Spaces:
Running
Running
File size: 45,606 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 |
"""
View Classes provide node, edge and degree "views" of a graph.
Views for nodes, edges and degree are provided for all base graph classes.
A view means a read-only object that is quick to create, automatically
updated when the graph changes, and provides basic access like `n in V`,
`for n in V`, `V[n]` and sometimes set operations.
The views are read-only iterable containers that are updated as the
graph is updated. As with dicts, the graph should not be updated
while iterating through the view. Views can be iterated multiple times.
Edge and Node views also allow data attribute lookup.
The resulting attribute dict is writable as `G.edges[3, 4]['color']='red'`
Degree views allow lookup of degree values for single nodes.
Weighted degree is supported with the `weight` argument.
NodeView
========
`V = G.nodes` (or `V = G.nodes()`) allows `len(V)`, `n in V`, set
operations e.g. "G.nodes & H.nodes", and `dd = G.nodes[n]`, where
`dd` is the node data dict. Iteration is over the nodes by default.
NodeDataView
============
To iterate over (node, data) pairs, use arguments to `G.nodes()`
to create a DataView e.g. `DV = G.nodes(data='color', default='red')`.
The DataView iterates as `for n, color in DV` and allows
`(n, 'red') in DV`. Using `DV = G.nodes(data=True)`, the DataViews
use the full datadict in writeable form also allowing contain testing as
`(n, {'color': 'red'}) in VD`. DataViews allow set operations when
data attributes are hashable.
DegreeView
==========
`V = G.degree` allows iteration over (node, degree) pairs as well
as lookup: `deg=V[n]`. There are many flavors of DegreeView
for In/Out/Directed/Multi. For Directed Graphs, `G.degree`
counts both in and out going edges. `G.out_degree` and
`G.in_degree` count only specific directions.
Weighted degree using edge data attributes is provide via
`V = G.degree(weight='attr_name')` where any string with the
attribute name can be used. `weight=None` is the default.
No set operations are implemented for degrees, use NodeView.
The argument `nbunch` restricts iteration to nodes in nbunch.
The DegreeView can still lookup any node even if nbunch is specified.
EdgeView
========
`V = G.edges` or `V = G.edges()` allows iteration over edges as well as
`e in V`, set operations and edge data lookup `dd = G.edges[2, 3]`.
Iteration is over 2-tuples `(u, v)` for Graph/DiGraph. For multigraphs
edges 3-tuples `(u, v, key)` are the default but 2-tuples can be obtained
via `V = G.edges(keys=False)`.
Set operations for directed graphs treat the edges as a set of 2-tuples.
For undirected graphs, 2-tuples are not a unique representation of edges.
So long as the set being compared to contains unique representations
of its edges, the set operations will act as expected. If the other
set contains both `(0, 1)` and `(1, 0)` however, the result of set
operations may contain both representations of the same edge.
EdgeDataView
============
Edge data can be reported using an EdgeDataView typically created
by calling an EdgeView: `DV = G.edges(data='weight', default=1)`.
The EdgeDataView allows iteration over edge tuples, membership checking
but no set operations.
Iteration depends on `data` and `default` and for multigraph `keys`
If `data is False` (the default) then iterate over 2-tuples `(u, v)`.
If `data is True` iterate over 3-tuples `(u, v, datadict)`.
Otherwise iterate over `(u, v, datadict.get(data, default))`.
For Multigraphs, if `keys is True`, replace `u, v` with `u, v, key`
to create 3-tuples and 4-tuples.
The argument `nbunch` restricts edges to those incident to nodes in nbunch.
"""
from collections.abc import Mapping, Set
import networkx as nx
__all__ = [
"NodeView",
"NodeDataView",
"EdgeView",
"OutEdgeView",
"InEdgeView",
"EdgeDataView",
"OutEdgeDataView",
"InEdgeDataView",
"MultiEdgeView",
"OutMultiEdgeView",
"InMultiEdgeView",
"MultiEdgeDataView",
"OutMultiEdgeDataView",
"InMultiEdgeDataView",
"DegreeView",
"DiDegreeView",
"InDegreeView",
"OutDegreeView",
"MultiDegreeView",
"DiMultiDegreeView",
"InMultiDegreeView",
"OutMultiDegreeView",
]
# NodeViews
class NodeView(Mapping, Set):
"""A NodeView class to act as G.nodes for a NetworkX Graph
Set operations act on the nodes without considering data.
Iteration is over nodes. Node data can be looked up like a dict.
Use NodeDataView to iterate over node data or to specify a data
attribute for lookup. NodeDataView is created by calling the NodeView.
Parameters
----------
graph : NetworkX graph-like class
Examples
--------
>>> G = nx.path_graph(3)
>>> NV = G.nodes()
>>> 2 in NV
True
>>> for n in NV:
... print(n)
0
1
2
>>> assert NV & {1, 2, 3} == {1, 2}
>>> G.add_node(2, color="blue")
>>> NV[2]
{'color': 'blue'}
>>> G.add_node(8, color="red")
>>> NDV = G.nodes(data=True)
>>> (2, NV[2]) in NDV
True
>>> for n, dd in NDV:
... print((n, dd.get("color", "aqua")))
(0, 'aqua')
(1, 'aqua')
(2, 'blue')
(8, 'red')
>>> NDV[2] == NV[2]
True
>>> NVdata = G.nodes(data="color", default="aqua")
>>> (2, NVdata[2]) in NVdata
True
>>> for n, dd in NVdata:
... print((n, dd))
(0, 'aqua')
(1, 'aqua')
(2, 'blue')
(8, 'red')
>>> NVdata[2] == NV[2] # NVdata gets 'color', NV gets datadict
False
"""
__slots__ = ("_nodes",)
def __getstate__(self):
return {"_nodes": self._nodes}
def __setstate__(self, state):
self._nodes = state["_nodes"]
def __init__(self, graph):
self._nodes = graph._node
# Mapping methods
def __len__(self):
return len(self._nodes)
def __iter__(self):
return iter(self._nodes)
def __getitem__(self, n):
if isinstance(n, slice):
raise nx.NetworkXError(
f"{type(self).__name__} does not support slicing, "
f"try list(G.nodes)[{n.start}:{n.stop}:{n.step}]"
)
return self._nodes[n]
# Set methods
def __contains__(self, n):
return n in self._nodes
@classmethod
def _from_iterable(cls, it):
return set(it)
# DataView method
def __call__(self, data=False, default=None):
if data is False:
return self
return NodeDataView(self._nodes, data, default)
def data(self, data=True, default=None):
"""
Return a read-only view of node data.
Parameters
----------
data : bool or node data key, default=True
If ``data=True`` (the default), return a `NodeDataView` object that
maps each node to *all* of its attributes. `data` may also be an
arbitrary key, in which case the `NodeDataView` maps each node to
the value for the keyed attribute. In this case, if a node does
not have the `data` attribute, the `default` value is used.
default : object, default=None
The value used when a node does not have a specific attribute.
Returns
-------
NodeDataView
The layout of the returned NodeDataView depends on the value of the
`data` parameter.
Notes
-----
If ``data=False``, returns a `NodeView` object without data.
See Also
--------
NodeDataView
Examples
--------
>>> G = nx.Graph()
>>> G.add_nodes_from([
... (0, {"color": "red", "weight": 10}),
... (1, {"color": "blue"}),
... (2, {"color": "yellow", "weight": 2})
... ])
Accessing node data with ``data=True`` (the default) returns a
NodeDataView mapping each node to all of its attributes:
>>> G.nodes.data()
NodeDataView({0: {'color': 'red', 'weight': 10}, 1: {'color': 'blue'}, 2: {'color': 'yellow', 'weight': 2}})
If `data` represents a key in the node attribute dict, a NodeDataView mapping
the nodes to the value for that specific key is returned:
>>> G.nodes.data("color")
NodeDataView({0: 'red', 1: 'blue', 2: 'yellow'}, data='color')
If a specific key is not found in an attribute dict, the value specified
by `default` is returned:
>>> G.nodes.data("weight", default=-999)
NodeDataView({0: 10, 1: -999, 2: 2}, data='weight')
Note that there is no check that the `data` key is in any of the
node attribute dictionaries:
>>> G.nodes.data("height")
NodeDataView({0: None, 1: None, 2: None}, data='height')
"""
if data is False:
return self
return NodeDataView(self._nodes, data, default)
def __str__(self):
return str(list(self))
def __repr__(self):
return f"{self.__class__.__name__}({tuple(self)})"
class NodeDataView(Set):
"""A DataView class for nodes of a NetworkX Graph
The main use for this class is to iterate through node-data pairs.
The data can be the entire data-dictionary for each node, or it
can be a specific attribute (with default) for each node.
Set operations are enabled with NodeDataView, but don't work in
cases where the data is not hashable. Use with caution.
Typically, set operations on nodes use NodeView, not NodeDataView.
That is, they use `G.nodes` instead of `G.nodes(data='foo')`.
Parameters
==========
graph : NetworkX graph-like class
data : bool or string (default=False)
default : object (default=None)
"""
__slots__ = ("_nodes", "_data", "_default")
def __getstate__(self):
return {"_nodes": self._nodes, "_data": self._data, "_default": self._default}
def __setstate__(self, state):
self._nodes = state["_nodes"]
self._data = state["_data"]
self._default = state["_default"]
def __init__(self, nodedict, data=False, default=None):
self._nodes = nodedict
self._data = data
self._default = default
@classmethod
def _from_iterable(cls, it):
try:
return set(it)
except TypeError as err:
if "unhashable" in str(err):
msg = " : Could be b/c data=True or your values are unhashable"
raise TypeError(str(err) + msg) from err
raise
def __len__(self):
return len(self._nodes)
def __iter__(self):
data = self._data
if data is False:
return iter(self._nodes)
if data is True:
return iter(self._nodes.items())
return (
(n, dd[data] if data in dd else self._default)
for n, dd in self._nodes.items()
)
def __contains__(self, n):
try:
node_in = n in self._nodes
except TypeError:
n, d = n
return n in self._nodes and self[n] == d
if node_in is True:
return node_in
try:
n, d = n
except (TypeError, ValueError):
return False
return n in self._nodes and self[n] == d
def __getitem__(self, n):
if isinstance(n, slice):
raise nx.NetworkXError(
f"{type(self).__name__} does not support slicing, "
f"try list(G.nodes.data())[{n.start}:{n.stop}:{n.step}]"
)
ddict = self._nodes[n]
data = self._data
if data is False or data is True:
return ddict
return ddict[data] if data in ddict else self._default
def __str__(self):
return str(list(self))
def __repr__(self):
name = self.__class__.__name__
if self._data is False:
return f"{name}({tuple(self)})"
if self._data is True:
return f"{name}({dict(self)})"
return f"{name}({dict(self)}, data={self._data!r})"
# DegreeViews
class DiDegreeView:
"""A View class for degree of nodes in a NetworkX Graph
The functionality is like dict.items() with (node, degree) pairs.
Additional functionality includes read-only lookup of node degree,
and calling with optional features nbunch (for only a subset of nodes)
and weight (use edge weights to compute degree).
Parameters
==========
graph : NetworkX graph-like class
nbunch : node, container of nodes, or None meaning all nodes (default=None)
weight : bool or string (default=None)
Notes
-----
DegreeView can still lookup any node even if nbunch is specified.
Examples
--------
>>> G = nx.path_graph(3)
>>> DV = G.degree()
>>> assert DV[2] == 1
>>> assert sum(deg for n, deg in DV) == 4
>>> DVweight = G.degree(weight="span")
>>> G.add_edge(1, 2, span=34)
>>> DVweight[2]
34
>>> DVweight[0] # default edge weight is 1
1
>>> sum(span for n, span in DVweight) # sum weighted degrees
70
>>> DVnbunch = G.degree(nbunch=(1, 2))
>>> assert len(list(DVnbunch)) == 2 # iteration over nbunch only
"""
def __init__(self, G, nbunch=None, weight=None):
self._graph = G
self._succ = G._succ if hasattr(G, "_succ") else G._adj
self._pred = G._pred if hasattr(G, "_pred") else G._adj
self._nodes = self._succ if nbunch is None else list(G.nbunch_iter(nbunch))
self._weight = weight
def __call__(self, nbunch=None, weight=None):
if nbunch is None:
if weight == self._weight:
return self
return self.__class__(self._graph, None, weight)
try:
if nbunch in self._nodes:
if weight == self._weight:
return self[nbunch]
return self.__class__(self._graph, None, weight)[nbunch]
except TypeError:
pass
return self.__class__(self._graph, nbunch, weight)
def __getitem__(self, n):
weight = self._weight
succs = self._succ[n]
preds = self._pred[n]
if weight is None:
return len(succs) + len(preds)
return sum(dd.get(weight, 1) for dd in succs.values()) + sum(
dd.get(weight, 1) for dd in preds.values()
)
def __iter__(self):
weight = self._weight
if weight is None:
for n in self._nodes:
succs = self._succ[n]
preds = self._pred[n]
yield (n, len(succs) + len(preds))
else:
for n in self._nodes:
succs = self._succ[n]
preds = self._pred[n]
deg = sum(dd.get(weight, 1) for dd in succs.values()) + sum(
dd.get(weight, 1) for dd in preds.values()
)
yield (n, deg)
def __len__(self):
return len(self._nodes)
def __str__(self):
return str(list(self))
def __repr__(self):
return f"{self.__class__.__name__}({dict(self)})"
class DegreeView(DiDegreeView):
"""A DegreeView class to act as G.degree for a NetworkX Graph
Typical usage focuses on iteration over `(node, degree)` pairs.
The degree is by default the number of edges incident to the node.
Optional argument `weight` enables weighted degree using the edge
attribute named in the `weight` argument. Reporting and iteration
can also be restricted to a subset of nodes using `nbunch`.
Additional functionality include node lookup so that `G.degree[n]`
reported the (possibly weighted) degree of node `n`. Calling the
view creates a view with different arguments `nbunch` or `weight`.
Parameters
==========
graph : NetworkX graph-like class
nbunch : node, container of nodes, or None meaning all nodes (default=None)
weight : string or None (default=None)
Notes
-----
DegreeView can still lookup any node even if nbunch is specified.
Examples
--------
>>> G = nx.path_graph(3)
>>> DV = G.degree()
>>> assert DV[2] == 1
>>> assert G.degree[2] == 1
>>> assert sum(deg for n, deg in DV) == 4
>>> DVweight = G.degree(weight="span")
>>> G.add_edge(1, 2, span=34)
>>> DVweight[2]
34
>>> DVweight[0] # default edge weight is 1
1
>>> sum(span for n, span in DVweight) # sum weighted degrees
70
>>> DVnbunch = G.degree(nbunch=(1, 2))
>>> assert len(list(DVnbunch)) == 2 # iteration over nbunch only
"""
def __getitem__(self, n):
weight = self._weight
nbrs = self._succ[n]
if weight is None:
return len(nbrs) + (n in nbrs)
return sum(dd.get(weight, 1) for dd in nbrs.values()) + (
n in nbrs and nbrs[n].get(weight, 1)
)
def __iter__(self):
weight = self._weight
if weight is None:
for n in self._nodes:
nbrs = self._succ[n]
yield (n, len(nbrs) + (n in nbrs))
else:
for n in self._nodes:
nbrs = self._succ[n]
deg = sum(dd.get(weight, 1) for dd in nbrs.values()) + (
n in nbrs and nbrs[n].get(weight, 1)
)
yield (n, deg)
class OutDegreeView(DiDegreeView):
"""A DegreeView class to report out_degree for a DiGraph; See DegreeView"""
def __getitem__(self, n):
weight = self._weight
nbrs = self._succ[n]
if self._weight is None:
return len(nbrs)
return sum(dd.get(self._weight, 1) for dd in nbrs.values())
def __iter__(self):
weight = self._weight
if weight is None:
for n in self._nodes:
succs = self._succ[n]
yield (n, len(succs))
else:
for n in self._nodes:
succs = self._succ[n]
deg = sum(dd.get(weight, 1) for dd in succs.values())
yield (n, deg)
class InDegreeView(DiDegreeView):
"""A DegreeView class to report in_degree for a DiGraph; See DegreeView"""
def __getitem__(self, n):
weight = self._weight
nbrs = self._pred[n]
if weight is None:
return len(nbrs)
return sum(dd.get(weight, 1) for dd in nbrs.values())
def __iter__(self):
weight = self._weight
if weight is None:
for n in self._nodes:
preds = self._pred[n]
yield (n, len(preds))
else:
for n in self._nodes:
preds = self._pred[n]
deg = sum(dd.get(weight, 1) for dd in preds.values())
yield (n, deg)
class MultiDegreeView(DiDegreeView):
"""A DegreeView class for undirected multigraphs; See DegreeView"""
def __getitem__(self, n):
weight = self._weight
nbrs = self._succ[n]
if weight is None:
return sum(len(keys) for keys in nbrs.values()) + (
n in nbrs and len(nbrs[n])
)
# edge weighted graph - degree is sum of nbr edge weights
deg = sum(
d.get(weight, 1) for key_dict in nbrs.values() for d in key_dict.values()
)
if n in nbrs:
deg += sum(d.get(weight, 1) for d in nbrs[n].values())
return deg
def __iter__(self):
weight = self._weight
if weight is None:
for n in self._nodes:
nbrs = self._succ[n]
deg = sum(len(keys) for keys in nbrs.values()) + (
n in nbrs and len(nbrs[n])
)
yield (n, deg)
else:
for n in self._nodes:
nbrs = self._succ[n]
deg = sum(
d.get(weight, 1)
for key_dict in nbrs.values()
for d in key_dict.values()
)
if n in nbrs:
deg += sum(d.get(weight, 1) for d in nbrs[n].values())
yield (n, deg)
class DiMultiDegreeView(DiDegreeView):
"""A DegreeView class for MultiDiGraph; See DegreeView"""
def __getitem__(self, n):
weight = self._weight
succs = self._succ[n]
preds = self._pred[n]
if weight is None:
return sum(len(keys) for keys in succs.values()) + sum(
len(keys) for keys in preds.values()
)
# edge weighted graph - degree is sum of nbr edge weights
deg = sum(
d.get(weight, 1) for key_dict in succs.values() for d in key_dict.values()
) + sum(
d.get(weight, 1) for key_dict in preds.values() for d in key_dict.values()
)
return deg
def __iter__(self):
weight = self._weight
if weight is None:
for n in self._nodes:
succs = self._succ[n]
preds = self._pred[n]
deg = sum(len(keys) for keys in succs.values()) + sum(
len(keys) for keys in preds.values()
)
yield (n, deg)
else:
for n in self._nodes:
succs = self._succ[n]
preds = self._pred[n]
deg = sum(
d.get(weight, 1)
for key_dict in succs.values()
for d in key_dict.values()
) + sum(
d.get(weight, 1)
for key_dict in preds.values()
for d in key_dict.values()
)
yield (n, deg)
class InMultiDegreeView(DiDegreeView):
"""A DegreeView class for inward degree of MultiDiGraph; See DegreeView"""
def __getitem__(self, n):
weight = self._weight
nbrs = self._pred[n]
if weight is None:
return sum(len(data) for data in nbrs.values())
# edge weighted graph - degree is sum of nbr edge weights
return sum(
d.get(weight, 1) for key_dict in nbrs.values() for d in key_dict.values()
)
def __iter__(self):
weight = self._weight
if weight is None:
for n in self._nodes:
nbrs = self._pred[n]
deg = sum(len(data) for data in nbrs.values())
yield (n, deg)
else:
for n in self._nodes:
nbrs = self._pred[n]
deg = sum(
d.get(weight, 1)
for key_dict in nbrs.values()
for d in key_dict.values()
)
yield (n, deg)
class OutMultiDegreeView(DiDegreeView):
"""A DegreeView class for outward degree of MultiDiGraph; See DegreeView"""
def __getitem__(self, n):
weight = self._weight
nbrs = self._succ[n]
if weight is None:
return sum(len(data) for data in nbrs.values())
# edge weighted graph - degree is sum of nbr edge weights
return sum(
d.get(weight, 1) for key_dict in nbrs.values() for d in key_dict.values()
)
def __iter__(self):
weight = self._weight
if weight is None:
for n in self._nodes:
nbrs = self._succ[n]
deg = sum(len(data) for data in nbrs.values())
yield (n, deg)
else:
for n in self._nodes:
nbrs = self._succ[n]
deg = sum(
d.get(weight, 1)
for key_dict in nbrs.values()
for d in key_dict.values()
)
yield (n, deg)
# EdgeDataViews
class OutEdgeDataView:
"""EdgeDataView for outward edges of DiGraph; See EdgeDataView"""
__slots__ = (
"_viewer",
"_nbunch",
"_data",
"_default",
"_adjdict",
"_nodes_nbrs",
"_report",
)
def __getstate__(self):
return {
"viewer": self._viewer,
"nbunch": self._nbunch,
"data": self._data,
"default": self._default,
}
def __setstate__(self, state):
self.__init__(**state)
def __init__(self, viewer, nbunch=None, data=False, *, default=None):
self._viewer = viewer
adjdict = self._adjdict = viewer._adjdict
if nbunch is None:
self._nodes_nbrs = adjdict.items
else:
# dict retains order of nodes but acts like a set
nbunch = dict.fromkeys(viewer._graph.nbunch_iter(nbunch))
self._nodes_nbrs = lambda: [(n, adjdict[n]) for n in nbunch]
self._nbunch = nbunch
self._data = data
self._default = default
# Set _report based on data and default
if data is True:
self._report = lambda n, nbr, dd: (n, nbr, dd)
elif data is False:
self._report = lambda n, nbr, dd: (n, nbr)
else: # data is attribute name
self._report = (
lambda n, nbr, dd: (n, nbr, dd[data])
if data in dd
else (n, nbr, default)
)
def __len__(self):
return sum(len(nbrs) for n, nbrs in self._nodes_nbrs())
def __iter__(self):
return (
self._report(n, nbr, dd)
for n, nbrs in self._nodes_nbrs()
for nbr, dd in nbrs.items()
)
def __contains__(self, e):
u, v = e[:2]
if self._nbunch is not None and u not in self._nbunch:
return False # this edge doesn't start in nbunch
try:
ddict = self._adjdict[u][v]
except KeyError:
return False
return e == self._report(u, v, ddict)
def __str__(self):
return str(list(self))
def __repr__(self):
return f"{self.__class__.__name__}({list(self)})"
class EdgeDataView(OutEdgeDataView):
"""A EdgeDataView class for edges of Graph
This view is primarily used to iterate over the edges reporting
edges as node-tuples with edge data optionally reported. The
argument `nbunch` allows restriction to edges incident to nodes
in that container/singleton. The default (nbunch=None)
reports all edges. The arguments `data` and `default` control
what edge data is reported. The default `data is False` reports
only node-tuples for each edge. If `data is True` the entire edge
data dict is returned. Otherwise `data` is assumed to hold the name
of the edge attribute to report with default `default` if that
edge attribute is not present.
Parameters
----------
nbunch : container of nodes, node or None (default None)
data : False, True or string (default False)
default : default value (default None)
Examples
--------
>>> G = nx.path_graph(3)
>>> G.add_edge(1, 2, foo="bar")
>>> list(G.edges(data="foo", default="biz"))
[(0, 1, 'biz'), (1, 2, 'bar')]
>>> assert (0, 1, "biz") in G.edges(data="foo", default="biz")
"""
__slots__ = ()
def __len__(self):
return sum(1 for e in self)
def __iter__(self):
seen = {}
for n, nbrs in self._nodes_nbrs():
for nbr, dd in nbrs.items():
if nbr not in seen:
yield self._report(n, nbr, dd)
seen[n] = 1
del seen
def __contains__(self, e):
u, v = e[:2]
if self._nbunch is not None and u not in self._nbunch and v not in self._nbunch:
return False # this edge doesn't start and it doesn't end in nbunch
try:
ddict = self._adjdict[u][v]
except KeyError:
return False
return e == self._report(u, v, ddict)
class InEdgeDataView(OutEdgeDataView):
"""An EdgeDataView class for outward edges of DiGraph; See EdgeDataView"""
__slots__ = ()
def __iter__(self):
return (
self._report(nbr, n, dd)
for n, nbrs in self._nodes_nbrs()
for nbr, dd in nbrs.items()
)
def __contains__(self, e):
u, v = e[:2]
if self._nbunch is not None and v not in self._nbunch:
return False # this edge doesn't end in nbunch
try:
ddict = self._adjdict[v][u]
except KeyError:
return False
return e == self._report(u, v, ddict)
class OutMultiEdgeDataView(OutEdgeDataView):
"""An EdgeDataView for outward edges of MultiDiGraph; See EdgeDataView"""
__slots__ = ("keys",)
def __getstate__(self):
return {
"viewer": self._viewer,
"nbunch": self._nbunch,
"keys": self.keys,
"data": self._data,
"default": self._default,
}
def __setstate__(self, state):
self.__init__(**state)
def __init__(self, viewer, nbunch=None, data=False, *, default=None, keys=False):
self._viewer = viewer
adjdict = self._adjdict = viewer._adjdict
self.keys = keys
if nbunch is None:
self._nodes_nbrs = adjdict.items
else:
# dict retains order of nodes but acts like a set
nbunch = dict.fromkeys(viewer._graph.nbunch_iter(nbunch))
self._nodes_nbrs = lambda: [(n, adjdict[n]) for n in nbunch]
self._nbunch = nbunch
self._data = data
self._default = default
# Set _report based on data and default
if data is True:
if keys is True:
self._report = lambda n, nbr, k, dd: (n, nbr, k, dd)
else:
self._report = lambda n, nbr, k, dd: (n, nbr, dd)
elif data is False:
if keys is True:
self._report = lambda n, nbr, k, dd: (n, nbr, k)
else:
self._report = lambda n, nbr, k, dd: (n, nbr)
else: # data is attribute name
if keys is True:
self._report = (
lambda n, nbr, k, dd: (n, nbr, k, dd[data])
if data in dd
else (n, nbr, k, default)
)
else:
self._report = (
lambda n, nbr, k, dd: (n, nbr, dd[data])
if data in dd
else (n, nbr, default)
)
def __len__(self):
return sum(1 for e in self)
def __iter__(self):
return (
self._report(n, nbr, k, dd)
for n, nbrs in self._nodes_nbrs()
for nbr, kd in nbrs.items()
for k, dd in kd.items()
)
def __contains__(self, e):
u, v = e[:2]
if self._nbunch is not None and u not in self._nbunch:
return False # this edge doesn't start in nbunch
try:
kdict = self._adjdict[u][v]
except KeyError:
return False
if self.keys is True:
k = e[2]
try:
dd = kdict[k]
except KeyError:
return False
return e == self._report(u, v, k, dd)
return any(e == self._report(u, v, k, dd) for k, dd in kdict.items())
class MultiEdgeDataView(OutMultiEdgeDataView):
"""An EdgeDataView class for edges of MultiGraph; See EdgeDataView"""
__slots__ = ()
def __iter__(self):
seen = {}
for n, nbrs in self._nodes_nbrs():
for nbr, kd in nbrs.items():
if nbr not in seen:
for k, dd in kd.items():
yield self._report(n, nbr, k, dd)
seen[n] = 1
del seen
def __contains__(self, e):
u, v = e[:2]
if self._nbunch is not None and u not in self._nbunch and v not in self._nbunch:
return False # this edge doesn't start and doesn't end in nbunch
try:
kdict = self._adjdict[u][v]
except KeyError:
try:
kdict = self._adjdict[v][u]
except KeyError:
return False
if self.keys is True:
k = e[2]
try:
dd = kdict[k]
except KeyError:
return False
return e == self._report(u, v, k, dd)
return any(e == self._report(u, v, k, dd) for k, dd in kdict.items())
class InMultiEdgeDataView(OutMultiEdgeDataView):
"""An EdgeDataView for inward edges of MultiDiGraph; See EdgeDataView"""
__slots__ = ()
def __iter__(self):
return (
self._report(nbr, n, k, dd)
for n, nbrs in self._nodes_nbrs()
for nbr, kd in nbrs.items()
for k, dd in kd.items()
)
def __contains__(self, e):
u, v = e[:2]
if self._nbunch is not None and v not in self._nbunch:
return False # this edge doesn't end in nbunch
try:
kdict = self._adjdict[v][u]
except KeyError:
return False
if self.keys is True:
k = e[2]
dd = kdict[k]
return e == self._report(u, v, k, dd)
return any(e == self._report(u, v, k, dd) for k, dd in kdict.items())
# EdgeViews have set operations and no data reported
class OutEdgeView(Set, Mapping):
"""A EdgeView class for outward edges of a DiGraph"""
__slots__ = ("_adjdict", "_graph", "_nodes_nbrs")
def __getstate__(self):
return {"_graph": self._graph, "_adjdict": self._adjdict}
def __setstate__(self, state):
self._graph = state["_graph"]
self._adjdict = state["_adjdict"]
self._nodes_nbrs = self._adjdict.items
@classmethod
def _from_iterable(cls, it):
return set(it)
dataview = OutEdgeDataView
def __init__(self, G):
self._graph = G
self._adjdict = G._succ if hasattr(G, "succ") else G._adj
self._nodes_nbrs = self._adjdict.items
# Set methods
def __len__(self):
return sum(len(nbrs) for n, nbrs in self._nodes_nbrs())
def __iter__(self):
for n, nbrs in self._nodes_nbrs():
for nbr in nbrs:
yield (n, nbr)
def __contains__(self, e):
try:
u, v = e
return v in self._adjdict[u]
except KeyError:
return False
# Mapping Methods
def __getitem__(self, e):
if isinstance(e, slice):
raise nx.NetworkXError(
f"{type(self).__name__} does not support slicing, "
f"try list(G.edges)[{e.start}:{e.stop}:{e.step}]"
)
u, v = e
return self._adjdict[u][v]
# EdgeDataView methods
def __call__(self, nbunch=None, data=False, *, default=None):
if nbunch is None and data is False:
return self
return self.dataview(self, nbunch, data, default=default)
def data(self, data=True, default=None, nbunch=None):
"""
Return a read-only view of edge data.
Parameters
----------
data : bool or edge attribute key
If ``data=True``, then the data view maps each edge to a dictionary
containing all of its attributes. If `data` is a key in the edge
dictionary, then the data view maps each edge to its value for
the keyed attribute. In this case, if the edge doesn't have the
attribute, the `default` value is returned.
default : object, default=None
The value used when an edge does not have a specific attribute
nbunch : container of nodes, optional (default=None)
Allows restriction to edges only involving certain nodes. All edges
are considered by default.
Returns
-------
dataview
Returns an `EdgeDataView` for undirected Graphs, `OutEdgeDataView`
for DiGraphs, `MultiEdgeDataView` for MultiGraphs and
`OutMultiEdgeDataView` for MultiDiGraphs.
Notes
-----
If ``data=False``, returns an `EdgeView` without any edge data.
See Also
--------
EdgeDataView
OutEdgeDataView
MultiEdgeDataView
OutMultiEdgeDataView
Examples
--------
>>> G = nx.Graph()
>>> G.add_edges_from([
... (0, 1, {"dist": 3, "capacity": 20}),
... (1, 2, {"dist": 4}),
... (2, 0, {"dist": 5})
... ])
Accessing edge data with ``data=True`` (the default) returns an
edge data view object listing each edge with all of its attributes:
>>> G.edges.data()
EdgeDataView([(0, 1, {'dist': 3, 'capacity': 20}), (0, 2, {'dist': 5}), (1, 2, {'dist': 4})])
If `data` represents a key in the edge attribute dict, a dataview listing
each edge with its value for that specific key is returned:
>>> G.edges.data("dist")
EdgeDataView([(0, 1, 3), (0, 2, 5), (1, 2, 4)])
`nbunch` can be used to limit the edges:
>>> G.edges.data("dist", nbunch=[0])
EdgeDataView([(0, 1, 3), (0, 2, 5)])
If a specific key is not found in an edge attribute dict, the value
specified by `default` is used:
>>> G.edges.data("capacity")
EdgeDataView([(0, 1, 20), (0, 2, None), (1, 2, None)])
Note that there is no check that the `data` key is present in any of
the edge attribute dictionaries:
>>> G.edges.data("speed")
EdgeDataView([(0, 1, None), (0, 2, None), (1, 2, None)])
"""
if nbunch is None and data is False:
return self
return self.dataview(self, nbunch, data, default=default)
# String Methods
def __str__(self):
return str(list(self))
def __repr__(self):
return f"{self.__class__.__name__}({list(self)})"
class EdgeView(OutEdgeView):
"""A EdgeView class for edges of a Graph
This densely packed View allows iteration over edges, data lookup
like a dict and set operations on edges represented by node-tuples.
In addition, edge data can be controlled by calling this object
possibly creating an EdgeDataView. Typically edges are iterated over
and reported as `(u, v)` node tuples or `(u, v, key)` node/key tuples
for multigraphs. Those edge representations can also be using to
lookup the data dict for any edge. Set operations also are available
where those tuples are the elements of the set.
Calling this object with optional arguments `data`, `default` and `keys`
controls the form of the tuple (see EdgeDataView). Optional argument
`nbunch` allows restriction to edges only involving certain nodes.
If `data is False` (the default) then iterate over 2-tuples `(u, v)`.
If `data is True` iterate over 3-tuples `(u, v, datadict)`.
Otherwise iterate over `(u, v, datadict.get(data, default))`.
For Multigraphs, if `keys is True`, replace `u, v` with `u, v, key` above.
Parameters
==========
graph : NetworkX graph-like class
nbunch : (default= all nodes in graph) only report edges with these nodes
keys : (only for MultiGraph. default=False) report edge key in tuple
data : bool or string (default=False) see above
default : object (default=None)
Examples
========
>>> G = nx.path_graph(4)
>>> EV = G.edges()
>>> (2, 3) in EV
True
>>> for u, v in EV:
... print((u, v))
(0, 1)
(1, 2)
(2, 3)
>>> assert EV & {(1, 2), (3, 4)} == {(1, 2)}
>>> EVdata = G.edges(data="color", default="aqua")
>>> G.add_edge(2, 3, color="blue")
>>> assert (2, 3, "blue") in EVdata
>>> for u, v, c in EVdata:
... print(f"({u}, {v}) has color: {c}")
(0, 1) has color: aqua
(1, 2) has color: aqua
(2, 3) has color: blue
>>> EVnbunch = G.edges(nbunch=2)
>>> assert (2, 3) in EVnbunch
>>> assert (0, 1) not in EVnbunch
>>> for u, v in EVnbunch:
... assert u == 2 or v == 2
>>> MG = nx.path_graph(4, create_using=nx.MultiGraph)
>>> EVmulti = MG.edges(keys=True)
>>> (2, 3, 0) in EVmulti
True
>>> (2, 3) in EVmulti # 2-tuples work even when keys is True
True
>>> key = MG.add_edge(2, 3)
>>> for u, v, k in EVmulti:
... print((u, v, k))
(0, 1, 0)
(1, 2, 0)
(2, 3, 0)
(2, 3, 1)
"""
__slots__ = ()
dataview = EdgeDataView
def __len__(self):
num_nbrs = (len(nbrs) + (n in nbrs) for n, nbrs in self._nodes_nbrs())
return sum(num_nbrs) // 2
def __iter__(self):
seen = {}
for n, nbrs in self._nodes_nbrs():
for nbr in list(nbrs):
if nbr not in seen:
yield (n, nbr)
seen[n] = 1
del seen
def __contains__(self, e):
try:
u, v = e[:2]
return v in self._adjdict[u] or u in self._adjdict[v]
except (KeyError, ValueError):
return False
class InEdgeView(OutEdgeView):
"""A EdgeView class for inward edges of a DiGraph"""
__slots__ = ()
def __setstate__(self, state):
self._graph = state["_graph"]
self._adjdict = state["_adjdict"]
self._nodes_nbrs = self._adjdict.items
dataview = InEdgeDataView
def __init__(self, G):
self._graph = G
self._adjdict = G._pred if hasattr(G, "pred") else G._adj
self._nodes_nbrs = self._adjdict.items
def __iter__(self):
for n, nbrs in self._nodes_nbrs():
for nbr in nbrs:
yield (nbr, n)
def __contains__(self, e):
try:
u, v = e
return u in self._adjdict[v]
except KeyError:
return False
def __getitem__(self, e):
if isinstance(e, slice):
raise nx.NetworkXError(
f"{type(self).__name__} does not support slicing, "
f"try list(G.in_edges)[{e.start}:{e.stop}:{e.step}]"
)
u, v = e
return self._adjdict[v][u]
class OutMultiEdgeView(OutEdgeView):
"""A EdgeView class for outward edges of a MultiDiGraph"""
__slots__ = ()
dataview = OutMultiEdgeDataView
def __len__(self):
return sum(
len(kdict) for n, nbrs in self._nodes_nbrs() for nbr, kdict in nbrs.items()
)
def __iter__(self):
for n, nbrs in self._nodes_nbrs():
for nbr, kdict in nbrs.items():
for key in kdict:
yield (n, nbr, key)
def __contains__(self, e):
N = len(e)
if N == 3:
u, v, k = e
elif N == 2:
u, v = e
k = 0
else:
raise ValueError("MultiEdge must have length 2 or 3")
try:
return k in self._adjdict[u][v]
except KeyError:
return False
def __getitem__(self, e):
if isinstance(e, slice):
raise nx.NetworkXError(
f"{type(self).__name__} does not support slicing, "
f"try list(G.edges)[{e.start}:{e.stop}:{e.step}]"
)
u, v, k = e
return self._adjdict[u][v][k]
def __call__(self, nbunch=None, data=False, *, default=None, keys=False):
if nbunch is None and data is False and keys is True:
return self
return self.dataview(self, nbunch, data, default=default, keys=keys)
def data(self, data=True, default=None, nbunch=None, keys=False):
if nbunch is None and data is False and keys is True:
return self
return self.dataview(self, nbunch, data, default=default, keys=keys)
class MultiEdgeView(OutMultiEdgeView):
"""A EdgeView class for edges of a MultiGraph"""
__slots__ = ()
dataview = MultiEdgeDataView
def __len__(self):
return sum(1 for e in self)
def __iter__(self):
seen = {}
for n, nbrs in self._nodes_nbrs():
for nbr, kd in nbrs.items():
if nbr not in seen:
for k, dd in kd.items():
yield (n, nbr, k)
seen[n] = 1
del seen
class InMultiEdgeView(OutMultiEdgeView):
"""A EdgeView class for inward edges of a MultiDiGraph"""
__slots__ = ()
def __setstate__(self, state):
self._graph = state["_graph"]
self._adjdict = state["_adjdict"]
self._nodes_nbrs = self._adjdict.items
dataview = InMultiEdgeDataView
def __init__(self, G):
self._graph = G
self._adjdict = G._pred if hasattr(G, "pred") else G._adj
self._nodes_nbrs = self._adjdict.items
def __iter__(self):
for n, nbrs in self._nodes_nbrs():
for nbr, kdict in nbrs.items():
for key in kdict:
yield (nbr, n, key)
def __contains__(self, e):
N = len(e)
if N == 3:
u, v, k = e
elif N == 2:
u, v = e
k = 0
else:
raise ValueError("MultiEdge must have length 2 or 3")
try:
return k in self._adjdict[v][u]
except KeyError:
return False
def __getitem__(self, e):
if isinstance(e, slice):
raise nx.NetworkXError(
f"{type(self).__name__} does not support slicing, "
f"try list(G.in_edges)[{e.start}:{e.stop}:{e.step}]"
)
u, v, k = e
return self._adjdict[v][u][k]
|