argument(
"--curriculum",
help="Path to old format (<=0.16.X) curriculum configuration YAML.",
default=None,
)
argparser.add_argument(
"--sampler",
help="Path to old format (<=0.16.X) parameter randomization configuration YAML.",
default=None,
)
argparser.add_argument(
"output_config_path", help="Path to write converted YAML file."
)
args = argparser.parse_args()
return args
def convert(
config: Dict[str, Any],
old_curriculum: Optional[Dict[str, Any]],
old_param_random: Optional[Dict[str, Any]],
) -> Dict[str, Any]:
if "behaviors" not in config:
print("Config file format version : version <= 0.16.X")
behavior_config_dict = convert_behaviors(config)
full_config = {"behaviors": behavior_config_dict}
# Convert curriculum and sampler. note that we don't validate these; if it was correct
# before it should be correct now.
if old_curriculum is not None:
full_config["curriculum"] = old_curriculum
if old_param_random is not None:
sampler_config_dict = convert_samplers(old_param_random)
full_config["parameter_randomization"] = sampler_config_dict
# Convert config to dict
config = cattr.unstructure(full_config)
if "curriculum" in config or "parameter_randomization" in config:
print("Config file format version : 0.16.X < version <= 0.18.X")
full_config = {"behaviors": config["behaviors"]}
param_randomization = config.get("parameter_randomization", {})
if "resampling-interval" in param_randomization:
param_randomization.pop("resampling-interval")
if len(param_randomization) > 0:
# check if we use the old format sampler-type vs sampler_type
if (
"sampler-type"
in param_randomization[list(param_randomization.keys())[0]]
):
param_randomization = convert_samplers(param_randomization)
full_config["environment_parameters"] = convert_samplers_and_curriculum(
param_randomization, config.get("curriculum", {})
)
# Convert config to dict
config = cattr.unstructure(full_config)
return config
def main() -> None:
args = parse_args()
print(
f"Converting {args.trainer_config_path} and saving to {args.output_config_path}."
)
old_config = load_config(args.trainer_config_path)
curriculum_config_dict = None
old_sampler_config_dict = None
if args.curriculum is not None:
curriculum_config_dict = load_config(args.curriculum)
if args.sampler is not None:
old_sampler_config_dict = load_config(args.sampler)
new_config = convert(old_config, curriculum_config_dict, old_sampler_config_dict)
unstructed_config = remove_nones(new_config)
write_to_yaml_file(unstructed_config, args.output_config_path)
if __name__ == "__main__":
main()
|