File size: 47,159 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
"""Base class for directed graphs."""
from copy import deepcopy
from functools import cached_property

import networkx as nx
from networkx import convert
from networkx.classes.coreviews import AdjacencyView
from networkx.classes.graph import Graph
from networkx.classes.reportviews import (
    DiDegreeView,
    InDegreeView,
    InEdgeView,
    OutDegreeView,
    OutEdgeView,
)
from networkx.exception import NetworkXError

__all__ = ["DiGraph"]


class _CachedPropertyResetterAdjAndSucc:
    """Data Descriptor class that syncs and resets cached properties adj and succ

    The cached properties `adj` and `succ` are reset whenever `_adj` or `_succ`
    are set to new objects. In addition, the attributes `_succ` and `_adj`
    are synced so these two names point to the same object.

    This object sits on a class and ensures that any instance of that
    class clears its cached properties "succ" and "adj" whenever the
    underlying instance attributes "_succ" or "_adj" are set to a new object.
    It only affects the set process of the obj._adj and obj._succ attribute.
    All get/del operations act as they normally would.

    For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html
    """

    def __set__(self, obj, value):
        od = obj.__dict__
        od["_adj"] = value
        od["_succ"] = value
        # reset cached properties
        if "adj" in od:
            del od["adj"]
        if "succ" in od:
            del od["succ"]


class _CachedPropertyResetterPred:
    """Data Descriptor class for _pred that resets ``pred`` cached_property when needed

    This assumes that the ``cached_property`` ``G.pred`` should be reset whenever
    ``G._pred`` is set to a new value.

    This object sits on a class and ensures that any instance of that
    class clears its cached property "pred" whenever the underlying
    instance attribute "_pred" is set to a new object. It only affects
    the set process of the obj._pred attribute. All get/del operations
    act as they normally would.

    For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html
    """

    def __set__(self, obj, value):
        od = obj.__dict__
        od["_pred"] = value
        if "pred" in od:
            del od["pred"]


class DiGraph(Graph):
    """
    Base class for directed graphs.

    A DiGraph stores nodes and edges with optional data, or attributes.

    DiGraphs hold directed edges.  Self loops are allowed but multiple
    (parallel) edges are not.

    Nodes can be arbitrary (hashable) Python objects with optional
    key/value attributes. By convention `None` is not used as a node.

    Edges are represented as links between nodes with optional
    key/value attributes.

    Parameters
    ----------
    incoming_graph_data : input graph (optional, default: None)
        Data to initialize graph. If None (default) an empty
        graph is created.  The data can be any format that is supported
        by the to_networkx_graph() function, currently including edge list,
        dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy
        sparse matrix, or PyGraphviz graph.

    attr : keyword arguments, optional (default= no attributes)
        Attributes to add to graph as key=value pairs.

    See Also
    --------
    Graph
    MultiGraph
    MultiDiGraph

    Examples
    --------
    Create an empty graph structure (a "null graph") with no nodes and
    no edges.

    >>> G = nx.DiGraph()

    G can be grown in several ways.

    **Nodes:**

    Add one node at a time:

    >>> G.add_node(1)

    Add the nodes from any container (a list, dict, set or
    even the lines from a file or the nodes from another graph).

    >>> G.add_nodes_from([2, 3])
    >>> G.add_nodes_from(range(100, 110))
    >>> H = nx.path_graph(10)
    >>> G.add_nodes_from(H)

    In addition to strings and integers any hashable Python object
    (except None) can represent a node, e.g. a customized node object,
    or even another Graph.

    >>> G.add_node(H)

    **Edges:**

    G can also be grown by adding edges.

    Add one edge,

    >>> G.add_edge(1, 2)

    a list of edges,

    >>> G.add_edges_from([(1, 2), (1, 3)])

    or a collection of edges,

    >>> G.add_edges_from(H.edges)

    If some edges connect nodes not yet in the graph, the nodes
    are added automatically.  There are no errors when adding
    nodes or edges that already exist.

    **Attributes:**

    Each graph, node, and edge can hold key/value attribute pairs
    in an associated attribute dictionary (the keys must be hashable).
    By default these are empty, but can be added or changed using
    add_edge, add_node or direct manipulation of the attribute
    dictionaries named graph, node and edge respectively.

    >>> G = nx.DiGraph(day="Friday")
    >>> G.graph
    {'day': 'Friday'}

    Add node attributes using add_node(), add_nodes_from() or G.nodes

    >>> G.add_node(1, time="5pm")
    >>> G.add_nodes_from([3], time="2pm")
    >>> G.nodes[1]
    {'time': '5pm'}
    >>> G.nodes[1]["room"] = 714
    >>> del G.nodes[1]["room"]  # remove attribute
    >>> list(G.nodes(data=True))
    [(1, {'time': '5pm'}), (3, {'time': '2pm'})]

    Add edge attributes using add_edge(), add_edges_from(), subscript
    notation, or G.edges.

    >>> G.add_edge(1, 2, weight=4.7)
    >>> G.add_edges_from([(3, 4), (4, 5)], color="red")
    >>> G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
    >>> G[1][2]["weight"] = 4.7
    >>> G.edges[1, 2]["weight"] = 4

    Warning: we protect the graph data structure by making `G.edges[1, 2]` a
    read-only dict-like structure. However, you can assign to attributes
    in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change
    data attributes: `G.edges[1, 2]['weight'] = 4`
    (For multigraphs: `MG.edges[u, v, key][name] = value`).

    **Shortcuts:**

    Many common graph features allow python syntax to speed reporting.

    >>> 1 in G  # check if node in graph
    True
    >>> [n for n in G if n < 3]  # iterate through nodes
    [1, 2]
    >>> len(G)  # number of nodes in graph
    5

    Often the best way to traverse all edges of a graph is via the neighbors.
    The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()`

    >>> for n, nbrsdict in G.adjacency():
    ...     for nbr, eattr in nbrsdict.items():
    ...         if "weight" in eattr:
    ...             # Do something useful with the edges
    ...             pass

    But the edges reporting object is often more convenient:

    >>> for u, v, weight in G.edges(data="weight"):
    ...     if weight is not None:
    ...         # Do something useful with the edges
    ...         pass

    **Reporting:**

    Simple graph information is obtained using object-attributes and methods.
    Reporting usually provides views instead of containers to reduce memory
    usage. The views update as the graph is updated similarly to dict-views.
    The objects `nodes`, `edges` and `adj` provide access to data attributes
    via lookup (e.g. `nodes[n]`, `edges[u, v]`, `adj[u][v]`) and iteration
    (e.g. `nodes.items()`, `nodes.data('color')`,
    `nodes.data('color', default='blue')` and similarly for `edges`)
    Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.

    For details on these and other miscellaneous methods, see below.

    **Subclasses (Advanced):**

    The Graph class uses a dict-of-dict-of-dict data structure.
    The outer dict (node_dict) holds adjacency information keyed by node.
    The next dict (adjlist_dict) represents the adjacency information and holds
    edge data keyed by neighbor.  The inner dict (edge_attr_dict) represents
    the edge data and holds edge attribute values keyed by attribute names.

    Each of these three dicts can be replaced in a subclass by a user defined
    dict-like object. In general, the dict-like features should be
    maintained but extra features can be added. To replace one of the
    dicts create a new graph class by changing the class(!) variable
    holding the factory for that dict-like structure. The variable names are
    node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory,
    adjlist_outer_dict_factory, edge_attr_dict_factory and graph_attr_dict_factory.

    node_dict_factory : function, (default: dict)
        Factory function to be used to create the dict containing node
        attributes, keyed by node id.
        It should require no arguments and return a dict-like object

    node_attr_dict_factory: function, (default: dict)
        Factory function to be used to create the node attribute
        dict which holds attribute values keyed by attribute name.
        It should require no arguments and return a dict-like object

    adjlist_outer_dict_factory : function, (default: dict)
        Factory function to be used to create the outer-most dict
        in the data structure that holds adjacency info keyed by node.
        It should require no arguments and return a dict-like object.

    adjlist_inner_dict_factory : function, optional (default: dict)
        Factory function to be used to create the adjacency list
        dict which holds edge data keyed by neighbor.
        It should require no arguments and return a dict-like object

    edge_attr_dict_factory : function, optional (default: dict)
        Factory function to be used to create the edge attribute
        dict which holds attribute values keyed by attribute name.
        It should require no arguments and return a dict-like object.

    graph_attr_dict_factory : function, (default: dict)
        Factory function to be used to create the graph attribute
        dict which holds attribute values keyed by attribute name.
        It should require no arguments and return a dict-like object.

    Typically, if your extension doesn't impact the data structure all
    methods will inherited without issue except: `to_directed/to_undirected`.
    By default these methods create a DiGraph/Graph class and you probably
    want them to create your extension of a DiGraph/Graph. To facilitate
    this we define two class variables that you can set in your subclass.

    to_directed_class : callable, (default: DiGraph or MultiDiGraph)
        Class to create a new graph structure in the `to_directed` method.
        If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.

    to_undirected_class : callable, (default: Graph or MultiGraph)
        Class to create a new graph structure in the `to_undirected` method.
        If `None`, a NetworkX class (Graph or MultiGraph) is used.

    **Subclassing Example**

    Create a low memory graph class that effectively disallows edge
    attributes by using a single attribute dict for all edges.
    This reduces the memory used, but you lose edge attributes.

    >>> class ThinGraph(nx.Graph):
    ...     all_edge_dict = {"weight": 1}
    ...
    ...     def single_edge_dict(self):
    ...         return self.all_edge_dict
    ...
    ...     edge_attr_dict_factory = single_edge_dict
    >>> G = ThinGraph()
    >>> G.add_edge(2, 1)
    >>> G[2][1]
    {'weight': 1}
    >>> G.add_edge(2, 2)
    >>> G[2][1] is G[2][2]
    True
    """

    _adj = _CachedPropertyResetterAdjAndSucc()  # type: ignore[assignment]
    _succ = _adj  # type: ignore[has-type]
    _pred = _CachedPropertyResetterPred()

    def __init__(self, incoming_graph_data=None, **attr):
        """Initialize a graph with edges, name, or graph attributes.

        Parameters
        ----------
        incoming_graph_data : input graph (optional, default: None)
            Data to initialize graph.  If None (default) an empty
            graph is created.  The data can be an edge list, or any
            NetworkX graph object.  If the corresponding optional Python
            packages are installed the data can also be a 2D NumPy array, a
            SciPy sparse array, or a PyGraphviz graph.

        attr : keyword arguments, optional (default= no attributes)
            Attributes to add to graph as key=value pairs.

        See Also
        --------
        convert

        Examples
        --------
        >>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G = nx.Graph(name="my graph")
        >>> e = [(1, 2), (2, 3), (3, 4)]  # list of edges
        >>> G = nx.Graph(e)

        Arbitrary graph attribute pairs (key=value) may be assigned

        >>> G = nx.Graph(e, day="Friday")
        >>> G.graph
        {'day': 'Friday'}

        """
        self.graph = self.graph_attr_dict_factory()  # dictionary for graph attributes
        self._node = self.node_dict_factory()  # dictionary for node attr
        # We store two adjacency lists:
        # the predecessors of node n are stored in the dict self._pred
        # the successors of node n are stored in the dict self._succ=self._adj
        self._adj = self.adjlist_outer_dict_factory()  # empty adjacency dict successor
        self._pred = self.adjlist_outer_dict_factory()  # predecessor
        # Note: self._succ = self._adj  # successor

        # attempt to load graph with data
        if incoming_graph_data is not None:
            convert.to_networkx_graph(incoming_graph_data, create_using=self)
        # load graph attributes (must be after convert)
        self.graph.update(attr)

    @cached_property
    def adj(self):
        """Graph adjacency object holding the neighbors of each node.

        This object is a read-only dict-like structure with node keys
        and neighbor-dict values.  The neighbor-dict is keyed by neighbor
        to the edge-data-dict.  So `G.adj[3][2]['color'] = 'blue'` sets
        the color of the edge `(3, 2)` to `"blue"`.

        Iterating over G.adj behaves like a dict. Useful idioms include
        `for nbr, datadict in G.adj[n].items():`.

        The neighbor information is also provided by subscripting the graph.
        So `for nbr, foovalue in G[node].data('foo', default=1):` works.

        For directed graphs, `G.adj` holds outgoing (successor) info.
        """
        return AdjacencyView(self._succ)

    @cached_property
    def succ(self):
        """Graph adjacency object holding the successors of each node.

        This object is a read-only dict-like structure with node keys
        and neighbor-dict values.  The neighbor-dict is keyed by neighbor
        to the edge-data-dict.  So `G.succ[3][2]['color'] = 'blue'` sets
        the color of the edge `(3, 2)` to `"blue"`.

        Iterating over G.succ behaves like a dict. Useful idioms include
        `for nbr, datadict in G.succ[n].items():`.  A data-view not provided
        by dicts also exists: `for nbr, foovalue in G.succ[node].data('foo'):`
        and a default can be set via a `default` argument to the `data` method.

        The neighbor information is also provided by subscripting the graph.
        So `for nbr, foovalue in G[node].data('foo', default=1):` works.

        For directed graphs, `G.adj` is identical to `G.succ`.
        """
        return AdjacencyView(self._succ)

    @cached_property
    def pred(self):
        """Graph adjacency object holding the predecessors of each node.

        This object is a read-only dict-like structure with node keys
        and neighbor-dict values.  The neighbor-dict is keyed by neighbor
        to the edge-data-dict.  So `G.pred[2][3]['color'] = 'blue'` sets
        the color of the edge `(3, 2)` to `"blue"`.

        Iterating over G.pred behaves like a dict. Useful idioms include
        `for nbr, datadict in G.pred[n].items():`.  A data-view not provided
        by dicts also exists: `for nbr, foovalue in G.pred[node].data('foo'):`
        A default can be set via a `default` argument to the `data` method.
        """
        return AdjacencyView(self._pred)

    def add_node(self, node_for_adding, **attr):
        """Add a single node `node_for_adding` and update node attributes.

        Parameters
        ----------
        node_for_adding : node
            A node can be any hashable Python object except None.
        attr : keyword arguments, optional
            Set or change node attributes using key=value.

        See Also
        --------
        add_nodes_from

        Examples
        --------
        >>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_node(1)
        >>> G.add_node("Hello")
        >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)])
        >>> G.add_node(K3)
        >>> G.number_of_nodes()
        3

        Use keywords set/change node attributes:

        >>> G.add_node(1, size=10)
        >>> G.add_node(3, weight=0.4, UTM=("13S", 382871, 3972649))

        Notes
        -----
        A hashable object is one that can be used as a key in a Python
        dictionary. This includes strings, numbers, tuples of strings
        and numbers, etc.

        On many platforms hashable items also include mutables such as
        NetworkX Graphs, though one should be careful that the hash
        doesn't change on mutables.
        """
        if node_for_adding not in self._succ:
            if node_for_adding is None:
                raise ValueError("None cannot be a node")
            self._succ[node_for_adding] = self.adjlist_inner_dict_factory()
            self._pred[node_for_adding] = self.adjlist_inner_dict_factory()
            attr_dict = self._node[node_for_adding] = self.node_attr_dict_factory()
            attr_dict.update(attr)
        else:  # update attr even if node already exists
            self._node[node_for_adding].update(attr)

    def add_nodes_from(self, nodes_for_adding, **attr):
        """Add multiple nodes.

        Parameters
        ----------
        nodes_for_adding : iterable container
            A container of nodes (list, dict, set, etc.).
            OR
            A container of (node, attribute dict) tuples.
            Node attributes are updated using the attribute dict.
        attr : keyword arguments, optional (default= no attributes)
            Update attributes for all nodes in nodes.
            Node attributes specified in nodes as a tuple take
            precedence over attributes specified via keyword arguments.

        See Also
        --------
        add_node

        Notes
        -----
        When adding nodes from an iterator over the graph you are changing,
        a `RuntimeError` can be raised with message:
        `RuntimeError: dictionary changed size during iteration`. This
        happens when the graph's underlying dictionary is modified during
        iteration. To avoid this error, evaluate the iterator into a separate
        object, e.g. by using `list(iterator_of_nodes)`, and pass this
        object to `G.add_nodes_from`.

        Examples
        --------
        >>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_nodes_from("Hello")
        >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)])
        >>> G.add_nodes_from(K3)
        >>> sorted(G.nodes(), key=str)
        [0, 1, 2, 'H', 'e', 'l', 'o']

        Use keywords to update specific node attributes for every node.

        >>> G.add_nodes_from([1, 2], size=10)
        >>> G.add_nodes_from([3, 4], weight=0.4)

        Use (node, attrdict) tuples to update attributes for specific nodes.

        >>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})])
        >>> G.nodes[1]["size"]
        11
        >>> H = nx.Graph()
        >>> H.add_nodes_from(G.nodes(data=True))
        >>> H.nodes[1]["size"]
        11

        Evaluate an iterator over a graph if using it to modify the same graph

        >>> G = nx.DiGraph([(0, 1), (1, 2), (3, 4)])
        >>> # wrong way - will raise RuntimeError
        >>> # G.add_nodes_from(n + 1 for n in G.nodes)
        >>> # correct way
        >>> G.add_nodes_from(list(n + 1 for n in G.nodes))
        """
        for n in nodes_for_adding:
            try:
                newnode = n not in self._node
                newdict = attr
            except TypeError:
                n, ndict = n
                newnode = n not in self._node
                newdict = attr.copy()
                newdict.update(ndict)
            if newnode:
                if n is None:
                    raise ValueError("None cannot be a node")
                self._succ[n] = self.adjlist_inner_dict_factory()
                self._pred[n] = self.adjlist_inner_dict_factory()
                self._node[n] = self.node_attr_dict_factory()
            self._node[n].update(newdict)

    def remove_node(self, n):
        """Remove node n.

        Removes the node n and all adjacent edges.
        Attempting to remove a nonexistent node will raise an exception.

        Parameters
        ----------
        n : node
           A node in the graph

        Raises
        ------
        NetworkXError
           If n is not in the graph.

        See Also
        --------
        remove_nodes_from

        Examples
        --------
        >>> G = nx.path_graph(3)  # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> list(G.edges)
        [(0, 1), (1, 2)]
        >>> G.remove_node(1)
        >>> list(G.edges)
        []

        """
        try:
            nbrs = self._succ[n]
            del self._node[n]
        except KeyError as err:  # NetworkXError if n not in self
            raise NetworkXError(f"The node {n} is not in the digraph.") from err
        for u in nbrs:
            del self._pred[u][n]  # remove all edges n-u in digraph
        del self._succ[n]  # remove node from succ
        for u in self._pred[n]:
            del self._succ[u][n]  # remove all edges n-u in digraph
        del self._pred[n]  # remove node from pred

    def remove_nodes_from(self, nodes):
        """Remove multiple nodes.

        Parameters
        ----------
        nodes : iterable container
            A container of nodes (list, dict, set, etc.).  If a node
            in the container is not in the graph it is silently ignored.

        See Also
        --------
        remove_node

        Notes
        -----
        When removing nodes from an iterator over the graph you are changing,
        a `RuntimeError` will be raised with message:
        `RuntimeError: dictionary changed size during iteration`. This
        happens when the graph's underlying dictionary is modified during
        iteration. To avoid this error, evaluate the iterator into a separate
        object, e.g. by using `list(iterator_of_nodes)`, and pass this
        object to `G.remove_nodes_from`.

        Examples
        --------
        >>> G = nx.path_graph(3)  # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> e = list(G.nodes)
        >>> e
        [0, 1, 2]
        >>> G.remove_nodes_from(e)
        >>> list(G.nodes)
        []

        Evaluate an iterator over a graph if using it to modify the same graph

        >>> G = nx.DiGraph([(0, 1), (1, 2), (3, 4)])
        >>> # this command will fail, as the graph's dict is modified during iteration
        >>> # G.remove_nodes_from(n for n in G.nodes if n < 2)
        >>> # this command will work, since the dictionary underlying graph is not modified
        >>> G.remove_nodes_from(list(n for n in G.nodes if n < 2))
        """
        for n in nodes:
            try:
                succs = self._succ[n]
                del self._node[n]
                for u in succs:
                    del self._pred[u][n]  # remove all edges n-u in digraph
                del self._succ[n]  # now remove node
                for u in self._pred[n]:
                    del self._succ[u][n]  # remove all edges n-u in digraph
                del self._pred[n]  # now remove node
            except KeyError:
                pass  # silent failure on remove

    def add_edge(self, u_of_edge, v_of_edge, **attr):
        """Add an edge between u and v.

        The nodes u and v will be automatically added if they are
        not already in the graph.

        Edge attributes can be specified with keywords or by directly
        accessing the edge's attribute dictionary. See examples below.

        Parameters
        ----------
        u_of_edge, v_of_edge : nodes
            Nodes can be, for example, strings or numbers.
            Nodes must be hashable (and not None) Python objects.
        attr : keyword arguments, optional
            Edge data (or labels or objects) can be assigned using
            keyword arguments.

        See Also
        --------
        add_edges_from : add a collection of edges

        Notes
        -----
        Adding an edge that already exists updates the edge data.

        Many NetworkX algorithms designed for weighted graphs use
        an edge attribute (by default `weight`) to hold a numerical value.

        Examples
        --------
        The following all add the edge e=(1, 2) to graph G:

        >>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> e = (1, 2)
        >>> G.add_edge(1, 2)  # explicit two-node form
        >>> G.add_edge(*e)  # single edge as tuple of two nodes
        >>> G.add_edges_from([(1, 2)])  # add edges from iterable container

        Associate data to edges using keywords:

        >>> G.add_edge(1, 2, weight=3)
        >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)

        For non-string attribute keys, use subscript notation.

        >>> G.add_edge(1, 2)
        >>> G[1][2].update({0: 5})
        >>> G.edges[1, 2].update({0: 5})
        """
        u, v = u_of_edge, v_of_edge
        # add nodes
        if u not in self._succ:
            if u is None:
                raise ValueError("None cannot be a node")
            self._succ[u] = self.adjlist_inner_dict_factory()
            self._pred[u] = self.adjlist_inner_dict_factory()
            self._node[u] = self.node_attr_dict_factory()
        if v not in self._succ:
            if v is None:
                raise ValueError("None cannot be a node")
            self._succ[v] = self.adjlist_inner_dict_factory()
            self._pred[v] = self.adjlist_inner_dict_factory()
            self._node[v] = self.node_attr_dict_factory()
        # add the edge
        datadict = self._adj[u].get(v, self.edge_attr_dict_factory())
        datadict.update(attr)
        self._succ[u][v] = datadict
        self._pred[v][u] = datadict

    def add_edges_from(self, ebunch_to_add, **attr):
        """Add all the edges in ebunch_to_add.

        Parameters
        ----------
        ebunch_to_add : container of edges
            Each edge given in the container will be added to the
            graph. The edges must be given as 2-tuples (u, v) or
            3-tuples (u, v, d) where d is a dictionary containing edge data.
        attr : keyword arguments, optional
            Edge data (or labels or objects) can be assigned using
            keyword arguments.

        See Also
        --------
        add_edge : add a single edge
        add_weighted_edges_from : convenient way to add weighted edges

        Notes
        -----
        Adding the same edge twice has no effect but any edge data
        will be updated when each duplicate edge is added.

        Edge attributes specified in an ebunch take precedence over
        attributes specified via keyword arguments.

        When adding edges from an iterator over the graph you are changing,
        a `RuntimeError` can be raised with message:
        `RuntimeError: dictionary changed size during iteration`. This
        happens when the graph's underlying dictionary is modified during
        iteration. To avoid this error, evaluate the iterator into a separate
        object, e.g. by using `list(iterator_of_edges)`, and pass this
        object to `G.add_edges_from`.

        Examples
        --------
        >>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_edges_from([(0, 1), (1, 2)])  # using a list of edge tuples
        >>> e = zip(range(0, 3), range(1, 4))
        >>> G.add_edges_from(e)  # Add the path graph 0-1-2-3

        Associate data to edges

        >>> G.add_edges_from([(1, 2), (2, 3)], weight=3)
        >>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898")

        Evaluate an iterator over a graph if using it to modify the same graph

        >>> G = nx.DiGraph([(1, 2), (2, 3), (3, 4)])
        >>> # Grow graph by one new node, adding edges to all existing nodes.
        >>> # wrong way - will raise RuntimeError
        >>> # G.add_edges_from(((5, n) for n in G.nodes))
        >>> # right way - note that there will be no self-edge for node 5
        >>> G.add_edges_from(list((5, n) for n in G.nodes))
        """
        for e in ebunch_to_add:
            ne = len(e)
            if ne == 3:
                u, v, dd = e
            elif ne == 2:
                u, v = e
                dd = {}
            else:
                raise NetworkXError(f"Edge tuple {e} must be a 2-tuple or 3-tuple.")
            if u not in self._succ:
                if u is None:
                    raise ValueError("None cannot be a node")
                self._succ[u] = self.adjlist_inner_dict_factory()
                self._pred[u] = self.adjlist_inner_dict_factory()
                self._node[u] = self.node_attr_dict_factory()
            if v not in self._succ:
                if v is None:
                    raise ValueError("None cannot be a node")
                self._succ[v] = self.adjlist_inner_dict_factory()
                self._pred[v] = self.adjlist_inner_dict_factory()
                self._node[v] = self.node_attr_dict_factory()
            datadict = self._adj[u].get(v, self.edge_attr_dict_factory())
            datadict.update(attr)
            datadict.update(dd)
            self._succ[u][v] = datadict
            self._pred[v][u] = datadict

    def remove_edge(self, u, v):
        """Remove the edge between u and v.

        Parameters
        ----------
        u, v : nodes
            Remove the edge between nodes u and v.

        Raises
        ------
        NetworkXError
            If there is not an edge between u and v.

        See Also
        --------
        remove_edges_from : remove a collection of edges

        Examples
        --------
        >>> G = nx.Graph()  # or DiGraph, etc
        >>> nx.add_path(G, [0, 1, 2, 3])
        >>> G.remove_edge(0, 1)
        >>> e = (1, 2)
        >>> G.remove_edge(*e)  # unpacks e from an edge tuple
        >>> e = (2, 3, {"weight": 7})  # an edge with attribute data
        >>> G.remove_edge(*e[:2])  # select first part of edge tuple
        """
        try:
            del self._succ[u][v]
            del self._pred[v][u]
        except KeyError as err:
            raise NetworkXError(f"The edge {u}-{v} not in graph.") from err

    def remove_edges_from(self, ebunch):
        """Remove all edges specified in ebunch.

        Parameters
        ----------
        ebunch: list or container of edge tuples
            Each edge given in the list or container will be removed
            from the graph. The edges can be:

                - 2-tuples (u, v) edge between u and v.
                - 3-tuples (u, v, k) where k is ignored.

        See Also
        --------
        remove_edge : remove a single edge

        Notes
        -----
        Will fail silently if an edge in ebunch is not in the graph.

        Examples
        --------
        >>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> ebunch = [(1, 2), (2, 3)]
        >>> G.remove_edges_from(ebunch)
        """
        for e in ebunch:
            u, v = e[:2]  # ignore edge data
            if u in self._succ and v in self._succ[u]:
                del self._succ[u][v]
                del self._pred[v][u]

    def has_successor(self, u, v):
        """Returns True if node u has successor v.

        This is true if graph has the edge u->v.
        """
        return u in self._succ and v in self._succ[u]

    def has_predecessor(self, u, v):
        """Returns True if node u has predecessor v.

        This is true if graph has the edge u<-v.
        """
        return u in self._pred and v in self._pred[u]

    def successors(self, n):
        """Returns an iterator over successor nodes of n.

        A successor of n is a node m such that there exists a directed
        edge from n to m.

        Parameters
        ----------
        n : node
           A node in the graph

        Raises
        ------
        NetworkXError
           If n is not in the graph.

        See Also
        --------
        predecessors

        Notes
        -----
        neighbors() and successors() are the same.
        """
        try:
            return iter(self._succ[n])
        except KeyError as err:
            raise NetworkXError(f"The node {n} is not in the digraph.") from err

    # digraph definitions
    neighbors = successors

    def predecessors(self, n):
        """Returns an iterator over predecessor nodes of n.

        A predecessor of n is a node m such that there exists a directed
        edge from m to n.

        Parameters
        ----------
        n : node
           A node in the graph

        Raises
        ------
        NetworkXError
           If n is not in the graph.

        See Also
        --------
        successors
        """
        try:
            return iter(self._pred[n])
        except KeyError as err:
            raise NetworkXError(f"The node {n} is not in the digraph.") from err

    @cached_property
    def edges(self):
        """An OutEdgeView of the DiGraph as G.edges or G.edges().

        edges(self, nbunch=None, data=False, default=None)

        The OutEdgeView provides set-like operations on the edge-tuples
        as well as edge attribute lookup. When called, it also provides
        an EdgeDataView object which allows control of access to edge
        attributes (but does not provide set-like operations).
        Hence, `G.edges[u, v]['color']` provides the value of the color
        attribute for edge `(u, v)` while
        `for (u, v, c) in G.edges.data('color', default='red'):`
        iterates through all the edges yielding the color attribute
        with default `'red'` if no color attribute exists.

        Parameters
        ----------
        nbunch : single node, container, or all nodes (default= all nodes)
            The view will only report edges from these nodes.
        data : string or bool, optional (default=False)
            The edge attribute returned in 3-tuple (u, v, ddict[data]).
            If True, return edge attribute dict in 3-tuple (u, v, ddict).
            If False, return 2-tuple (u, v).
        default : value, optional (default=None)
            Value used for edges that don't have the requested attribute.
            Only relevant if data is not True or False.

        Returns
        -------
        edges : OutEdgeView
            A view of edge attributes, usually it iterates over (u, v)
            or (u, v, d) tuples of edges, but can also be used for
            attribute lookup as `edges[u, v]['foo']`.

        See Also
        --------
        in_edges, out_edges

        Notes
        -----
        Nodes in nbunch that are not in the graph will be (quietly) ignored.
        For directed graphs this returns the out-edges.

        Examples
        --------
        >>> G = nx.DiGraph()  # or MultiDiGraph, etc
        >>> nx.add_path(G, [0, 1, 2])
        >>> G.add_edge(2, 3, weight=5)
        >>> [e for e in G.edges]
        [(0, 1), (1, 2), (2, 3)]
        >>> G.edges.data()  # default data is {} (empty dict)
        OutEdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})])
        >>> G.edges.data("weight", default=1)
        OutEdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)])
        >>> G.edges([0, 2])  # only edges originating from these nodes
        OutEdgeDataView([(0, 1), (2, 3)])
        >>> G.edges(0)  # only edges from node 0
        OutEdgeDataView([(0, 1)])

        """
        return OutEdgeView(self)

    # alias out_edges to edges
    @cached_property
    def out_edges(self):
        return OutEdgeView(self)

    out_edges.__doc__ = edges.__doc__

    @cached_property
    def in_edges(self):
        """A view of the in edges of the graph as G.in_edges or G.in_edges().

        in_edges(self, nbunch=None, data=False, default=None):

        Parameters
        ----------
        nbunch : single node, container, or all nodes (default= all nodes)
            The view will only report edges incident to these nodes.
        data : string or bool, optional (default=False)
            The edge attribute returned in 3-tuple (u, v, ddict[data]).
            If True, return edge attribute dict in 3-tuple (u, v, ddict).
            If False, return 2-tuple (u, v).
        default : value, optional (default=None)
            Value used for edges that don't have the requested attribute.
            Only relevant if data is not True or False.

        Returns
        -------
        in_edges : InEdgeView or InEdgeDataView
            A view of edge attributes, usually it iterates over (u, v)
            or (u, v, d) tuples of edges, but can also be used for
            attribute lookup as `edges[u, v]['foo']`.

        Examples
        --------
        >>> G = nx.DiGraph()
        >>> G.add_edge(1, 2, color='blue')
        >>> G.in_edges()
        InEdgeView([(1, 2)])
        >>> G.in_edges(nbunch=2)
        InEdgeDataView([(1, 2)])

        See Also
        --------
        edges
        """
        return InEdgeView(self)

    @cached_property
    def degree(self):
        """A DegreeView for the Graph as G.degree or G.degree().

        The node degree is the number of edges adjacent to the node.
        The weighted node degree is the sum of the edge weights for
        edges incident to that node.

        This object provides an iterator for (node, degree) as well as
        lookup for the degree for a single node.

        Parameters
        ----------
        nbunch : single node, container, or all nodes (default= all nodes)
            The view will only report edges incident to these nodes.

        weight : string or None, optional (default=None)
           The name of an edge attribute that holds the numerical value used
           as a weight.  If None, then each edge has weight 1.
           The degree is the sum of the edge weights adjacent to the node.

        Returns
        -------
        DiDegreeView or int
            If multiple nodes are requested (the default), returns a `DiDegreeView`
            mapping nodes to their degree.
            If a single node is requested, returns the degree of the node as an integer.

        See Also
        --------
        in_degree, out_degree

        Examples
        --------
        >>> G = nx.DiGraph()  # or MultiDiGraph
        >>> nx.add_path(G, [0, 1, 2, 3])
        >>> G.degree(0)  # node 0 with degree 1
        1
        >>> list(G.degree([0, 1, 2]))
        [(0, 1), (1, 2), (2, 2)]

        """
        return DiDegreeView(self)

    @cached_property
    def in_degree(self):
        """An InDegreeView for (node, in_degree) or in_degree for single node.

        The node in_degree is the number of edges pointing to the node.
        The weighted node degree is the sum of the edge weights for
        edges incident to that node.

        This object provides an iteration over (node, in_degree) as well as
        lookup for the degree for a single node.

        Parameters
        ----------
        nbunch : single node, container, or all nodes (default= all nodes)
            The view will only report edges incident to these nodes.

        weight : string or None, optional (default=None)
           The name of an edge attribute that holds the numerical value used
           as a weight.  If None, then each edge has weight 1.
           The degree is the sum of the edge weights adjacent to the node.

        Returns
        -------
        If a single node is requested
        deg : int
            In-degree of the node

        OR if multiple nodes are requested
        nd_iter : iterator
            The iterator returns two-tuples of (node, in-degree).

        See Also
        --------
        degree, out_degree

        Examples
        --------
        >>> G = nx.DiGraph()
        >>> nx.add_path(G, [0, 1, 2, 3])
        >>> G.in_degree(0)  # node 0 with degree 0
        0
        >>> list(G.in_degree([0, 1, 2]))
        [(0, 0), (1, 1), (2, 1)]

        """
        return InDegreeView(self)

    @cached_property
    def out_degree(self):
        """An OutDegreeView for (node, out_degree)

        The node out_degree is the number of edges pointing out of the node.
        The weighted node degree is the sum of the edge weights for
        edges incident to that node.

        This object provides an iterator over (node, out_degree) as well as
        lookup for the degree for a single node.

        Parameters
        ----------
        nbunch : single node, container, or all nodes (default= all nodes)
            The view will only report edges incident to these nodes.

        weight : string or None, optional (default=None)
           The name of an edge attribute that holds the numerical value used
           as a weight.  If None, then each edge has weight 1.
           The degree is the sum of the edge weights adjacent to the node.

        Returns
        -------
        If a single node is requested
        deg : int
            Out-degree of the node

        OR if multiple nodes are requested
        nd_iter : iterator
            The iterator returns two-tuples of (node, out-degree).

        See Also
        --------
        degree, in_degree

        Examples
        --------
        >>> G = nx.DiGraph()
        >>> nx.add_path(G, [0, 1, 2, 3])
        >>> G.out_degree(0)  # node 0 with degree 1
        1
        >>> list(G.out_degree([0, 1, 2]))
        [(0, 1), (1, 1), (2, 1)]

        """
        return OutDegreeView(self)

    def clear(self):
        """Remove all nodes and edges from the graph.

        This also removes the name, and all graph, node, and edge attributes.

        Examples
        --------
        >>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.clear()
        >>> list(G.nodes)
        []
        >>> list(G.edges)
        []

        """
        self._succ.clear()
        self._pred.clear()
        self._node.clear()
        self.graph.clear()

    def clear_edges(self):
        """Remove all edges from the graph without altering nodes.

        Examples
        --------
        >>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.clear_edges()
        >>> list(G.nodes)
        [0, 1, 2, 3]
        >>> list(G.edges)
        []

        """
        for predecessor_dict in self._pred.values():
            predecessor_dict.clear()
        for successor_dict in self._succ.values():
            successor_dict.clear()

    def is_multigraph(self):
        """Returns True if graph is a multigraph, False otherwise."""
        return False

    def is_directed(self):
        """Returns True if graph is directed, False otherwise."""
        return True

    def to_undirected(self, reciprocal=False, as_view=False):
        """Returns an undirected representation of the digraph.

        Parameters
        ----------
        reciprocal : bool (optional)
          If True only keep edges that appear in both directions
          in the original digraph.
        as_view : bool (optional, default=False)
          If True return an undirected view of the original directed graph.

        Returns
        -------
        G : Graph
            An undirected graph with the same name and nodes and
            with edge (u, v, data) if either (u, v, data) or (v, u, data)
            is in the digraph.  If both edges exist in digraph and
            their edge data is different, only one edge is created
            with an arbitrary choice of which edge data to use.
            You must check and correct for this manually if desired.

        See Also
        --------
        Graph, copy, add_edge, add_edges_from

        Notes
        -----
        If edges in both directions (u, v) and (v, u) exist in the
        graph, attributes for the new undirected edge will be a combination of
        the attributes of the directed edges.  The edge data is updated
        in the (arbitrary) order that the edges are encountered.  For
        more customized control of the edge attributes use add_edge().

        This returns a "deepcopy" of the edge, node, and
        graph attributes which attempts to completely copy
        all of the data and references.

        This is in contrast to the similar G=DiGraph(D) which returns a
        shallow copy of the data.

        See the Python copy module for more information on shallow
        and deep copies, https://docs.python.org/3/library/copy.html.

        Warning: If you have subclassed DiGraph to use dict-like objects
        in the data structure, those changes do not transfer to the
        Graph created by this method.

        Examples
        --------
        >>> G = nx.path_graph(2)  # or MultiGraph, etc
        >>> H = G.to_directed()
        >>> list(H.edges)
        [(0, 1), (1, 0)]
        >>> G2 = H.to_undirected()
        >>> list(G2.edges)
        [(0, 1)]
        """
        graph_class = self.to_undirected_class()
        if as_view is True:
            return nx.graphviews.generic_graph_view(self, graph_class)
        # deepcopy when not a view
        G = graph_class()
        G.graph.update(deepcopy(self.graph))
        G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
        if reciprocal is True:
            G.add_edges_from(
                (u, v, deepcopy(d))
                for u, nbrs in self._adj.items()
                for v, d in nbrs.items()
                if v in self._pred[u]
            )
        else:
            G.add_edges_from(
                (u, v, deepcopy(d))
                for u, nbrs in self._adj.items()
                for v, d in nbrs.items()
            )
        return G

    def reverse(self, copy=True):
        """Returns the reverse of the graph.

        The reverse is a graph with the same nodes and edges
        but with the directions of the edges reversed.

        Parameters
        ----------
        copy : bool optional (default=True)
            If True, return a new DiGraph holding the reversed edges.
            If False, the reverse graph is created using a view of
            the original graph.
        """
        if copy:
            H = self.__class__()
            H.graph.update(deepcopy(self.graph))
            H.add_nodes_from((n, deepcopy(d)) for n, d in self.nodes.items())
            H.add_edges_from((v, u, deepcopy(d)) for u, v, d in self.edges(data=True))
            return H
        return nx.reverse_view(self)