File size: 8,383 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import sys
import datetime as dt
from typing import Optional, Union, Sequence, Tuple, Any, overload, TypeVar

from numpy import (
    ndarray,
    number,
    integer,
    intp,
    bool_,
    generic,
    _OrderKACF,
    _OrderACF,
    _ModeKind,
    _PartitionKind,
    _SortKind,
    _SortSide,
)
from numpy.typing import (
    DTypeLike,
    ArrayLike,
    _ShapeLike,
    _Shape,
    _ArrayLikeBool_co,
    _ArrayLikeInt_co,
    _NumberLike_co,
)

if sys.version_info >= (3, 8):
    from typing import Literal
else:
    from typing_extensions import Literal

# Various annotations for scalars

# While dt.datetime and dt.timedelta are not technically part of NumPy,
# they are one of the rare few builtin scalars which serve as valid return types.
# See https://github.com/numpy/numpy-stubs/pull/67#discussion_r412604113.
_ScalarNumpy = Union[generic, dt.datetime, dt.timedelta]
_ScalarBuiltin = Union[str, bytes, dt.date, dt.timedelta, bool, int, float, complex]
_Scalar = Union[_ScalarBuiltin, _ScalarNumpy]

# Integers and booleans can generally be used interchangeably
_ScalarGeneric = TypeVar("_ScalarGeneric", bound=generic)

_Number = TypeVar("_Number", bound=number)

# The signature of take() follows a common theme with its overloads:
# 1. A generic comes in; the same generic comes out
# 2. A scalar comes in; a generic comes out
# 3. An array-like object comes in; some keyword ensures that a generic comes out
# 4. An array-like object comes in; an ndarray or generic comes out
def take(

    a: ArrayLike,

    indices: _ArrayLikeInt_co,

    axis: Optional[int] = ...,

    out: Optional[ndarray] = ...,

    mode: _ModeKind = ...,

) -> Any: ...

def reshape(

    a: ArrayLike,

    newshape: _ShapeLike,

    order: _OrderACF = ...,

) -> ndarray: ...

def choose(

    a: _ArrayLikeInt_co,

    choices: ArrayLike,

    out: Optional[ndarray] = ...,

    mode: _ModeKind = ...,

) -> Any: ...

def repeat(

    a: ArrayLike,

    repeats: _ArrayLikeInt_co,

    axis: Optional[int] = ...,

) -> ndarray: ...

def put(

    a: ndarray,

    ind: _ArrayLikeInt_co,

    v: ArrayLike,

    mode: _ModeKind = ...,

) -> None: ...

def swapaxes(

    a: ArrayLike,

    axis1: int,

    axis2: int,

) -> ndarray: ...

def transpose(

    a: ArrayLike,

    axes: Union[None, Sequence[int], ndarray] = ...

) -> ndarray: ...

def partition(

    a: ArrayLike,

    kth: _ArrayLikeInt_co,

    axis: Optional[int] = ...,

    kind: _PartitionKind = ...,

    order: Union[None, str, Sequence[str]] = ...,

) -> ndarray: ...

def argpartition(

    a: ArrayLike,

    kth: _ArrayLikeInt_co,

    axis: Optional[int] = ...,

    kind: _PartitionKind = ...,

    order: Union[None, str, Sequence[str]] = ...,

) -> Any: ...

def sort(

    a: ArrayLike,

    axis: Optional[int] = ...,

    kind: Optional[_SortKind] = ...,

    order: Union[None, str, Sequence[str]] = ...,

) -> ndarray: ...

def argsort(

    a: ArrayLike,

    axis: Optional[int] = ...,

    kind: Optional[_SortKind] = ...,

    order: Union[None, str, Sequence[str]] = ...,

) -> ndarray: ...

@overload
def argmax(

    a: ArrayLike,

    axis: None = ...,

    out: Optional[ndarray] = ...,

) -> intp: ...
@overload
def argmax(

    a: ArrayLike,

    axis: Optional[int] = ...,

    out: Optional[ndarray] = ...,

) -> Any: ...

@overload
def argmin(

    a: ArrayLike,

    axis: None = ...,

    out: Optional[ndarray] = ...,

) -> intp: ...
@overload
def argmin(

    a: ArrayLike,

    axis: Optional[int] = ...,

    out: Optional[ndarray] = ...,

) -> Any: ...

@overload
def searchsorted(

    a: ArrayLike,

    v: _Scalar,

    side: _SortSide = ...,

    sorter: Optional[_ArrayLikeInt_co] = ...,  # 1D int array

) -> intp: ...
@overload
def searchsorted(

    a: ArrayLike,

    v: ArrayLike,

    side: _SortSide = ...,

    sorter: Optional[_ArrayLikeInt_co] = ...,  # 1D int array

) -> ndarray: ...

def resize(

    a: ArrayLike,

    new_shape: _ShapeLike,

) -> ndarray: ...

@overload
def squeeze(

    a: _ScalarGeneric,

    axis: Optional[_ShapeLike] = ...,

) -> _ScalarGeneric: ...
@overload
def squeeze(

    a: ArrayLike,

    axis: Optional[_ShapeLike] = ...,

) -> ndarray: ...

def diagonal(

    a: ArrayLike,

    offset: int = ...,

    axis1: int = ...,

    axis2: int = ...,  # >= 2D array

) -> ndarray: ...

def trace(

    a: ArrayLike,  # >= 2D array

    offset: int = ...,

    axis1: int = ...,

    axis2: int = ...,

    dtype: DTypeLike = ...,

    out: Optional[ndarray] = ...,

) -> Any: ...

def ravel(a: ArrayLike, order: _OrderKACF = ...) -> ndarray: ...

def nonzero(a: ArrayLike) -> Tuple[ndarray, ...]: ...

def shape(a: ArrayLike) -> _Shape: ...

def compress(

    condition: ArrayLike,  # 1D bool array

    a: ArrayLike,

    axis: Optional[int] = ...,

    out: Optional[ndarray] = ...,

) -> ndarray: ...

@overload
def clip(

    a: ArrayLike,

    a_min: ArrayLike,

    a_max: Optional[ArrayLike],

    out: Optional[ndarray] = ...,

    **kwargs: Any,

) -> Any: ...
@overload
def clip(

    a: ArrayLike,

    a_min: None,

    a_max: ArrayLike,

    out: Optional[ndarray] = ...,

    **kwargs: Any,

) -> Any: ...

def sum(

    a: ArrayLike,

    axis: _ShapeLike = ...,

    dtype: DTypeLike = ...,

    out: Optional[ndarray] = ...,

    keepdims: bool = ...,

    initial: _NumberLike_co = ...,

    where: _ArrayLikeBool_co = ...,

) -> Any: ...

@overload
def all(

    a: ArrayLike,

    axis: None = ...,

    out: None = ...,

    keepdims: Literal[False] = ...,

) -> bool_: ...
@overload
def all(

    a: ArrayLike,

    axis: Optional[_ShapeLike] = ...,

    out: Optional[ndarray] = ...,

    keepdims: bool = ...,

) -> Any: ...

@overload
def any(

    a: ArrayLike,

    axis: None = ...,

    out: None = ...,

    keepdims: Literal[False] = ...,

) -> bool_: ...
@overload
def any(

    a: ArrayLike,

    axis: Optional[_ShapeLike] = ...,

    out: Optional[ndarray] = ...,

    keepdims: bool = ...,

) -> Any: ...

def cumsum(

    a: ArrayLike,

    axis: Optional[int] = ...,

    dtype: DTypeLike = ...,

    out: Optional[ndarray] = ...,

) -> ndarray: ...

def ptp(

    a: ArrayLike,

    axis: Optional[_ShapeLike] = ...,

    out: Optional[ndarray] = ...,

    keepdims: bool = ...,

) -> Any: ...

def amax(

    a: ArrayLike,

    axis: Optional[_ShapeLike] = ...,

    out: Optional[ndarray] = ...,

    keepdims: bool = ...,

    initial: _NumberLike_co = ...,

    where: _ArrayLikeBool_co = ...,

) -> Any: ...

def amin(

    a: ArrayLike,

    axis: Optional[_ShapeLike] = ...,

    out: Optional[ndarray] = ...,

    keepdims: bool = ...,

    initial: _NumberLike_co = ...,

    where: _ArrayLikeBool_co = ...,

) -> Any: ...

# TODO: `np.prod()``: For object arrays `initial` does not necessarily
# have to be a numerical scalar.
# The only requirement is that it is compatible
# with the `.__mul__()` method(s) of the passed array's elements.

# Note that the same situation holds for all wrappers around
# `np.ufunc.reduce`, e.g. `np.sum()` (`.__add__()`).
def prod(

    a: ArrayLike,

    axis: Optional[_ShapeLike] = ...,

    dtype: DTypeLike = ...,

    out: Optional[ndarray] = ...,

    keepdims: bool = ...,

    initial: _NumberLike_co = ...,

    where: _ArrayLikeBool_co = ...,

) -> Any: ...

def cumprod(

    a: ArrayLike,

    axis: Optional[int] = ...,

    dtype: DTypeLike = ...,

    out: Optional[ndarray] = ...,

) -> ndarray: ...

def ndim(a: ArrayLike) -> int: ...

def size(a: ArrayLike, axis: Optional[int] = ...) -> int: ...

def around(

    a: ArrayLike,

    decimals: int = ...,

    out: Optional[ndarray] = ...,

) -> Any: ...

def mean(

    a: ArrayLike,

    axis: Optional[_ShapeLike] = ...,

    dtype: DTypeLike = ...,

    out: Optional[ndarray] = ...,

    keepdims: bool = ...,

) -> Any: ...

def std(

    a: ArrayLike,

    axis: Optional[_ShapeLike] = ...,

    dtype: DTypeLike = ...,

    out: Optional[ndarray] = ...,

    ddof: int = ...,

    keepdims: bool = ...,

) -> Any: ...

def var(

    a: ArrayLike,

    axis: Optional[_ShapeLike] = ...,

    dtype: DTypeLike = ...,

    out: Optional[ndarray] = ...,

    ddof: int = ...,

    keepdims: bool = ...,

) -> Any: ...