File size: 29,136 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
"""Graph diameter, radius, eccentricity and other properties."""

import networkx as nx
from networkx.utils import not_implemented_for

__all__ = [
    "eccentricity",
    "diameter",
    "radius",
    "periphery",
    "center",
    "barycenter",
    "resistance_distance",
    "kemeny_constant",
]


def _extrema_bounding(G, compute="diameter", weight=None):
    """Compute requested extreme distance metric of undirected graph G

    Computation is based on smart lower and upper bounds, and in practice
    linear in the number of nodes, rather than quadratic (except for some
    border cases such as complete graphs or circle shaped graphs).

    Parameters
    ----------
    G : NetworkX graph
       An undirected graph

    compute : string denoting the requesting metric
       "diameter" for the maximal eccentricity value,
       "radius" for the minimal eccentricity value,
       "periphery" for the set of nodes with eccentricity equal to the diameter,
       "center" for the set of nodes with eccentricity equal to the radius,
       "eccentricities" for the maximum distance from each node to all other nodes in G

    weight : string, function, or None
        If this is a string, then edge weights will be accessed via the
        edge attribute with this key (that is, the weight of the edge
        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
        such edge attribute exists, the weight of the edge is assumed to
        be one.

        If this is a function, the weight of an edge is the value
        returned by the function. The function must accept exactly three
        positional arguments: the two endpoints of an edge and the
        dictionary of edge attributes for that edge. The function must
        return a number.

        If this is None, every edge has weight/distance/cost 1.

        Weights stored as floating point values can lead to small round-off
        errors in distances. Use integer weights to avoid this.

        Weights should be positive, since they are distances.

    Returns
    -------
    value : value of the requested metric
       int for "diameter" and "radius" or
       list of nodes for "center" and "periphery" or
       dictionary of eccentricity values keyed by node for "eccentricities"

    Raises
    ------
    NetworkXError
        If the graph consists of multiple components
    ValueError
        If `compute` is not one of "diameter", "radius", "periphery", "center", or "eccentricities".

    Notes
    -----
    This algorithm was proposed in [1]_ and discussed further in [2]_ and [3]_.

    References
    ----------
    .. [1] F. W. Takes, W. A. Kosters,
       "Determining the diameter of small world networks."
       Proceedings of the 20th ACM international conference on Information and knowledge management, 2011
       https://dl.acm.org/doi/abs/10.1145/2063576.2063748
    .. [2] F. W. Takes, W. A. Kosters,
       "Computing the Eccentricity Distribution of Large Graphs."
       Algorithms, 2013
       https://www.mdpi.com/1999-4893/6/1/100
    .. [3] M. Borassi, P. Crescenzi, M. Habib, W. A. Kosters, A. Marino, F. W. Takes,
       "Fast diameter and radius BFS-based computation in (weakly connected) real-world graphs: With an application to the six degrees of separation games. "
       Theoretical Computer Science, 2015
       https://www.sciencedirect.com/science/article/pii/S0304397515001644
    """
    # init variables
    degrees = dict(G.degree())  # start with the highest degree node
    minlowernode = max(degrees, key=degrees.get)
    N = len(degrees)  # number of nodes
    # alternate between smallest lower and largest upper bound
    high = False
    # status variables
    ecc_lower = dict.fromkeys(G, 0)
    ecc_upper = dict.fromkeys(G, N)
    candidates = set(G)

    # (re)set bound extremes
    minlower = N
    maxlower = 0
    minupper = N
    maxupper = 0

    # repeat the following until there are no more candidates
    while candidates:
        if high:
            current = maxuppernode  # select node with largest upper bound
        else:
            current = minlowernode  # select node with smallest lower bound
        high = not high

        # get distances from/to current node and derive eccentricity
        dist = nx.shortest_path_length(G, source=current, weight=weight)

        if len(dist) != N:
            msg = "Cannot compute metric because graph is not connected."
            raise nx.NetworkXError(msg)
        current_ecc = max(dist.values())

        # print status update
        #        print ("ecc of " + str(current) + " (" + str(ecc_lower[current]) + "/"
        #        + str(ecc_upper[current]) + ", deg: " + str(dist[current]) + ") is "
        #        + str(current_ecc))
        #        print(ecc_upper)

        # (re)set bound extremes
        maxuppernode = None
        minlowernode = None

        # update node bounds
        for i in candidates:
            # update eccentricity bounds
            d = dist[i]
            ecc_lower[i] = low = max(ecc_lower[i], max(d, (current_ecc - d)))
            ecc_upper[i] = upp = min(ecc_upper[i], current_ecc + d)

            # update min/max values of lower and upper bounds
            minlower = min(ecc_lower[i], minlower)
            maxlower = max(ecc_lower[i], maxlower)
            minupper = min(ecc_upper[i], minupper)
            maxupper = max(ecc_upper[i], maxupper)

        # update candidate set
        if compute == "diameter":
            ruled_out = {
                i
                for i in candidates
                if ecc_upper[i] <= maxlower and 2 * ecc_lower[i] >= maxupper
            }
        elif compute == "radius":
            ruled_out = {
                i
                for i in candidates
                if ecc_lower[i] >= minupper and ecc_upper[i] + 1 <= 2 * minlower
            }
        elif compute == "periphery":
            ruled_out = {
                i
                for i in candidates
                if ecc_upper[i] < maxlower
                and (maxlower == maxupper or ecc_lower[i] > maxupper)
            }
        elif compute == "center":
            ruled_out = {
                i
                for i in candidates
                if ecc_lower[i] > minupper
                and (minlower == minupper or ecc_upper[i] + 1 < 2 * minlower)
            }
        elif compute == "eccentricities":
            ruled_out = set()
        else:
            msg = "compute must be one of 'diameter', 'radius', 'periphery', 'center', 'eccentricities'"
            raise ValueError(msg)

        ruled_out.update(i for i in candidates if ecc_lower[i] == ecc_upper[i])
        candidates -= ruled_out

        #        for i in ruled_out:
        #            print("removing %g: ecc_u: %g maxl: %g ecc_l: %g maxu: %g"%
        #                    (i,ecc_upper[i],maxlower,ecc_lower[i],maxupper))
        #        print("node %g: ecc_u: %g maxl: %g ecc_l: %g maxu: %g"%
        #                    (4,ecc_upper[4],maxlower,ecc_lower[4],maxupper))
        #        print("NODE 4: %g"%(ecc_upper[4] <= maxlower))
        #        print("NODE 4: %g"%(2 * ecc_lower[4] >= maxupper))
        #        print("NODE 4: %g"%(ecc_upper[4] <= maxlower
        #                            and 2 * ecc_lower[4] >= maxupper))

        # updating maxuppernode and minlowernode for selection in next round
        for i in candidates:
            if (
                minlowernode is None
                or (
                    ecc_lower[i] == ecc_lower[minlowernode]
                    and degrees[i] > degrees[minlowernode]
                )
                or (ecc_lower[i] < ecc_lower[minlowernode])
            ):
                minlowernode = i

            if (
                maxuppernode is None
                or (
                    ecc_upper[i] == ecc_upper[maxuppernode]
                    and degrees[i] > degrees[maxuppernode]
                )
                or (ecc_upper[i] > ecc_upper[maxuppernode])
            ):
                maxuppernode = i

        # print status update
    #        print (" min=" + str(minlower) + "/" + str(minupper) +
    #        " max=" + str(maxlower) + "/" + str(maxupper) +
    #        " candidates: " + str(len(candidates)))
    #        print("cand:",candidates)
    #        print("ecc_l",ecc_lower)
    #        print("ecc_u",ecc_upper)
    #        wait = input("press Enter to continue")

    # return the correct value of the requested metric
    if compute == "diameter":
        return maxlower
    if compute == "radius":
        return minupper
    if compute == "periphery":
        p = [v for v in G if ecc_lower[v] == maxlower]
        return p
    if compute == "center":
        c = [v for v in G if ecc_upper[v] == minupper]
        return c
    if compute == "eccentricities":
        return ecc_lower
    return None


@nx._dispatch(edge_attrs="weight")
def eccentricity(G, v=None, sp=None, weight=None):
    """Returns the eccentricity of nodes in G.

    The eccentricity of a node v is the maximum distance from v to
    all other nodes in G.

    Parameters
    ----------
    G : NetworkX graph
       A graph

    v : node, optional
       Return value of specified node

    sp : dict of dicts, optional
       All pairs shortest path lengths as a dictionary of dictionaries

    weight : string, function, or None (default=None)
        If this is a string, then edge weights will be accessed via the
        edge attribute with this key (that is, the weight of the edge
        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
        such edge attribute exists, the weight of the edge is assumed to
        be one.

        If this is a function, the weight of an edge is the value
        returned by the function. The function must accept exactly three
        positional arguments: the two endpoints of an edge and the
        dictionary of edge attributes for that edge. The function must
        return a number.

        If this is None, every edge has weight/distance/cost 1.

        Weights stored as floating point values can lead to small round-off
        errors in distances. Use integer weights to avoid this.

        Weights should be positive, since they are distances.

    Returns
    -------
    ecc : dictionary
       A dictionary of eccentricity values keyed by node.

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
    >>> dict(nx.eccentricity(G))
    {1: 2, 2: 3, 3: 2, 4: 2, 5: 3}

    >>> dict(nx.eccentricity(G, v=[1, 5]))  # This returns the eccentricity of node 1 & 5
    {1: 2, 5: 3}

    """
    #    if v is None:                # none, use entire graph
    #        nodes=G.nodes()
    #    elif v in G:               # is v a single node
    #        nodes=[v]
    #    else:                      # assume v is a container of nodes
    #        nodes=v
    order = G.order()
    e = {}
    for n in G.nbunch_iter(v):
        if sp is None:
            length = nx.shortest_path_length(G, source=n, weight=weight)

            L = len(length)
        else:
            try:
                length = sp[n]
                L = len(length)
            except TypeError as err:
                raise nx.NetworkXError('Format of "sp" is invalid.') from err
        if L != order:
            if G.is_directed():
                msg = (
                    "Found infinite path length because the digraph is not"
                    " strongly connected"
                )
            else:
                msg = "Found infinite path length because the graph is not" " connected"
            raise nx.NetworkXError(msg)

        e[n] = max(length.values())

    if v in G:
        return e[v]  # return single value
    return e


@nx._dispatch(edge_attrs="weight")
def diameter(G, e=None, usebounds=False, weight=None):
    """Returns the diameter of the graph G.

    The diameter is the maximum eccentricity.

    Parameters
    ----------
    G : NetworkX graph
       A graph

    e : eccentricity dictionary, optional
      A precomputed dictionary of eccentricities.

    weight : string, function, or None
        If this is a string, then edge weights will be accessed via the
        edge attribute with this key (that is, the weight of the edge
        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
        such edge attribute exists, the weight of the edge is assumed to
        be one.

        If this is a function, the weight of an edge is the value
        returned by the function. The function must accept exactly three
        positional arguments: the two endpoints of an edge and the
        dictionary of edge attributes for that edge. The function must
        return a number.

        If this is None, every edge has weight/distance/cost 1.

        Weights stored as floating point values can lead to small round-off
        errors in distances. Use integer weights to avoid this.

        Weights should be positive, since they are distances.

    Returns
    -------
    d : integer
       Diameter of graph

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
    >>> nx.diameter(G)
    3

    See Also
    --------
    eccentricity
    """
    if usebounds is True and e is None and not G.is_directed():
        return _extrema_bounding(G, compute="diameter", weight=weight)
    if e is None:
        e = eccentricity(G, weight=weight)
    return max(e.values())


@nx._dispatch(edge_attrs="weight")
def periphery(G, e=None, usebounds=False, weight=None):
    """Returns the periphery of the graph G.

    The periphery is the set of nodes with eccentricity equal to the diameter.

    Parameters
    ----------
    G : NetworkX graph
       A graph

    e : eccentricity dictionary, optional
      A precomputed dictionary of eccentricities.

    weight : string, function, or None
        If this is a string, then edge weights will be accessed via the
        edge attribute with this key (that is, the weight of the edge
        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
        such edge attribute exists, the weight of the edge is assumed to
        be one.

        If this is a function, the weight of an edge is the value
        returned by the function. The function must accept exactly three
        positional arguments: the two endpoints of an edge and the
        dictionary of edge attributes for that edge. The function must
        return a number.

        If this is None, every edge has weight/distance/cost 1.

        Weights stored as floating point values can lead to small round-off
        errors in distances. Use integer weights to avoid this.

        Weights should be positive, since they are distances.

    Returns
    -------
    p : list
       List of nodes in periphery

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
    >>> nx.periphery(G)
    [2, 5]

    See Also
    --------
    barycenter
    center
    """
    if usebounds is True and e is None and not G.is_directed():
        return _extrema_bounding(G, compute="periphery", weight=weight)
    if e is None:
        e = eccentricity(G, weight=weight)
    diameter = max(e.values())
    p = [v for v in e if e[v] == diameter]
    return p


@nx._dispatch(edge_attrs="weight")
def radius(G, e=None, usebounds=False, weight=None):
    """Returns the radius of the graph G.

    The radius is the minimum eccentricity.

    Parameters
    ----------
    G : NetworkX graph
       A graph

    e : eccentricity dictionary, optional
      A precomputed dictionary of eccentricities.

    weight : string, function, or None
        If this is a string, then edge weights will be accessed via the
        edge attribute with this key (that is, the weight of the edge
        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
        such edge attribute exists, the weight of the edge is assumed to
        be one.

        If this is a function, the weight of an edge is the value
        returned by the function. The function must accept exactly three
        positional arguments: the two endpoints of an edge and the
        dictionary of edge attributes for that edge. The function must
        return a number.

        If this is None, every edge has weight/distance/cost 1.

        Weights stored as floating point values can lead to small round-off
        errors in distances. Use integer weights to avoid this.

        Weights should be positive, since they are distances.

    Returns
    -------
    r : integer
       Radius of graph

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
    >>> nx.radius(G)
    2

    """
    if usebounds is True and e is None and not G.is_directed():
        return _extrema_bounding(G, compute="radius", weight=weight)
    if e is None:
        e = eccentricity(G, weight=weight)
    return min(e.values())


@nx._dispatch(edge_attrs="weight")
def center(G, e=None, usebounds=False, weight=None):
    """Returns the center of the graph G.

    The center is the set of nodes with eccentricity equal to radius.

    Parameters
    ----------
    G : NetworkX graph
       A graph

    e : eccentricity dictionary, optional
      A precomputed dictionary of eccentricities.

    weight : string, function, or None
        If this is a string, then edge weights will be accessed via the
        edge attribute with this key (that is, the weight of the edge
        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
        such edge attribute exists, the weight of the edge is assumed to
        be one.

        If this is a function, the weight of an edge is the value
        returned by the function. The function must accept exactly three
        positional arguments: the two endpoints of an edge and the
        dictionary of edge attributes for that edge. The function must
        return a number.

        If this is None, every edge has weight/distance/cost 1.

        Weights stored as floating point values can lead to small round-off
        errors in distances. Use integer weights to avoid this.

        Weights should be positive, since they are distances.

    Returns
    -------
    c : list
       List of nodes in center

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
    >>> list(nx.center(G))
    [1, 3, 4]

    See Also
    --------
    barycenter
    periphery
    """
    if usebounds is True and e is None and not G.is_directed():
        return _extrema_bounding(G, compute="center", weight=weight)
    if e is None:
        e = eccentricity(G, weight=weight)
    radius = min(e.values())
    p = [v for v in e if e[v] == radius]
    return p


@nx._dispatch(edge_attrs="weight")
def barycenter(G, weight=None, attr=None, sp=None):
    r"""Calculate barycenter of a connected graph, optionally with edge weights.

    The :dfn:`barycenter` a
    :func:`connected <networkx.algorithms.components.is_connected>` graph
    :math:`G` is the subgraph induced by the set of its nodes :math:`v`
    minimizing the objective function

    .. math::

        \sum_{u \in V(G)} d_G(u, v),

    where :math:`d_G` is the (possibly weighted) :func:`path length
    <networkx.algorithms.shortest_paths.generic.shortest_path_length>`.
    The barycenter is also called the :dfn:`median`. See [West01]_, p. 78.

    Parameters
    ----------
    G : :class:`networkx.Graph`
        The connected graph :math:`G`.
    weight : :class:`str`, optional
        Passed through to
        :func:`~networkx.algorithms.shortest_paths.generic.shortest_path_length`.
    attr : :class:`str`, optional
        If given, write the value of the objective function to each node's
        `attr` attribute. Otherwise do not store the value.
    sp : dict of dicts, optional
       All pairs shortest path lengths as a dictionary of dictionaries

    Returns
    -------
    list
        Nodes of `G` that induce the barycenter of `G`.

    Raises
    ------
    NetworkXNoPath
        If `G` is disconnected. `G` may appear disconnected to
        :func:`barycenter` if `sp` is given but is missing shortest path
        lengths for any pairs.
    ValueError
        If `sp` and `weight` are both given.

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
    >>> nx.barycenter(G)
    [1, 3, 4]

    See Also
    --------
    center
    periphery
    """
    if sp is None:
        sp = nx.shortest_path_length(G, weight=weight)
    else:
        sp = sp.items()
        if weight is not None:
            raise ValueError("Cannot use both sp, weight arguments together")
    smallest, barycenter_vertices, n = float("inf"), [], len(G)
    for v, dists in sp:
        if len(dists) < n:
            raise nx.NetworkXNoPath(
                f"Input graph {G} is disconnected, so every induced subgraph "
                "has infinite barycentricity."
            )
        barycentricity = sum(dists.values())
        if attr is not None:
            G.nodes[v][attr] = barycentricity
        if barycentricity < smallest:
            smallest = barycentricity
            barycenter_vertices = [v]
        elif barycentricity == smallest:
            barycenter_vertices.append(v)
    return barycenter_vertices


def _count_lu_permutations(perm_array):
    """Counts the number of permutations in SuperLU perm_c or perm_r"""
    perm_cnt = 0
    arr = perm_array.tolist()
    for i in range(len(arr)):
        if i != arr[i]:
            perm_cnt += 1
            n = arr.index(i)
            arr[n] = arr[i]
            arr[i] = i

    return perm_cnt


@not_implemented_for("directed")
@nx._dispatch(edge_attrs="weight")
def resistance_distance(G, nodeA=None, nodeB=None, weight=None, invert_weight=True):
    """Returns the resistance distance between every pair of nodes on graph G.

    The resistance distance between two nodes of a graph is akin to treating
    the graph as a grid of resistors with a resistance equal to the provided
    weight [1]_, [2]_.

    If weight is not provided, then a weight of 1 is used for all edges.

    If two nodes are the same, the resistance distance is zero.

    Parameters
    ----------
    G : NetworkX graph
       A graph

    nodeA : node or None, optional (default=None)
      A node within graph G.
      If None, compute resistance distance using all nodes as source nodes.

    nodeB : node or None, optional (default=None)
      A node within graph G.
      If None, compute resistance distance using all nodes as target nodes.

    weight : string or None, optional (default=None)
       The edge data key used to compute the resistance distance.
       If None, then each edge has weight 1.

    invert_weight : boolean (default=True)
        Proper calculation of resistance distance requires building the
        Laplacian matrix with the reciprocal of the weight. Not required
        if the weight is already inverted. Weight cannot be zero.

    Returns
    -------
    rd : dict or float
       If `nodeA` and `nodeB` are given, resistance distance between `nodeA`
       and `nodeB`. If `nodeA` or `nodeB` is unspecified (the default), a
       dictionary of nodes with resistance distances as the value.

    Raises
    ------
    NetworkXNotImplemented
        If `G` is a directed graph.

    NetworkXError
        If `G` is not connected, or contains no nodes,
        or `nodeA` is not in `G` or `nodeB` is not in `G`.

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
    >>> round(nx.resistance_distance(G, 1, 3), 10)
    0.625

    Notes
    -----
    The implementation is based on Theorem A in [2]_. Self-loops are ignored.
    Multi-edges are contracted in one edge with weight equal to the harmonic sum of the weights.

    References
    ----------
    .. [1] Wikipedia
       "Resistance distance."
       https://en.wikipedia.org/wiki/Resistance_distance
    .. [2] D. J. Klein and M. Randic.
        Resistance distance.
        J. of Math. Chem. 12:81-95, 1993.
    """
    import numpy as np

    if len(G) == 0:
        raise nx.NetworkXError("Graph G must contain at least one node.")
    if not nx.is_connected(G):
        raise nx.NetworkXError("Graph G must be strongly connected.")
    if nodeA is not None and nodeA not in G:
        raise nx.NetworkXError("Node A is not in graph G.")
    if nodeB is not None and nodeB not in G:
        raise nx.NetworkXError("Node B is not in graph G.")

    G = G.copy()
    node_list = list(G)

    # Invert weights
    if invert_weight and weight is not None:
        if G.is_multigraph():
            for u, v, k, d in G.edges(keys=True, data=True):
                d[weight] = 1 / d[weight]
        else:
            for u, v, d in G.edges(data=True):
                d[weight] = 1 / d[weight]

    # Compute resistance distance using the Pseudo-inverse of the Laplacian
    # Self-loops are ignored
    L = nx.laplacian_matrix(G, weight=weight).todense()
    Linv = np.linalg.pinv(L, hermitian=True)

    # Return relevant distances
    if nodeA is not None and nodeB is not None:
        i = node_list.index(nodeA)
        j = node_list.index(nodeB)
        return Linv[i, i] + Linv[j, j] - Linv[i, j] - Linv[j, i]

    elif nodeA is not None:
        i = node_list.index(nodeA)
        d = {}
        for n in G:
            j = node_list.index(n)
            d[n] = Linv[i, i] + Linv[j, j] - Linv[i, j] - Linv[j, i]
        return d

    elif nodeB is not None:
        j = node_list.index(nodeB)
        d = {}
        for n in G:
            i = node_list.index(n)
            d[n] = Linv[i, i] + Linv[j, j] - Linv[i, j] - Linv[j, i]
        return d

    else:
        d = {}
        for n in G:
            i = node_list.index(n)
            d[n] = {}
            for n2 in G:
                j = node_list.index(n2)
                d[n][n2] = Linv[i, i] + Linv[j, j] - Linv[i, j] - Linv[j, i]
        return d


@nx.utils.not_implemented_for("directed")
@nx._dispatch(edge_attrs="weight")
def kemeny_constant(G, *, weight=None):
    """Returns the Kemeny constant of the given graph.

    The *Kemeny constant* (or Kemeny's constant) of a graph `G`
    can be computed by regarding the graph as a Markov chain.
    The Kemeny constant is then the expected number of time steps
    to transition from a starting state i to a random destination state
    sampled from the Markov chain's stationary distribution.
    The Kemeny constant is independent of the chosen initial state [1]_.

    The Kemeny constant measures the time needed for spreading
    across a graph. Low values indicate a closely connected graph
    whereas high values indicate a spread-out graph.

    If weight is not provided, then a weight of 1 is used for all edges.

    Since `G` represents a Markov chain, the weights must be positive.

    Parameters
    ----------
    G : NetworkX graph

    weight : string or None, optional (default=None)
       The edge data key used to compute the Kemeny constant.
       If None, then each edge has weight 1.

    Returns
    -------
    K : float
        The Kemeny constant of the graph `G`.

    Raises
    ------
    NetworkXNotImplemented
        If the graph `G` is directed.

    NetworkXError
        If the graph `G` is not connected, or contains no nodes,
        or has edges with negative weights.

    Examples
    --------
    >>> G = nx.complete_graph(5)
    >>> round(nx.kemeny_constant(G), 10)
    3.2

    Notes
    -----
    The implementation is based on equation (3.3) in [2]_.
    Self-loops are allowed and indicate a Markov chain where
    the state can remain the same. Multi-edges are contracted
    in one edge with weight equal to the sum of the weights.

    References
    ----------
    .. [1] Wikipedia
       "Kemeny's constant."
       https://en.wikipedia.org/wiki/Kemeny%27s_constant
    .. [2] Lovász L.
        Random walks on graphs: A survey.
        Paul Erdös is Eighty, vol. 2, Bolyai Society,
        Mathematical Studies, Keszthely, Hungary (1993), pp. 1-46
    """
    import numpy as np
    import scipy as sp

    if len(G) == 0:
        raise nx.NetworkXError("Graph G must contain at least one node.")
    if not nx.is_connected(G):
        raise nx.NetworkXError("Graph G must be connected.")
    if nx.is_negatively_weighted(G, weight=weight):
        raise nx.NetworkXError("The weights of graph G must be nonnegative.")

    # Compute matrix H = D^-1/2 A D^-1/2
    A = nx.adjacency_matrix(G, weight=weight)
    n, m = A.shape
    diags = A.sum(axis=1)
    with np.errstate(divide="ignore"):
        diags_sqrt = 1.0 / np.sqrt(diags)
    diags_sqrt[np.isinf(diags_sqrt)] = 0
    DH = sp.sparse.csr_array(sp.sparse.spdiags(diags_sqrt, 0, m, n, format="csr"))
    H = DH @ (A @ DH)

    # Compute eigenvalues of H
    eig = np.sort(sp.linalg.eigvalsh(H.todense()))

    # Compute the Kemeny constant
    return np.sum(1 / (1 - eig[:-1]))