Spaces:
Running
Running
File size: 16,342 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
from collections import UserDict
import pytest
import networkx as nx
from networkx.utils import edges_equal
from .test_multigraph import BaseMultiGraphTester
from .test_multigraph import TestEdgeSubgraph as _TestMultiGraphEdgeSubgraph
from .test_multigraph import TestMultiGraph as _TestMultiGraph
class BaseMultiDiGraphTester(BaseMultiGraphTester):
def test_edges(self):
G = self.K3
edges = [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.edges()) == edges
assert sorted(G.edges(0)) == [(0, 1), (0, 2)]
pytest.raises((KeyError, nx.NetworkXError), G.edges, -1)
def test_edges_data(self):
G = self.K3
edges = [(0, 1, {}), (0, 2, {}), (1, 0, {}), (1, 2, {}), (2, 0, {}), (2, 1, {})]
assert sorted(G.edges(data=True)) == edges
assert sorted(G.edges(0, data=True)) == [(0, 1, {}), (0, 2, {})]
pytest.raises((KeyError, nx.NetworkXError), G.neighbors, -1)
def test_edges_multi(self):
G = self.K3
assert sorted(G.edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.edges(0)) == [(0, 1), (0, 2)]
G.add_edge(0, 1)
assert sorted(G.edges()) == [
(0, 1),
(0, 1),
(0, 2),
(1, 0),
(1, 2),
(2, 0),
(2, 1),
]
def test_out_edges(self):
G = self.K3
assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)]
pytest.raises((KeyError, nx.NetworkXError), G.out_edges, -1)
assert sorted(G.out_edges(0, keys=True)) == [(0, 1, 0), (0, 2, 0)]
def test_out_edges_multi(self):
G = self.K3
assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)]
G.add_edge(0, 1, 2)
assert sorted(G.out_edges()) == [
(0, 1),
(0, 1),
(0, 2),
(1, 0),
(1, 2),
(2, 0),
(2, 1),
]
def test_out_edges_data(self):
G = self.K3
assert sorted(G.edges(0, data=True)) == [(0, 1, {}), (0, 2, {})]
G.remove_edge(0, 1)
G.add_edge(0, 1, data=1)
assert sorted(G.edges(0, data=True)) == [(0, 1, {"data": 1}), (0, 2, {})]
assert sorted(G.edges(0, data="data")) == [(0, 1, 1), (0, 2, None)]
assert sorted(G.edges(0, data="data", default=-1)) == [(0, 1, 1), (0, 2, -1)]
def test_in_edges(self):
G = self.K3
assert sorted(G.in_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.in_edges(0)) == [(1, 0), (2, 0)]
pytest.raises((KeyError, nx.NetworkXError), G.in_edges, -1)
G.add_edge(0, 1, 2)
assert sorted(G.in_edges()) == [
(0, 1),
(0, 1),
(0, 2),
(1, 0),
(1, 2),
(2, 0),
(2, 1),
]
assert sorted(G.in_edges(0, keys=True)) == [(1, 0, 0), (2, 0, 0)]
def test_in_edges_no_keys(self):
G = self.K3
assert sorted(G.in_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.in_edges(0)) == [(1, 0), (2, 0)]
G.add_edge(0, 1, 2)
assert sorted(G.in_edges()) == [
(0, 1),
(0, 1),
(0, 2),
(1, 0),
(1, 2),
(2, 0),
(2, 1),
]
assert sorted(G.in_edges(data=True, keys=False)) == [
(0, 1, {}),
(0, 1, {}),
(0, 2, {}),
(1, 0, {}),
(1, 2, {}),
(2, 0, {}),
(2, 1, {}),
]
def test_in_edges_data(self):
G = self.K3
assert sorted(G.in_edges(0, data=True)) == [(1, 0, {}), (2, 0, {})]
G.remove_edge(1, 0)
G.add_edge(1, 0, data=1)
assert sorted(G.in_edges(0, data=True)) == [(1, 0, {"data": 1}), (2, 0, {})]
assert sorted(G.in_edges(0, data="data")) == [(1, 0, 1), (2, 0, None)]
assert sorted(G.in_edges(0, data="data", default=-1)) == [(1, 0, 1), (2, 0, -1)]
def is_shallow(self, H, G):
# graph
assert G.graph["foo"] == H.graph["foo"]
G.graph["foo"].append(1)
assert G.graph["foo"] == H.graph["foo"]
# node
assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
G.nodes[0]["foo"].append(1)
assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
# edge
assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
G[1][2][0]["foo"].append(1)
assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
def is_deep(self, H, G):
# graph
assert G.graph["foo"] == H.graph["foo"]
G.graph["foo"].append(1)
assert G.graph["foo"] != H.graph["foo"]
# node
assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
G.nodes[0]["foo"].append(1)
assert G.nodes[0]["foo"] != H.nodes[0]["foo"]
# edge
assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
G[1][2][0]["foo"].append(1)
assert G[1][2][0]["foo"] != H[1][2][0]["foo"]
def test_to_undirected(self):
# MultiDiGraph -> MultiGraph changes number of edges so it is
# not a copy operation... use is_shallow, not is_shallow_copy
G = self.K3
self.add_attributes(G)
H = nx.MultiGraph(G)
# self.is_shallow(H,G)
# the result is traversal order dependent so we
# can't use the is_shallow() test here.
try:
assert edges_equal(H.edges(), [(0, 1), (1, 2), (2, 0)])
except AssertionError:
assert edges_equal(H.edges(), [(0, 1), (1, 2), (1, 2), (2, 0)])
H = G.to_undirected()
self.is_deep(H, G)
def test_has_successor(self):
G = self.K3
assert G.has_successor(0, 1)
assert not G.has_successor(0, -1)
def test_successors(self):
G = self.K3
assert sorted(G.successors(0)) == [1, 2]
pytest.raises((KeyError, nx.NetworkXError), G.successors, -1)
def test_has_predecessor(self):
G = self.K3
assert G.has_predecessor(0, 1)
assert not G.has_predecessor(0, -1)
def test_predecessors(self):
G = self.K3
assert sorted(G.predecessors(0)) == [1, 2]
pytest.raises((KeyError, nx.NetworkXError), G.predecessors, -1)
def test_degree(self):
G = self.K3
assert sorted(G.degree()) == [(0, 4), (1, 4), (2, 4)]
assert dict(G.degree()) == {0: 4, 1: 4, 2: 4}
assert G.degree(0) == 4
assert list(G.degree(iter([0]))) == [(0, 4)]
G.add_edge(0, 1, weight=0.3, other=1.2)
assert sorted(G.degree(weight="weight")) == [(0, 4.3), (1, 4.3), (2, 4)]
assert sorted(G.degree(weight="other")) == [(0, 5.2), (1, 5.2), (2, 4)]
def test_in_degree(self):
G = self.K3
assert sorted(G.in_degree()) == [(0, 2), (1, 2), (2, 2)]
assert dict(G.in_degree()) == {0: 2, 1: 2, 2: 2}
assert G.in_degree(0) == 2
assert list(G.in_degree(iter([0]))) == [(0, 2)]
assert G.in_degree(0, weight="weight") == 2
def test_out_degree(self):
G = self.K3
assert sorted(G.out_degree()) == [(0, 2), (1, 2), (2, 2)]
assert dict(G.out_degree()) == {0: 2, 1: 2, 2: 2}
assert G.out_degree(0) == 2
assert list(G.out_degree(iter([0]))) == [(0, 2)]
assert G.out_degree(0, weight="weight") == 2
def test_size(self):
G = self.K3
assert G.size() == 6
assert G.number_of_edges() == 6
G.add_edge(0, 1, weight=0.3, other=1.2)
assert round(G.size(weight="weight"), 2) == 6.3
assert round(G.size(weight="other"), 2) == 7.2
def test_to_undirected_reciprocal(self):
G = self.Graph()
G.add_edge(1, 2)
assert G.to_undirected().has_edge(1, 2)
assert not G.to_undirected(reciprocal=True).has_edge(1, 2)
G.add_edge(2, 1)
assert G.to_undirected(reciprocal=True).has_edge(1, 2)
def test_reverse_copy(self):
G = nx.MultiDiGraph([(0, 1), (0, 1)])
R = G.reverse()
assert sorted(R.edges()) == [(1, 0), (1, 0)]
R.remove_edge(1, 0)
assert sorted(R.edges()) == [(1, 0)]
assert sorted(G.edges()) == [(0, 1), (0, 1)]
def test_reverse_nocopy(self):
G = nx.MultiDiGraph([(0, 1), (0, 1)])
R = G.reverse(copy=False)
assert sorted(R.edges()) == [(1, 0), (1, 0)]
pytest.raises(nx.NetworkXError, R.remove_edge, 1, 0)
def test_di_attributes_cached(self):
G = self.K3.copy()
assert id(G.in_edges) == id(G.in_edges)
assert id(G.out_edges) == id(G.out_edges)
assert id(G.in_degree) == id(G.in_degree)
assert id(G.out_degree) == id(G.out_degree)
assert id(G.succ) == id(G.succ)
assert id(G.pred) == id(G.pred)
class TestMultiDiGraph(BaseMultiDiGraphTester, _TestMultiGraph):
def setup_method(self):
self.Graph = nx.MultiDiGraph
# build K3
self.k3edges = [(0, 1), (0, 2), (1, 2)]
self.k3nodes = [0, 1, 2]
self.K3 = self.Graph()
self.K3._succ = {0: {}, 1: {}, 2: {}}
# K3._adj is synced with K3._succ
self.K3._pred = {0: {}, 1: {}, 2: {}}
for u in self.k3nodes:
for v in self.k3nodes:
if u == v:
continue
d = {0: {}}
self.K3._succ[u][v] = d
self.K3._pred[v][u] = d
self.K3._node = {}
self.K3._node[0] = {}
self.K3._node[1] = {}
self.K3._node[2] = {}
def test_add_edge(self):
G = self.Graph()
G.add_edge(0, 1)
assert G._adj == {0: {1: {0: {}}}, 1: {}}
assert G._succ == {0: {1: {0: {}}}, 1: {}}
assert G._pred == {0: {}, 1: {0: {0: {}}}}
G = self.Graph()
G.add_edge(*(0, 1))
assert G._adj == {0: {1: {0: {}}}, 1: {}}
assert G._succ == {0: {1: {0: {}}}, 1: {}}
assert G._pred == {0: {}, 1: {0: {0: {}}}}
with pytest.raises(ValueError, match="None cannot be a node"):
G.add_edge(None, 3)
def test_add_edges_from(self):
G = self.Graph()
G.add_edges_from([(0, 1), (0, 1, {"weight": 3})])
assert G._adj == {0: {1: {0: {}, 1: {"weight": 3}}}, 1: {}}
assert G._succ == {0: {1: {0: {}, 1: {"weight": 3}}}, 1: {}}
assert G._pred == {0: {}, 1: {0: {0: {}, 1: {"weight": 3}}}}
G.add_edges_from([(0, 1), (0, 1, {"weight": 3})], weight=2)
assert G._succ == {
0: {1: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
1: {},
}
assert G._pred == {
0: {},
1: {0: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
}
G = self.Graph()
edges = [
(0, 1, {"weight": 3}),
(0, 1, (("weight", 2),)),
(0, 1, 5),
(0, 1, "s"),
]
G.add_edges_from(edges)
keydict = {0: {"weight": 3}, 1: {"weight": 2}, 5: {}, "s": {}}
assert G._succ == {0: {1: keydict}, 1: {}}
assert G._pred == {1: {0: keydict}, 0: {}}
# too few in tuple
pytest.raises(nx.NetworkXError, G.add_edges_from, [(0,)])
# too many in tuple
pytest.raises(nx.NetworkXError, G.add_edges_from, [(0, 1, 2, 3, 4)])
# not a tuple
pytest.raises(TypeError, G.add_edges_from, [0])
with pytest.raises(ValueError, match="None cannot be a node"):
G.add_edges_from([(None, 3), (3, 2)])
def test_remove_edge(self):
G = self.K3
G.remove_edge(0, 1)
assert G._succ == {
0: {2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
assert G._pred == {
0: {1: {0: {}}, 2: {0: {}}},
1: {2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, -1, 0)
pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, 0, 2, key=1)
def test_remove_multiedge(self):
G = self.K3
G.add_edge(0, 1, key="parallel edge")
G.remove_edge(0, 1, key="parallel edge")
assert G._adj == {
0: {1: {0: {}}, 2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
assert G._succ == {
0: {1: {0: {}}, 2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
assert G._pred == {
0: {1: {0: {}}, 2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
G.remove_edge(0, 1)
assert G._succ == {
0: {2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
assert G._pred == {
0: {1: {0: {}}, 2: {0: {}}},
1: {2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, -1, 0)
def test_remove_edges_from(self):
G = self.K3
G.remove_edges_from([(0, 1)])
assert G._succ == {
0: {2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
assert G._pred == {
0: {1: {0: {}}, 2: {0: {}}},
1: {2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
G.remove_edges_from([(0, 0)]) # silent fail
class TestEdgeSubgraph(_TestMultiGraphEdgeSubgraph):
"""Unit tests for the :meth:`MultiDiGraph.edge_subgraph` method."""
def setup_method(self):
# Create a quadruply-linked path graph on five nodes.
G = nx.MultiDiGraph()
nx.add_path(G, range(5))
nx.add_path(G, range(5))
nx.add_path(G, reversed(range(5)))
nx.add_path(G, reversed(range(5)))
# Add some node, edge, and graph attributes.
for i in range(5):
G.nodes[i]["name"] = f"node{i}"
G.adj[0][1][0]["name"] = "edge010"
G.adj[0][1][1]["name"] = "edge011"
G.adj[3][4][0]["name"] = "edge340"
G.adj[3][4][1]["name"] = "edge341"
G.graph["name"] = "graph"
# Get the subgraph induced by one of the first edges and one of
# the last edges.
self.G = G
self.H = G.edge_subgraph([(0, 1, 0), (3, 4, 1)])
class CustomDictClass(UserDict):
pass
class MultiDiGraphSubClass(nx.MultiDiGraph):
node_dict_factory = CustomDictClass # type: ignore[assignment]
node_attr_dict_factory = CustomDictClass # type: ignore[assignment]
adjlist_outer_dict_factory = CustomDictClass # type: ignore[assignment]
adjlist_inner_dict_factory = CustomDictClass # type: ignore[assignment]
edge_key_dict_factory = CustomDictClass # type: ignore[assignment]
edge_attr_dict_factory = CustomDictClass # type: ignore[assignment]
graph_attr_dict_factory = CustomDictClass # type: ignore[assignment]
class TestMultiDiGraphSubclass(TestMultiDiGraph):
def setup_method(self):
self.Graph = MultiDiGraphSubClass
# build K3
self.k3edges = [(0, 1), (0, 2), (1, 2)]
self.k3nodes = [0, 1, 2]
self.K3 = self.Graph()
self.K3._succ = self.K3.adjlist_outer_dict_factory(
{
0: self.K3.adjlist_inner_dict_factory(),
1: self.K3.adjlist_inner_dict_factory(),
2: self.K3.adjlist_inner_dict_factory(),
}
)
# K3._adj is synced with K3._succ
self.K3._pred = {0: {}, 1: {}, 2: {}}
for u in self.k3nodes:
for v in self.k3nodes:
if u == v:
continue
d = {0: {}}
self.K3._succ[u][v] = d
self.K3._pred[v][u] = d
self.K3._node = self.K3.node_dict_factory()
self.K3._node[0] = self.K3.node_attr_dict_factory()
self.K3._node[1] = self.K3.node_attr_dict_factory()
self.K3._node[2] = self.K3.node_attr_dict_factory()
|