Spaces:
Running
Running
File size: 29,136 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 |
"""Graph diameter, radius, eccentricity and other properties."""
import networkx as nx
from networkx.utils import not_implemented_for
__all__ = [
"eccentricity",
"diameter",
"radius",
"periphery",
"center",
"barycenter",
"resistance_distance",
"kemeny_constant",
]
def _extrema_bounding(G, compute="diameter", weight=None):
"""Compute requested extreme distance metric of undirected graph G
Computation is based on smart lower and upper bounds, and in practice
linear in the number of nodes, rather than quadratic (except for some
border cases such as complete graphs or circle shaped graphs).
Parameters
----------
G : NetworkX graph
An undirected graph
compute : string denoting the requesting metric
"diameter" for the maximal eccentricity value,
"radius" for the minimal eccentricity value,
"periphery" for the set of nodes with eccentricity equal to the diameter,
"center" for the set of nodes with eccentricity equal to the radius,
"eccentricities" for the maximum distance from each node to all other nodes in G
weight : string, function, or None
If this is a string, then edge weights will be accessed via the
edge attribute with this key (that is, the weight of the edge
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
such edge attribute exists, the weight of the edge is assumed to
be one.
If this is a function, the weight of an edge is the value
returned by the function. The function must accept exactly three
positional arguments: the two endpoints of an edge and the
dictionary of edge attributes for that edge. The function must
return a number.
If this is None, every edge has weight/distance/cost 1.
Weights stored as floating point values can lead to small round-off
errors in distances. Use integer weights to avoid this.
Weights should be positive, since they are distances.
Returns
-------
value : value of the requested metric
int for "diameter" and "radius" or
list of nodes for "center" and "periphery" or
dictionary of eccentricity values keyed by node for "eccentricities"
Raises
------
NetworkXError
If the graph consists of multiple components
ValueError
If `compute` is not one of "diameter", "radius", "periphery", "center", or "eccentricities".
Notes
-----
This algorithm was proposed in [1]_ and discussed further in [2]_ and [3]_.
References
----------
.. [1] F. W. Takes, W. A. Kosters,
"Determining the diameter of small world networks."
Proceedings of the 20th ACM international conference on Information and knowledge management, 2011
https://dl.acm.org/doi/abs/10.1145/2063576.2063748
.. [2] F. W. Takes, W. A. Kosters,
"Computing the Eccentricity Distribution of Large Graphs."
Algorithms, 2013
https://www.mdpi.com/1999-4893/6/1/100
.. [3] M. Borassi, P. Crescenzi, M. Habib, W. A. Kosters, A. Marino, F. W. Takes,
"Fast diameter and radius BFS-based computation in (weakly connected) real-world graphs: With an application to the six degrees of separation games. "
Theoretical Computer Science, 2015
https://www.sciencedirect.com/science/article/pii/S0304397515001644
"""
# init variables
degrees = dict(G.degree()) # start with the highest degree node
minlowernode = max(degrees, key=degrees.get)
N = len(degrees) # number of nodes
# alternate between smallest lower and largest upper bound
high = False
# status variables
ecc_lower = dict.fromkeys(G, 0)
ecc_upper = dict.fromkeys(G, N)
candidates = set(G)
# (re)set bound extremes
minlower = N
maxlower = 0
minupper = N
maxupper = 0
# repeat the following until there are no more candidates
while candidates:
if high:
current = maxuppernode # select node with largest upper bound
else:
current = minlowernode # select node with smallest lower bound
high = not high
# get distances from/to current node and derive eccentricity
dist = nx.shortest_path_length(G, source=current, weight=weight)
if len(dist) != N:
msg = "Cannot compute metric because graph is not connected."
raise nx.NetworkXError(msg)
current_ecc = max(dist.values())
# print status update
# print ("ecc of " + str(current) + " (" + str(ecc_lower[current]) + "/"
# + str(ecc_upper[current]) + ", deg: " + str(dist[current]) + ") is "
# + str(current_ecc))
# print(ecc_upper)
# (re)set bound extremes
maxuppernode = None
minlowernode = None
# update node bounds
for i in candidates:
# update eccentricity bounds
d = dist[i]
ecc_lower[i] = low = max(ecc_lower[i], max(d, (current_ecc - d)))
ecc_upper[i] = upp = min(ecc_upper[i], current_ecc + d)
# update min/max values of lower and upper bounds
minlower = min(ecc_lower[i], minlower)
maxlower = max(ecc_lower[i], maxlower)
minupper = min(ecc_upper[i], minupper)
maxupper = max(ecc_upper[i], maxupper)
# update candidate set
if compute == "diameter":
ruled_out = {
i
for i in candidates
if ecc_upper[i] <= maxlower and 2 * ecc_lower[i] >= maxupper
}
elif compute == "radius":
ruled_out = {
i
for i in candidates
if ecc_lower[i] >= minupper and ecc_upper[i] + 1 <= 2 * minlower
}
elif compute == "periphery":
ruled_out = {
i
for i in candidates
if ecc_upper[i] < maxlower
and (maxlower == maxupper or ecc_lower[i] > maxupper)
}
elif compute == "center":
ruled_out = {
i
for i in candidates
if ecc_lower[i] > minupper
and (minlower == minupper or ecc_upper[i] + 1 < 2 * minlower)
}
elif compute == "eccentricities":
ruled_out = set()
else:
msg = "compute must be one of 'diameter', 'radius', 'periphery', 'center', 'eccentricities'"
raise ValueError(msg)
ruled_out.update(i for i in candidates if ecc_lower[i] == ecc_upper[i])
candidates -= ruled_out
# for i in ruled_out:
# print("removing %g: ecc_u: %g maxl: %g ecc_l: %g maxu: %g"%
# (i,ecc_upper[i],maxlower,ecc_lower[i],maxupper))
# print("node %g: ecc_u: %g maxl: %g ecc_l: %g maxu: %g"%
# (4,ecc_upper[4],maxlower,ecc_lower[4],maxupper))
# print("NODE 4: %g"%(ecc_upper[4] <= maxlower))
# print("NODE 4: %g"%(2 * ecc_lower[4] >= maxupper))
# print("NODE 4: %g"%(ecc_upper[4] <= maxlower
# and 2 * ecc_lower[4] >= maxupper))
# updating maxuppernode and minlowernode for selection in next round
for i in candidates:
if (
minlowernode is None
or (
ecc_lower[i] == ecc_lower[minlowernode]
and degrees[i] > degrees[minlowernode]
)
or (ecc_lower[i] < ecc_lower[minlowernode])
):
minlowernode = i
if (
maxuppernode is None
or (
ecc_upper[i] == ecc_upper[maxuppernode]
and degrees[i] > degrees[maxuppernode]
)
or (ecc_upper[i] > ecc_upper[maxuppernode])
):
maxuppernode = i
# print status update
# print (" min=" + str(minlower) + "/" + str(minupper) +
# " max=" + str(maxlower) + "/" + str(maxupper) +
# " candidates: " + str(len(candidates)))
# print("cand:",candidates)
# print("ecc_l",ecc_lower)
# print("ecc_u",ecc_upper)
# wait = input("press Enter to continue")
# return the correct value of the requested metric
if compute == "diameter":
return maxlower
if compute == "radius":
return minupper
if compute == "periphery":
p = [v for v in G if ecc_lower[v] == maxlower]
return p
if compute == "center":
c = [v for v in G if ecc_upper[v] == minupper]
return c
if compute == "eccentricities":
return ecc_lower
return None
@nx._dispatch(edge_attrs="weight")
def eccentricity(G, v=None, sp=None, weight=None):
"""Returns the eccentricity of nodes in G.
The eccentricity of a node v is the maximum distance from v to
all other nodes in G.
Parameters
----------
G : NetworkX graph
A graph
v : node, optional
Return value of specified node
sp : dict of dicts, optional
All pairs shortest path lengths as a dictionary of dictionaries
weight : string, function, or None (default=None)
If this is a string, then edge weights will be accessed via the
edge attribute with this key (that is, the weight of the edge
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
such edge attribute exists, the weight of the edge is assumed to
be one.
If this is a function, the weight of an edge is the value
returned by the function. The function must accept exactly three
positional arguments: the two endpoints of an edge and the
dictionary of edge attributes for that edge. The function must
return a number.
If this is None, every edge has weight/distance/cost 1.
Weights stored as floating point values can lead to small round-off
errors in distances. Use integer weights to avoid this.
Weights should be positive, since they are distances.
Returns
-------
ecc : dictionary
A dictionary of eccentricity values keyed by node.
Examples
--------
>>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
>>> dict(nx.eccentricity(G))
{1: 2, 2: 3, 3: 2, 4: 2, 5: 3}
>>> dict(nx.eccentricity(G, v=[1, 5])) # This returns the eccentricity of node 1 & 5
{1: 2, 5: 3}
"""
# if v is None: # none, use entire graph
# nodes=G.nodes()
# elif v in G: # is v a single node
# nodes=[v]
# else: # assume v is a container of nodes
# nodes=v
order = G.order()
e = {}
for n in G.nbunch_iter(v):
if sp is None:
length = nx.shortest_path_length(G, source=n, weight=weight)
L = len(length)
else:
try:
length = sp[n]
L = len(length)
except TypeError as err:
raise nx.NetworkXError('Format of "sp" is invalid.') from err
if L != order:
if G.is_directed():
msg = (
"Found infinite path length because the digraph is not"
" strongly connected"
)
else:
msg = "Found infinite path length because the graph is not" " connected"
raise nx.NetworkXError(msg)
e[n] = max(length.values())
if v in G:
return e[v] # return single value
return e
@nx._dispatch(edge_attrs="weight")
def diameter(G, e=None, usebounds=False, weight=None):
"""Returns the diameter of the graph G.
The diameter is the maximum eccentricity.
Parameters
----------
G : NetworkX graph
A graph
e : eccentricity dictionary, optional
A precomputed dictionary of eccentricities.
weight : string, function, or None
If this is a string, then edge weights will be accessed via the
edge attribute with this key (that is, the weight of the edge
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
such edge attribute exists, the weight of the edge is assumed to
be one.
If this is a function, the weight of an edge is the value
returned by the function. The function must accept exactly three
positional arguments: the two endpoints of an edge and the
dictionary of edge attributes for that edge. The function must
return a number.
If this is None, every edge has weight/distance/cost 1.
Weights stored as floating point values can lead to small round-off
errors in distances. Use integer weights to avoid this.
Weights should be positive, since they are distances.
Returns
-------
d : integer
Diameter of graph
Examples
--------
>>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
>>> nx.diameter(G)
3
See Also
--------
eccentricity
"""
if usebounds is True and e is None and not G.is_directed():
return _extrema_bounding(G, compute="diameter", weight=weight)
if e is None:
e = eccentricity(G, weight=weight)
return max(e.values())
@nx._dispatch(edge_attrs="weight")
def periphery(G, e=None, usebounds=False, weight=None):
"""Returns the periphery of the graph G.
The periphery is the set of nodes with eccentricity equal to the diameter.
Parameters
----------
G : NetworkX graph
A graph
e : eccentricity dictionary, optional
A precomputed dictionary of eccentricities.
weight : string, function, or None
If this is a string, then edge weights will be accessed via the
edge attribute with this key (that is, the weight of the edge
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
such edge attribute exists, the weight of the edge is assumed to
be one.
If this is a function, the weight of an edge is the value
returned by the function. The function must accept exactly three
positional arguments: the two endpoints of an edge and the
dictionary of edge attributes for that edge. The function must
return a number.
If this is None, every edge has weight/distance/cost 1.
Weights stored as floating point values can lead to small round-off
errors in distances. Use integer weights to avoid this.
Weights should be positive, since they are distances.
Returns
-------
p : list
List of nodes in periphery
Examples
--------
>>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
>>> nx.periphery(G)
[2, 5]
See Also
--------
barycenter
center
"""
if usebounds is True and e is None and not G.is_directed():
return _extrema_bounding(G, compute="periphery", weight=weight)
if e is None:
e = eccentricity(G, weight=weight)
diameter = max(e.values())
p = [v for v in e if e[v] == diameter]
return p
@nx._dispatch(edge_attrs="weight")
def radius(G, e=None, usebounds=False, weight=None):
"""Returns the radius of the graph G.
The radius is the minimum eccentricity.
Parameters
----------
G : NetworkX graph
A graph
e : eccentricity dictionary, optional
A precomputed dictionary of eccentricities.
weight : string, function, or None
If this is a string, then edge weights will be accessed via the
edge attribute with this key (that is, the weight of the edge
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
such edge attribute exists, the weight of the edge is assumed to
be one.
If this is a function, the weight of an edge is the value
returned by the function. The function must accept exactly three
positional arguments: the two endpoints of an edge and the
dictionary of edge attributes for that edge. The function must
return a number.
If this is None, every edge has weight/distance/cost 1.
Weights stored as floating point values can lead to small round-off
errors in distances. Use integer weights to avoid this.
Weights should be positive, since they are distances.
Returns
-------
r : integer
Radius of graph
Examples
--------
>>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
>>> nx.radius(G)
2
"""
if usebounds is True and e is None and not G.is_directed():
return _extrema_bounding(G, compute="radius", weight=weight)
if e is None:
e = eccentricity(G, weight=weight)
return min(e.values())
@nx._dispatch(edge_attrs="weight")
def center(G, e=None, usebounds=False, weight=None):
"""Returns the center of the graph G.
The center is the set of nodes with eccentricity equal to radius.
Parameters
----------
G : NetworkX graph
A graph
e : eccentricity dictionary, optional
A precomputed dictionary of eccentricities.
weight : string, function, or None
If this is a string, then edge weights will be accessed via the
edge attribute with this key (that is, the weight of the edge
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
such edge attribute exists, the weight of the edge is assumed to
be one.
If this is a function, the weight of an edge is the value
returned by the function. The function must accept exactly three
positional arguments: the two endpoints of an edge and the
dictionary of edge attributes for that edge. The function must
return a number.
If this is None, every edge has weight/distance/cost 1.
Weights stored as floating point values can lead to small round-off
errors in distances. Use integer weights to avoid this.
Weights should be positive, since they are distances.
Returns
-------
c : list
List of nodes in center
Examples
--------
>>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
>>> list(nx.center(G))
[1, 3, 4]
See Also
--------
barycenter
periphery
"""
if usebounds is True and e is None and not G.is_directed():
return _extrema_bounding(G, compute="center", weight=weight)
if e is None:
e = eccentricity(G, weight=weight)
radius = min(e.values())
p = [v for v in e if e[v] == radius]
return p
@nx._dispatch(edge_attrs="weight")
def barycenter(G, weight=None, attr=None, sp=None):
r"""Calculate barycenter of a connected graph, optionally with edge weights.
The :dfn:`barycenter` a
:func:`connected <networkx.algorithms.components.is_connected>` graph
:math:`G` is the subgraph induced by the set of its nodes :math:`v`
minimizing the objective function
.. math::
\sum_{u \in V(G)} d_G(u, v),
where :math:`d_G` is the (possibly weighted) :func:`path length
<networkx.algorithms.shortest_paths.generic.shortest_path_length>`.
The barycenter is also called the :dfn:`median`. See [West01]_, p. 78.
Parameters
----------
G : :class:`networkx.Graph`
The connected graph :math:`G`.
weight : :class:`str`, optional
Passed through to
:func:`~networkx.algorithms.shortest_paths.generic.shortest_path_length`.
attr : :class:`str`, optional
If given, write the value of the objective function to each node's
`attr` attribute. Otherwise do not store the value.
sp : dict of dicts, optional
All pairs shortest path lengths as a dictionary of dictionaries
Returns
-------
list
Nodes of `G` that induce the barycenter of `G`.
Raises
------
NetworkXNoPath
If `G` is disconnected. `G` may appear disconnected to
:func:`barycenter` if `sp` is given but is missing shortest path
lengths for any pairs.
ValueError
If `sp` and `weight` are both given.
Examples
--------
>>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
>>> nx.barycenter(G)
[1, 3, 4]
See Also
--------
center
periphery
"""
if sp is None:
sp = nx.shortest_path_length(G, weight=weight)
else:
sp = sp.items()
if weight is not None:
raise ValueError("Cannot use both sp, weight arguments together")
smallest, barycenter_vertices, n = float("inf"), [], len(G)
for v, dists in sp:
if len(dists) < n:
raise nx.NetworkXNoPath(
f"Input graph {G} is disconnected, so every induced subgraph "
"has infinite barycentricity."
)
barycentricity = sum(dists.values())
if attr is not None:
G.nodes[v][attr] = barycentricity
if barycentricity < smallest:
smallest = barycentricity
barycenter_vertices = [v]
elif barycentricity == smallest:
barycenter_vertices.append(v)
return barycenter_vertices
def _count_lu_permutations(perm_array):
"""Counts the number of permutations in SuperLU perm_c or perm_r"""
perm_cnt = 0
arr = perm_array.tolist()
for i in range(len(arr)):
if i != arr[i]:
perm_cnt += 1
n = arr.index(i)
arr[n] = arr[i]
arr[i] = i
return perm_cnt
@not_implemented_for("directed")
@nx._dispatch(edge_attrs="weight")
def resistance_distance(G, nodeA=None, nodeB=None, weight=None, invert_weight=True):
"""Returns the resistance distance between every pair of nodes on graph G.
The resistance distance between two nodes of a graph is akin to treating
the graph as a grid of resistors with a resistance equal to the provided
weight [1]_, [2]_.
If weight is not provided, then a weight of 1 is used for all edges.
If two nodes are the same, the resistance distance is zero.
Parameters
----------
G : NetworkX graph
A graph
nodeA : node or None, optional (default=None)
A node within graph G.
If None, compute resistance distance using all nodes as source nodes.
nodeB : node or None, optional (default=None)
A node within graph G.
If None, compute resistance distance using all nodes as target nodes.
weight : string or None, optional (default=None)
The edge data key used to compute the resistance distance.
If None, then each edge has weight 1.
invert_weight : boolean (default=True)
Proper calculation of resistance distance requires building the
Laplacian matrix with the reciprocal of the weight. Not required
if the weight is already inverted. Weight cannot be zero.
Returns
-------
rd : dict or float
If `nodeA` and `nodeB` are given, resistance distance between `nodeA`
and `nodeB`. If `nodeA` or `nodeB` is unspecified (the default), a
dictionary of nodes with resistance distances as the value.
Raises
------
NetworkXNotImplemented
If `G` is a directed graph.
NetworkXError
If `G` is not connected, or contains no nodes,
or `nodeA` is not in `G` or `nodeB` is not in `G`.
Examples
--------
>>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
>>> round(nx.resistance_distance(G, 1, 3), 10)
0.625
Notes
-----
The implementation is based on Theorem A in [2]_. Self-loops are ignored.
Multi-edges are contracted in one edge with weight equal to the harmonic sum of the weights.
References
----------
.. [1] Wikipedia
"Resistance distance."
https://en.wikipedia.org/wiki/Resistance_distance
.. [2] D. J. Klein and M. Randic.
Resistance distance.
J. of Math. Chem. 12:81-95, 1993.
"""
import numpy as np
if len(G) == 0:
raise nx.NetworkXError("Graph G must contain at least one node.")
if not nx.is_connected(G):
raise nx.NetworkXError("Graph G must be strongly connected.")
if nodeA is not None and nodeA not in G:
raise nx.NetworkXError("Node A is not in graph G.")
if nodeB is not None and nodeB not in G:
raise nx.NetworkXError("Node B is not in graph G.")
G = G.copy()
node_list = list(G)
# Invert weights
if invert_weight and weight is not None:
if G.is_multigraph():
for u, v, k, d in G.edges(keys=True, data=True):
d[weight] = 1 / d[weight]
else:
for u, v, d in G.edges(data=True):
d[weight] = 1 / d[weight]
# Compute resistance distance using the Pseudo-inverse of the Laplacian
# Self-loops are ignored
L = nx.laplacian_matrix(G, weight=weight).todense()
Linv = np.linalg.pinv(L, hermitian=True)
# Return relevant distances
if nodeA is not None and nodeB is not None:
i = node_list.index(nodeA)
j = node_list.index(nodeB)
return Linv[i, i] + Linv[j, j] - Linv[i, j] - Linv[j, i]
elif nodeA is not None:
i = node_list.index(nodeA)
d = {}
for n in G:
j = node_list.index(n)
d[n] = Linv[i, i] + Linv[j, j] - Linv[i, j] - Linv[j, i]
return d
elif nodeB is not None:
j = node_list.index(nodeB)
d = {}
for n in G:
i = node_list.index(n)
d[n] = Linv[i, i] + Linv[j, j] - Linv[i, j] - Linv[j, i]
return d
else:
d = {}
for n in G:
i = node_list.index(n)
d[n] = {}
for n2 in G:
j = node_list.index(n2)
d[n][n2] = Linv[i, i] + Linv[j, j] - Linv[i, j] - Linv[j, i]
return d
@nx.utils.not_implemented_for("directed")
@nx._dispatch(edge_attrs="weight")
def kemeny_constant(G, *, weight=None):
"""Returns the Kemeny constant of the given graph.
The *Kemeny constant* (or Kemeny's constant) of a graph `G`
can be computed by regarding the graph as a Markov chain.
The Kemeny constant is then the expected number of time steps
to transition from a starting state i to a random destination state
sampled from the Markov chain's stationary distribution.
The Kemeny constant is independent of the chosen initial state [1]_.
The Kemeny constant measures the time needed for spreading
across a graph. Low values indicate a closely connected graph
whereas high values indicate a spread-out graph.
If weight is not provided, then a weight of 1 is used for all edges.
Since `G` represents a Markov chain, the weights must be positive.
Parameters
----------
G : NetworkX graph
weight : string or None, optional (default=None)
The edge data key used to compute the Kemeny constant.
If None, then each edge has weight 1.
Returns
-------
K : float
The Kemeny constant of the graph `G`.
Raises
------
NetworkXNotImplemented
If the graph `G` is directed.
NetworkXError
If the graph `G` is not connected, or contains no nodes,
or has edges with negative weights.
Examples
--------
>>> G = nx.complete_graph(5)
>>> round(nx.kemeny_constant(G), 10)
3.2
Notes
-----
The implementation is based on equation (3.3) in [2]_.
Self-loops are allowed and indicate a Markov chain where
the state can remain the same. Multi-edges are contracted
in one edge with weight equal to the sum of the weights.
References
----------
.. [1] Wikipedia
"Kemeny's constant."
https://en.wikipedia.org/wiki/Kemeny%27s_constant
.. [2] Lovász L.
Random walks on graphs: A survey.
Paul Erdös is Eighty, vol. 2, Bolyai Society,
Mathematical Studies, Keszthely, Hungary (1993), pp. 1-46
"""
import numpy as np
import scipy as sp
if len(G) == 0:
raise nx.NetworkXError("Graph G must contain at least one node.")
if not nx.is_connected(G):
raise nx.NetworkXError("Graph G must be connected.")
if nx.is_negatively_weighted(G, weight=weight):
raise nx.NetworkXError("The weights of graph G must be nonnegative.")
# Compute matrix H = D^-1/2 A D^-1/2
A = nx.adjacency_matrix(G, weight=weight)
n, m = A.shape
diags = A.sum(axis=1)
with np.errstate(divide="ignore"):
diags_sqrt = 1.0 / np.sqrt(diags)
diags_sqrt[np.isinf(diags_sqrt)] = 0
DH = sp.sparse.csr_array(sp.sparse.spdiags(diags_sqrt, 0, m, n, format="csr"))
H = DH @ (A @ DH)
# Compute eigenvalues of H
eig = np.sort(sp.linalg.eigvalsh(H.todense()))
# Compute the Kemeny constant
return np.sum(1 / (1 - eig[:-1]))
|