File size: 8,218 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import random
from copy import copy

import pytest

import networkx as nx
from networkx.utils import (
    PythonRandomInterface,
    arbitrary_element,
    create_py_random_state,
    create_random_state,
    dict_to_numpy_array,
    discrete_sequence,
    flatten,
    groups,
    make_list_of_ints,
    pairwise,
    powerlaw_sequence,
)
from networkx.utils.misc import _dict_to_numpy_array1, _dict_to_numpy_array2

nested_depth = (
    1,
    2,
    (3, 4, ((5, 6, (7,), (8, (9, 10), 11), (12, 13, (14, 15)), 16), 17), 18, 19),
    20,
)

nested_set = {
    (1, 2, 3, 4),
    (5, 6, 7, 8, 9),
    (10, 11, (12, 13, 14), (15, 16, 17, 18)),
    19,
    20,
}

nested_mixed = [
    1,
    (2, 3, {4, (5, 6), 7}, [8, 9]),
    {10: "foo", 11: "bar", (12, 13): "baz"},
    {(14, 15): "qwe", 16: "asd"},
    (17, (18, "19"), 20),
]


@pytest.mark.parametrize("result", [None, [], ["existing"], ["existing1", "existing2"]])
@pytest.mark.parametrize("nested", [nested_depth, nested_mixed, nested_set])
def test_flatten(nested, result):
    if result is None:
        val = flatten(nested, result)
        assert len(val) == 20
    else:
        _result = copy(result)  # because pytest passes parameters as is
        nexisting = len(_result)
        val = flatten(nested, _result)
        assert len(val) == len(_result) == 20 + nexisting

    assert issubclass(type(val), tuple)


def test_make_list_of_ints():
    mylist = [1, 2, 3.0, 42, -2]
    assert make_list_of_ints(mylist) is mylist
    assert make_list_of_ints(mylist) == mylist
    assert type(make_list_of_ints(mylist)[2]) is int
    pytest.raises(nx.NetworkXError, make_list_of_ints, [1, 2, 3, "kermit"])
    pytest.raises(nx.NetworkXError, make_list_of_ints, [1, 2, 3.1])


def test_random_number_distribution():
    # smoke test only
    z = powerlaw_sequence(20, exponent=2.5)
    z = discrete_sequence(20, distribution=[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3])


class TestNumpyArray:
    @classmethod
    def setup_class(cls):
        global np
        np = pytest.importorskip("numpy")

    def test_numpy_to_list_of_ints(self):
        a = np.array([1, 2, 3], dtype=np.int64)
        b = np.array([1.0, 2, 3])
        c = np.array([1.1, 2, 3])
        assert type(make_list_of_ints(a)) == list
        assert make_list_of_ints(b) == list(b)
        B = make_list_of_ints(b)
        assert type(B[0]) == int
        pytest.raises(nx.NetworkXError, make_list_of_ints, c)

    def test__dict_to_numpy_array1(self):
        d = {"a": 1, "b": 2}
        a = _dict_to_numpy_array1(d, mapping={"a": 0, "b": 1})
        np.testing.assert_allclose(a, np.array([1, 2]))
        a = _dict_to_numpy_array1(d, mapping={"b": 0, "a": 1})
        np.testing.assert_allclose(a, np.array([2, 1]))

        a = _dict_to_numpy_array1(d)
        np.testing.assert_allclose(a.sum(), 3)

    def test__dict_to_numpy_array2(self):
        d = {"a": {"a": 1, "b": 2}, "b": {"a": 10, "b": 20}}

        mapping = {"a": 1, "b": 0}
        a = _dict_to_numpy_array2(d, mapping=mapping)
        np.testing.assert_allclose(a, np.array([[20, 10], [2, 1]]))

        a = _dict_to_numpy_array2(d)
        np.testing.assert_allclose(a.sum(), 33)

    def test_dict_to_numpy_array_a(self):
        d = {"a": {"a": 1, "b": 2}, "b": {"a": 10, "b": 20}}

        mapping = {"a": 0, "b": 1}
        a = dict_to_numpy_array(d, mapping=mapping)
        np.testing.assert_allclose(a, np.array([[1, 2], [10, 20]]))

        mapping = {"a": 1, "b": 0}
        a = dict_to_numpy_array(d, mapping=mapping)
        np.testing.assert_allclose(a, np.array([[20, 10], [2, 1]]))

        a = _dict_to_numpy_array2(d)
        np.testing.assert_allclose(a.sum(), 33)

    def test_dict_to_numpy_array_b(self):
        d = {"a": 1, "b": 2}

        mapping = {"a": 0, "b": 1}
        a = dict_to_numpy_array(d, mapping=mapping)
        np.testing.assert_allclose(a, np.array([1, 2]))

        a = _dict_to_numpy_array1(d)
        np.testing.assert_allclose(a.sum(), 3)


def test_pairwise():
    nodes = range(4)
    node_pairs = [(0, 1), (1, 2), (2, 3)]
    node_pairs_cycle = node_pairs + [(3, 0)]
    assert list(pairwise(nodes)) == node_pairs
    assert list(pairwise(iter(nodes))) == node_pairs
    assert list(pairwise(nodes, cyclic=True)) == node_pairs_cycle
    empty_iter = iter(())
    assert list(pairwise(empty_iter)) == []
    empty_iter = iter(())
    assert list(pairwise(empty_iter, cyclic=True)) == []


def test_groups():
    many_to_one = dict(zip("abcde", [0, 0, 1, 1, 2]))
    actual = groups(many_to_one)
    expected = {0: {"a", "b"}, 1: {"c", "d"}, 2: {"e"}}
    assert actual == expected
    assert {} == groups({})


def test_create_random_state():
    np = pytest.importorskip("numpy")
    rs = np.random.RandomState

    assert isinstance(create_random_state(1), rs)
    assert isinstance(create_random_state(None), rs)
    assert isinstance(create_random_state(np.random), rs)
    assert isinstance(create_random_state(rs(1)), rs)
    # Support for numpy.random.Generator
    rng = np.random.default_rng()
    assert isinstance(create_random_state(rng), np.random.Generator)
    pytest.raises(ValueError, create_random_state, "a")

    assert np.all(rs(1).rand(10) == create_random_state(1).rand(10))


def test_create_py_random_state():
    pyrs = random.Random

    assert isinstance(create_py_random_state(1), pyrs)
    assert isinstance(create_py_random_state(None), pyrs)
    assert isinstance(create_py_random_state(pyrs(1)), pyrs)
    pytest.raises(ValueError, create_py_random_state, "a")

    np = pytest.importorskip("numpy")

    rs = np.random.RandomState
    rng = np.random.default_rng(1000)
    rng_explicit = np.random.Generator(np.random.SFC64())
    nprs = PythonRandomInterface
    assert isinstance(create_py_random_state(np.random), nprs)
    assert isinstance(create_py_random_state(rs(1)), nprs)
    assert isinstance(create_py_random_state(rng), nprs)
    assert isinstance(create_py_random_state(rng_explicit), nprs)
    # test default rng input
    assert isinstance(PythonRandomInterface(), nprs)


def test_PythonRandomInterface_RandomState():
    np = pytest.importorskip("numpy")

    rs = np.random.RandomState
    rng = PythonRandomInterface(rs(42))
    rs42 = rs(42)

    # make sure these functions are same as expected outcome
    assert rng.randrange(3, 5) == rs42.randint(3, 5)
    assert rng.choice([1, 2, 3]) == rs42.choice([1, 2, 3])
    assert rng.gauss(0, 1) == rs42.normal(0, 1)
    assert rng.expovariate(1.5) == rs42.exponential(1 / 1.5)
    assert np.all(rng.shuffle([1, 2, 3]) == rs42.shuffle([1, 2, 3]))
    assert np.all(
        rng.sample([1, 2, 3], 2) == rs42.choice([1, 2, 3], (2,), replace=False)
    )
    assert np.all(
        [rng.randint(3, 5) for _ in range(100)]
        == [rs42.randint(3, 6) for _ in range(100)]
    )
    assert rng.random() == rs42.random_sample()


def test_PythonRandomInterface_Generator():
    np = pytest.importorskip("numpy")

    rng = np.random.default_rng(42)
    pri = PythonRandomInterface(np.random.default_rng(42))

    # make sure these functions are same as expected outcome
    assert pri.randrange(3, 5) == rng.integers(3, 5)
    assert pri.choice([1, 2, 3]) == rng.choice([1, 2, 3])
    assert pri.gauss(0, 1) == rng.normal(0, 1)
    assert pri.expovariate(1.5) == rng.exponential(1 / 1.5)
    assert np.all(pri.shuffle([1, 2, 3]) == rng.shuffle([1, 2, 3]))
    assert np.all(
        pri.sample([1, 2, 3], 2) == rng.choice([1, 2, 3], (2,), replace=False)
    )
    assert np.all(
        [pri.randint(3, 5) for _ in range(100)]
        == [rng.integers(3, 6) for _ in range(100)]
    )
    assert pri.random() == rng.random()


@pytest.mark.parametrize(
    ("iterable_type", "expected"), ((list, 1), (tuple, 1), (str, "["), (set, 1))
)
def test_arbitrary_element(iterable_type, expected):
    iterable = iterable_type([1, 2, 3])
    assert arbitrary_element(iterable) == expected


@pytest.mark.parametrize(
    "iterator", ((i for i in range(3)), iter([1, 2, 3]))  # generator
)
def test_arbitrary_element_raises(iterator):
    """Value error is raised when input is an iterator."""
    with pytest.raises(ValueError, match="from an iterator"):
        arbitrary_element(iterator)