Spaces:
Running
Running
File size: 15,985 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
from operator import gt, lt
from .libmp.backend import xrange
from .functions.functions import SpecialFunctions
from .functions.rszeta import RSCache
from .calculus.quadrature import QuadratureMethods
from .calculus.inverselaplace import LaplaceTransformInversionMethods
from .calculus.calculus import CalculusMethods
from .calculus.optimization import OptimizationMethods
from .calculus.odes import ODEMethods
from .matrices.matrices import MatrixMethods
from .matrices.calculus import MatrixCalculusMethods
from .matrices.linalg import LinearAlgebraMethods
from .matrices.eigen import Eigen
from .identification import IdentificationMethods
from .visualization import VisualizationMethods
from . import libmp
class Context(object):
pass
class StandardBaseContext(Context,
SpecialFunctions,
RSCache,
QuadratureMethods,
LaplaceTransformInversionMethods,
CalculusMethods,
MatrixMethods,
MatrixCalculusMethods,
LinearAlgebraMethods,
Eigen,
IdentificationMethods,
OptimizationMethods,
ODEMethods,
VisualizationMethods):
NoConvergence = libmp.NoConvergence
ComplexResult = libmp.ComplexResult
def __init__(ctx):
ctx._aliases = {}
# Call those that need preinitialization (e.g. for wrappers)
SpecialFunctions.__init__(ctx)
RSCache.__init__(ctx)
QuadratureMethods.__init__(ctx)
LaplaceTransformInversionMethods.__init__(ctx)
CalculusMethods.__init__(ctx)
MatrixMethods.__init__(ctx)
def _init_aliases(ctx):
for alias, value in ctx._aliases.items():
try:
setattr(ctx, alias, getattr(ctx, value))
except AttributeError:
pass
_fixed_precision = False
# XXX
verbose = False
def warn(ctx, msg):
print("Warning:", msg)
def bad_domain(ctx, msg):
raise ValueError(msg)
def _re(ctx, x):
if hasattr(x, "real"):
return x.real
return x
def _im(ctx, x):
if hasattr(x, "imag"):
return x.imag
return ctx.zero
def _as_points(ctx, x):
return x
def fneg(ctx, x, **kwargs):
return -ctx.convert(x)
def fadd(ctx, x, y, **kwargs):
return ctx.convert(x)+ctx.convert(y)
def fsub(ctx, x, y, **kwargs):
return ctx.convert(x)-ctx.convert(y)
def fmul(ctx, x, y, **kwargs):
return ctx.convert(x)*ctx.convert(y)
def fdiv(ctx, x, y, **kwargs):
return ctx.convert(x)/ctx.convert(y)
def fsum(ctx, args, absolute=False, squared=False):
if absolute:
if squared:
return sum((abs(x)**2 for x in args), ctx.zero)
return sum((abs(x) for x in args), ctx.zero)
if squared:
return sum((x**2 for x in args), ctx.zero)
return sum(args, ctx.zero)
def fdot(ctx, xs, ys=None, conjugate=False):
if ys is not None:
xs = zip(xs, ys)
if conjugate:
cf = ctx.conj
return sum((x*cf(y) for (x,y) in xs), ctx.zero)
else:
return sum((x*y for (x,y) in xs), ctx.zero)
def fprod(ctx, args):
prod = ctx.one
for arg in args:
prod *= arg
return prod
def nprint(ctx, x, n=6, **kwargs):
"""
Equivalent to ``print(nstr(x, n))``.
"""
print(ctx.nstr(x, n, **kwargs))
def chop(ctx, x, tol=None):
"""
Chops off small real or imaginary parts, or converts
numbers close to zero to exact zeros. The input can be a
single number or an iterable::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> chop(5+1e-10j, tol=1e-9)
mpf('5.0')
>>> nprint(chop([1.0, 1e-20, 3+1e-18j, -4, 2]))
[1.0, 0.0, 3.0, -4.0, 2.0]
The tolerance defaults to ``100*eps``.
"""
if tol is None:
tol = 100*ctx.eps
try:
x = ctx.convert(x)
absx = abs(x)
if abs(x) < tol:
return ctx.zero
if ctx._is_complex_type(x):
#part_tol = min(tol, absx*tol)
part_tol = max(tol, absx*tol)
if abs(x.imag) < part_tol:
return x.real
if abs(x.real) < part_tol:
return ctx.mpc(0, x.imag)
except TypeError:
if isinstance(x, ctx.matrix):
return x.apply(lambda a: ctx.chop(a, tol))
if hasattr(x, "__iter__"):
return [ctx.chop(a, tol) for a in x]
return x
def almosteq(ctx, s, t, rel_eps=None, abs_eps=None):
r"""
Determine whether the difference between `s` and `t` is smaller
than a given epsilon, either relatively or absolutely.
Both a maximum relative difference and a maximum difference
('epsilons') may be specified. The absolute difference is
defined as `|s-t|` and the relative difference is defined
as `|s-t|/\max(|s|, |t|)`.
If only one epsilon is given, both are set to the same value.
If none is given, both epsilons are set to `2^{-p+m}` where
`p` is the current working precision and `m` is a small
integer. The default setting typically allows :func:`~mpmath.almosteq`
to be used to check for mathematical equality
in the presence of small rounding errors.
**Examples**
>>> from mpmath import *
>>> mp.dps = 15
>>> almosteq(3.141592653589793, 3.141592653589790)
True
>>> almosteq(3.141592653589793, 3.141592653589700)
False
>>> almosteq(3.141592653589793, 3.141592653589700, 1e-10)
True
>>> almosteq(1e-20, 2e-20)
True
>>> almosteq(1e-20, 2e-20, rel_eps=0, abs_eps=0)
False
"""
t = ctx.convert(t)
if abs_eps is None and rel_eps is None:
rel_eps = abs_eps = ctx.ldexp(1, -ctx.prec+4)
if abs_eps is None:
abs_eps = rel_eps
elif rel_eps is None:
rel_eps = abs_eps
diff = abs(s-t)
if diff <= abs_eps:
return True
abss = abs(s)
abst = abs(t)
if abss < abst:
err = diff/abst
else:
err = diff/abss
return err <= rel_eps
def arange(ctx, *args):
r"""
This is a generalized version of Python's :func:`~mpmath.range` function
that accepts fractional endpoints and step sizes and
returns a list of ``mpf`` instances. Like :func:`~mpmath.range`,
:func:`~mpmath.arange` can be called with 1, 2 or 3 arguments:
``arange(b)``
`[0, 1, 2, \ldots, x]`
``arange(a, b)``
`[a, a+1, a+2, \ldots, x]`
``arange(a, b, h)``
`[a, a+h, a+h, \ldots, x]`
where `b-1 \le x < b` (in the third case, `b-h \le x < b`).
Like Python's :func:`~mpmath.range`, the endpoint is not included. To
produce ranges where the endpoint is included, :func:`~mpmath.linspace`
is more convenient.
**Examples**
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> arange(4)
[mpf('0.0'), mpf('1.0'), mpf('2.0'), mpf('3.0')]
>>> arange(1, 2, 0.25)
[mpf('1.0'), mpf('1.25'), mpf('1.5'), mpf('1.75')]
>>> arange(1, -1, -0.75)
[mpf('1.0'), mpf('0.25'), mpf('-0.5')]
"""
if not len(args) <= 3:
raise TypeError('arange expected at most 3 arguments, got %i'
% len(args))
if not len(args) >= 1:
raise TypeError('arange expected at least 1 argument, got %i'
% len(args))
# set default
a = 0
dt = 1
# interpret arguments
if len(args) == 1:
b = args[0]
elif len(args) >= 2:
a = args[0]
b = args[1]
if len(args) == 3:
dt = args[2]
a, b, dt = ctx.mpf(a), ctx.mpf(b), ctx.mpf(dt)
assert a + dt != a, 'dt is too small and would cause an infinite loop'
# adapt code for sign of dt
if a > b:
if dt > 0:
return []
op = gt
else:
if dt < 0:
return []
op = lt
# create list
result = []
i = 0
t = a
while 1:
t = a + dt*i
i += 1
if op(t, b):
result.append(t)
else:
break
return result
def linspace(ctx, *args, **kwargs):
"""
``linspace(a, b, n)`` returns a list of `n` evenly spaced
samples from `a` to `b`. The syntax ``linspace(mpi(a,b), n)``
is also valid.
This function is often more convenient than :func:`~mpmath.arange`
for partitioning an interval into subintervals, since
the endpoint is included::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> linspace(1, 4, 4)
[mpf('1.0'), mpf('2.0'), mpf('3.0'), mpf('4.0')]
You may also provide the keyword argument ``endpoint=False``::
>>> linspace(1, 4, 4, endpoint=False)
[mpf('1.0'), mpf('1.75'), mpf('2.5'), mpf('3.25')]
"""
if len(args) == 3:
a = ctx.mpf(args[0])
b = ctx.mpf(args[1])
n = int(args[2])
elif len(args) == 2:
assert hasattr(args[0], '_mpi_')
a = args[0].a
b = args[0].b
n = int(args[1])
else:
raise TypeError('linspace expected 2 or 3 arguments, got %i' \
% len(args))
if n < 1:
raise ValueError('n must be greater than 0')
if not 'endpoint' in kwargs or kwargs['endpoint']:
if n == 1:
return [ctx.mpf(a)]
step = (b - a) / ctx.mpf(n - 1)
y = [i*step + a for i in xrange(n)]
y[-1] = b
else:
step = (b - a) / ctx.mpf(n)
y = [i*step + a for i in xrange(n)]
return y
def cos_sin(ctx, z, **kwargs):
return ctx.cos(z, **kwargs), ctx.sin(z, **kwargs)
def cospi_sinpi(ctx, z, **kwargs):
return ctx.cospi(z, **kwargs), ctx.sinpi(z, **kwargs)
def _default_hyper_maxprec(ctx, p):
return int(1000 * p**0.25 + 4*p)
_gcd = staticmethod(libmp.gcd)
list_primes = staticmethod(libmp.list_primes)
isprime = staticmethod(libmp.isprime)
bernfrac = staticmethod(libmp.bernfrac)
moebius = staticmethod(libmp.moebius)
_ifac = staticmethod(libmp.ifac)
_eulernum = staticmethod(libmp.eulernum)
_stirling1 = staticmethod(libmp.stirling1)
_stirling2 = staticmethod(libmp.stirling2)
def sum_accurately(ctx, terms, check_step=1):
prec = ctx.prec
try:
extraprec = 10
while 1:
ctx.prec = prec + extraprec + 5
max_mag = ctx.ninf
s = ctx.zero
k = 0
for term in terms():
s += term
if (not k % check_step) and term:
term_mag = ctx.mag(term)
max_mag = max(max_mag, term_mag)
sum_mag = ctx.mag(s)
if sum_mag - term_mag > ctx.prec:
break
k += 1
cancellation = max_mag - sum_mag
if cancellation != cancellation:
break
if cancellation < extraprec or ctx._fixed_precision:
break
extraprec += min(ctx.prec, cancellation)
return s
finally:
ctx.prec = prec
def mul_accurately(ctx, factors, check_step=1):
prec = ctx.prec
try:
extraprec = 10
while 1:
ctx.prec = prec + extraprec + 5
max_mag = ctx.ninf
one = ctx.one
s = one
k = 0
for factor in factors():
s *= factor
term = factor - one
if (not k % check_step):
term_mag = ctx.mag(term)
max_mag = max(max_mag, term_mag)
sum_mag = ctx.mag(s-one)
#if sum_mag - term_mag > ctx.prec:
# break
if -term_mag > ctx.prec:
break
k += 1
cancellation = max_mag - sum_mag
if cancellation != cancellation:
break
if cancellation < extraprec or ctx._fixed_precision:
break
extraprec += min(ctx.prec, cancellation)
return s
finally:
ctx.prec = prec
def power(ctx, x, y):
r"""Converts `x` and `y` to mpmath numbers and evaluates
`x^y = \exp(y \log(x))`::
>>> from mpmath import *
>>> mp.dps = 30; mp.pretty = True
>>> power(2, 0.5)
1.41421356237309504880168872421
This shows the leading few digits of a large Mersenne prime
(performing the exact calculation ``2**43112609-1`` and
displaying the result in Python would be very slow)::
>>> power(2, 43112609)-1
3.16470269330255923143453723949e+12978188
"""
return ctx.convert(x) ** ctx.convert(y)
def _zeta_int(ctx, n):
return ctx.zeta(n)
def maxcalls(ctx, f, N):
"""
Return a wrapped copy of *f* that raises ``NoConvergence`` when *f*
has been called more than *N* times::
>>> from mpmath import *
>>> mp.dps = 15
>>> f = maxcalls(sin, 10)
>>> print(sum(f(n) for n in range(10)))
1.95520948210738
>>> f(10) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
NoConvergence: maxcalls: function evaluated 10 times
"""
counter = [0]
def f_maxcalls_wrapped(*args, **kwargs):
counter[0] += 1
if counter[0] > N:
raise ctx.NoConvergence("maxcalls: function evaluated %i times" % N)
return f(*args, **kwargs)
return f_maxcalls_wrapped
def memoize(ctx, f):
"""
Return a wrapped copy of *f* that caches computed values, i.e.
a memoized copy of *f*. Values are only reused if the cached precision
is equal to or higher than the working precision::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> f = memoize(maxcalls(sin, 1))
>>> f(2)
0.909297426825682
>>> f(2)
0.909297426825682
>>> mp.dps = 25
>>> f(2) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
NoConvergence: maxcalls: function evaluated 1 times
"""
f_cache = {}
def f_cached(*args, **kwargs):
if kwargs:
key = args, tuple(kwargs.items())
else:
key = args
prec = ctx.prec
if key in f_cache:
cprec, cvalue = f_cache[key]
if cprec >= prec:
return +cvalue
value = f(*args, **kwargs)
f_cache[key] = (prec, value)
return value
f_cached.__name__ = f.__name__
f_cached.__doc__ = f.__doc__
return f_cached
|