Spaces:
Running
Running
File size: 20,338 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
"""Machine limits for Float32 and Float64 and (long double) if available...
"""
__all__ = ['finfo', 'iinfo']
import warnings
from .machar import MachAr
from .overrides import set_module
from . import numeric
from . import numerictypes as ntypes
from .numeric import array, inf
from .umath import log10, exp2
from . import umath
def _fr0(a):
"""fix rank-0 --> rank-1"""
if a.ndim == 0:
a = a.copy()
a.shape = (1,)
return a
def _fr1(a):
"""fix rank > 0 --> rank-0"""
if a.size == 1:
a = a.copy()
a.shape = ()
return a
class MachArLike:
""" Object to simulate MachAr instance """
def __init__(self,
ftype,
*, eps, epsneg, huge, tiny, ibeta, **kwargs):
params = _MACHAR_PARAMS[ftype]
float_conv = lambda v: array([v], ftype)
float_to_float = lambda v : _fr1(float_conv(v))
float_to_str = lambda v: (params['fmt'] % array(_fr0(v)[0], ftype))
self.title = params['title']
# Parameter types same as for discovered MachAr object.
self.epsilon = self.eps = float_to_float(eps)
self.epsneg = float_to_float(epsneg)
self.xmax = self.huge = float_to_float(huge)
self.xmin = self.tiny = float_to_float(tiny)
self.ibeta = params['itype'](ibeta)
self.__dict__.update(kwargs)
self.precision = int(-log10(self.eps))
self.resolution = float_to_float(float_conv(10) ** (-self.precision))
self._str_eps = float_to_str(self.eps)
self._str_epsneg = float_to_str(self.epsneg)
self._str_xmin = float_to_str(self.xmin)
self._str_xmax = float_to_str(self.xmax)
self._str_resolution = float_to_str(self.resolution)
_convert_to_float = {
ntypes.csingle: ntypes.single,
ntypes.complex_: ntypes.float_,
ntypes.clongfloat: ntypes.longfloat
}
# Parameters for creating MachAr / MachAr-like objects
_title_fmt = 'numpy {} precision floating point number'
_MACHAR_PARAMS = {
ntypes.double: dict(
itype = ntypes.int64,
fmt = '%24.16e',
title = _title_fmt.format('double')),
ntypes.single: dict(
itype = ntypes.int32,
fmt = '%15.7e',
title = _title_fmt.format('single')),
ntypes.longdouble: dict(
itype = ntypes.longlong,
fmt = '%s',
title = _title_fmt.format('long double')),
ntypes.half: dict(
itype = ntypes.int16,
fmt = '%12.5e',
title = _title_fmt.format('half'))}
# Key to identify the floating point type. Key is result of
# ftype('-0.1').newbyteorder('<').tobytes()
# See:
# https://perl5.git.perl.org/perl.git/blob/3118d7d684b56cbeb702af874f4326683c45f045:/Configure
_KNOWN_TYPES = {}
def _register_type(machar, bytepat):
_KNOWN_TYPES[bytepat] = machar
_float_ma = {}
def _register_known_types():
# Known parameters for float16
# See docstring of MachAr class for description of parameters.
f16 = ntypes.float16
float16_ma = MachArLike(f16,
machep=-10,
negep=-11,
minexp=-14,
maxexp=16,
it=10,
iexp=5,
ibeta=2,
irnd=5,
ngrd=0,
eps=exp2(f16(-10)),
epsneg=exp2(f16(-11)),
huge=f16(65504),
tiny=f16(2 ** -14))
_register_type(float16_ma, b'f\xae')
_float_ma[16] = float16_ma
# Known parameters for float32
f32 = ntypes.float32
float32_ma = MachArLike(f32,
machep=-23,
negep=-24,
minexp=-126,
maxexp=128,
it=23,
iexp=8,
ibeta=2,
irnd=5,
ngrd=0,
eps=exp2(f32(-23)),
epsneg=exp2(f32(-24)),
huge=f32((1 - 2 ** -24) * 2**128),
tiny=exp2(f32(-126)))
_register_type(float32_ma, b'\xcd\xcc\xcc\xbd')
_float_ma[32] = float32_ma
# Known parameters for float64
f64 = ntypes.float64
epsneg_f64 = 2.0 ** -53.0
tiny_f64 = 2.0 ** -1022.0
float64_ma = MachArLike(f64,
machep=-52,
negep=-53,
minexp=-1022,
maxexp=1024,
it=52,
iexp=11,
ibeta=2,
irnd=5,
ngrd=0,
eps=2.0 ** -52.0,
epsneg=epsneg_f64,
huge=(1.0 - epsneg_f64) / tiny_f64 * f64(4),
tiny=tiny_f64)
_register_type(float64_ma, b'\x9a\x99\x99\x99\x99\x99\xb9\xbf')
_float_ma[64] = float64_ma
# Known parameters for IEEE 754 128-bit binary float
ld = ntypes.longdouble
epsneg_f128 = exp2(ld(-113))
tiny_f128 = exp2(ld(-16382))
# Ignore runtime error when this is not f128
with numeric.errstate(all='ignore'):
huge_f128 = (ld(1) - epsneg_f128) / tiny_f128 * ld(4)
float128_ma = MachArLike(ld,
machep=-112,
negep=-113,
minexp=-16382,
maxexp=16384,
it=112,
iexp=15,
ibeta=2,
irnd=5,
ngrd=0,
eps=exp2(ld(-112)),
epsneg=epsneg_f128,
huge=huge_f128,
tiny=tiny_f128)
# IEEE 754 128-bit binary float
_register_type(float128_ma,
b'\x9a\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\xfb\xbf')
_register_type(float128_ma,
b'\x9a\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\xfb\xbf')
_float_ma[128] = float128_ma
# Known parameters for float80 (Intel 80-bit extended precision)
epsneg_f80 = exp2(ld(-64))
tiny_f80 = exp2(ld(-16382))
# Ignore runtime error when this is not f80
with numeric.errstate(all='ignore'):
huge_f80 = (ld(1) - epsneg_f80) / tiny_f80 * ld(4)
float80_ma = MachArLike(ld,
machep=-63,
negep=-64,
minexp=-16382,
maxexp=16384,
it=63,
iexp=15,
ibeta=2,
irnd=5,
ngrd=0,
eps=exp2(ld(-63)),
epsneg=epsneg_f80,
huge=huge_f80,
tiny=tiny_f80)
# float80, first 10 bytes containing actual storage
_register_type(float80_ma, b'\xcd\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xfb\xbf')
_float_ma[80] = float80_ma
# Guessed / known parameters for double double; see:
# https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#Double-double_arithmetic
# These numbers have the same exponent range as float64, but extended number of
# digits in the significand.
huge_dd = (umath.nextafter(ld(inf), ld(0))
if hasattr(umath, 'nextafter') # Missing on some platforms?
else float64_ma.huge)
float_dd_ma = MachArLike(ld,
machep=-105,
negep=-106,
minexp=-1022,
maxexp=1024,
it=105,
iexp=11,
ibeta=2,
irnd=5,
ngrd=0,
eps=exp2(ld(-105)),
epsneg= exp2(ld(-106)),
huge=huge_dd,
tiny=exp2(ld(-1022)))
# double double; low, high order (e.g. PPC 64)
_register_type(float_dd_ma,
b'\x9a\x99\x99\x99\x99\x99Y<\x9a\x99\x99\x99\x99\x99\xb9\xbf')
# double double; high, low order (e.g. PPC 64 le)
_register_type(float_dd_ma,
b'\x9a\x99\x99\x99\x99\x99\xb9\xbf\x9a\x99\x99\x99\x99\x99Y<')
_float_ma['dd'] = float_dd_ma
def _get_machar(ftype):
""" Get MachAr instance or MachAr-like instance
Get parameters for floating point type, by first trying signatures of
various known floating point types, then, if none match, attempting to
identify parameters by analysis.
Parameters
----------
ftype : class
Numpy floating point type class (e.g. ``np.float64``)
Returns
-------
ma_like : instance of :class:`MachAr` or :class:`MachArLike`
Object giving floating point parameters for `ftype`.
Warns
-----
UserWarning
If the binary signature of the float type is not in the dictionary of
known float types.
"""
params = _MACHAR_PARAMS.get(ftype)
if params is None:
raise ValueError(repr(ftype))
# Detect known / suspected types
key = ftype('-0.1').newbyteorder('<').tobytes()
ma_like = None
if ftype == ntypes.longdouble:
# Could be 80 bit == 10 byte extended precision, where last bytes can
# be random garbage.
# Comparing first 10 bytes to pattern first to avoid branching on the
# random garbage.
ma_like = _KNOWN_TYPES.get(key[:10])
if ma_like is None:
ma_like = _KNOWN_TYPES.get(key)
if ma_like is not None:
return ma_like
# Fall back to parameter discovery
warnings.warn(
'Signature {} for {} does not match any known type: '
'falling back to type probe function'.format(key, ftype),
UserWarning, stacklevel=2)
return _discovered_machar(ftype)
def _discovered_machar(ftype):
""" Create MachAr instance with found information on float types
"""
params = _MACHAR_PARAMS[ftype]
return MachAr(lambda v: array([v], ftype),
lambda v:_fr0(v.astype(params['itype']))[0],
lambda v:array(_fr0(v)[0], ftype),
lambda v: params['fmt'] % array(_fr0(v)[0], ftype),
params['title'])
@set_module('numpy')
class finfo:
"""
finfo(dtype)
Machine limits for floating point types.
Attributes
----------
bits : int
The number of bits occupied by the type.
eps : float
The difference between 1.0 and the next smallest representable float
larger than 1.0. For example, for 64-bit binary floats in the IEEE-754
standard, ``eps = 2**-52``, approximately 2.22e-16.
epsneg : float
The difference between 1.0 and the next smallest representable float
less than 1.0. For example, for 64-bit binary floats in the IEEE-754
standard, ``epsneg = 2**-53``, approximately 1.11e-16.
iexp : int
The number of bits in the exponent portion of the floating point
representation.
machar : MachAr
The object which calculated these parameters and holds more
detailed information.
machep : int
The exponent that yields `eps`.
max : floating point number of the appropriate type
The largest representable number.
maxexp : int
The smallest positive power of the base (2) that causes overflow.
min : floating point number of the appropriate type
The smallest representable number, typically ``-max``.
minexp : int
The most negative power of the base (2) consistent with there
being no leading 0's in the mantissa.
negep : int
The exponent that yields `epsneg`.
nexp : int
The number of bits in the exponent including its sign and bias.
nmant : int
The number of bits in the mantissa.
precision : int
The approximate number of decimal digits to which this kind of
float is precise.
resolution : floating point number of the appropriate type
The approximate decimal resolution of this type, i.e.,
``10**-precision``.
tiny : float
The smallest positive floating point number with full precision
(see Notes).
Parameters
----------
dtype : float, dtype, or instance
Kind of floating point data-type about which to get information.
See Also
--------
MachAr : The implementation of the tests that produce this information.
iinfo : The equivalent for integer data types.
spacing : The distance between a value and the nearest adjacent number
nextafter : The next floating point value after x1 towards x2
Notes
-----
For developers of NumPy: do not instantiate this at the module level.
The initial calculation of these parameters is expensive and negatively
impacts import times. These objects are cached, so calling ``finfo()``
repeatedly inside your functions is not a problem.
Note that ``tiny`` is not actually the smallest positive representable
value in a NumPy floating point type. As in the IEEE-754 standard [1]_,
NumPy floating point types make use of subnormal numbers to fill the
gap between 0 and ``tiny``. However, subnormal numbers may have
significantly reduced precision [2]_.
References
----------
.. [1] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008,
pp.1-70, 2008, http://www.doi.org/10.1109/IEEESTD.2008.4610935
.. [2] Wikipedia, "Denormal Numbers",
https://en.wikipedia.org/wiki/Denormal_number
"""
_finfo_cache = {}
def __new__(cls, dtype):
try:
dtype = numeric.dtype(dtype)
except TypeError:
# In case a float instance was given
dtype = numeric.dtype(type(dtype))
obj = cls._finfo_cache.get(dtype, None)
if obj is not None:
return obj
dtypes = [dtype]
newdtype = numeric.obj2sctype(dtype)
if newdtype is not dtype:
dtypes.append(newdtype)
dtype = newdtype
if not issubclass(dtype, numeric.inexact):
raise ValueError("data type %r not inexact" % (dtype))
obj = cls._finfo_cache.get(dtype, None)
if obj is not None:
return obj
if not issubclass(dtype, numeric.floating):
newdtype = _convert_to_float[dtype]
if newdtype is not dtype:
dtypes.append(newdtype)
dtype = newdtype
obj = cls._finfo_cache.get(dtype, None)
if obj is not None:
return obj
obj = object.__new__(cls)._init(dtype)
for dt in dtypes:
cls._finfo_cache[dt] = obj
return obj
def _init(self, dtype):
self.dtype = numeric.dtype(dtype)
machar = _get_machar(dtype)
for word in ['precision', 'iexp',
'maxexp', 'minexp', 'negep',
'machep']:
setattr(self, word, getattr(machar, word))
for word in ['tiny', 'resolution', 'epsneg']:
setattr(self, word, getattr(machar, word).flat[0])
self.bits = self.dtype.itemsize * 8
self.max = machar.huge.flat[0]
self.min = -self.max
self.eps = machar.eps.flat[0]
self.nexp = machar.iexp
self.nmant = machar.it
self.machar = machar
self._str_tiny = machar._str_xmin.strip()
self._str_max = machar._str_xmax.strip()
self._str_epsneg = machar._str_epsneg.strip()
self._str_eps = machar._str_eps.strip()
self._str_resolution = machar._str_resolution.strip()
return self
def __str__(self):
fmt = (
'Machine parameters for %(dtype)s\n'
'---------------------------------------------------------------\n'
'precision = %(precision)3s resolution = %(_str_resolution)s\n'
'machep = %(machep)6s eps = %(_str_eps)s\n'
'negep = %(negep)6s epsneg = %(_str_epsneg)s\n'
'minexp = %(minexp)6s tiny = %(_str_tiny)s\n'
'maxexp = %(maxexp)6s max = %(_str_max)s\n'
'nexp = %(nexp)6s min = -max\n'
'---------------------------------------------------------------\n'
)
return fmt % self.__dict__
def __repr__(self):
c = self.__class__.__name__
d = self.__dict__.copy()
d['klass'] = c
return (("%(klass)s(resolution=%(resolution)s, min=-%(_str_max)s,"
" max=%(_str_max)s, dtype=%(dtype)s)") % d)
@set_module('numpy')
class iinfo:
"""
iinfo(type)
Machine limits for integer types.
Attributes
----------
bits : int
The number of bits occupied by the type.
min : int
The smallest integer expressible by the type.
max : int
The largest integer expressible by the type.
Parameters
----------
int_type : integer type, dtype, or instance
The kind of integer data type to get information about.
See Also
--------
finfo : The equivalent for floating point data types.
Examples
--------
With types:
>>> ii16 = np.iinfo(np.int16)
>>> ii16.min
-32768
>>> ii16.max
32767
>>> ii32 = np.iinfo(np.int32)
>>> ii32.min
-2147483648
>>> ii32.max
2147483647
With instances:
>>> ii32 = np.iinfo(np.int32(10))
>>> ii32.min
-2147483648
>>> ii32.max
2147483647
"""
_min_vals = {}
_max_vals = {}
def __init__(self, int_type):
try:
self.dtype = numeric.dtype(int_type)
except TypeError:
self.dtype = numeric.dtype(type(int_type))
self.kind = self.dtype.kind
self.bits = self.dtype.itemsize * 8
self.key = "%s%d" % (self.kind, self.bits)
if self.kind not in 'iu':
raise ValueError("Invalid integer data type %r." % (self.kind,))
@property
def min(self):
"""Minimum value of given dtype."""
if self.kind == 'u':
return 0
else:
try:
val = iinfo._min_vals[self.key]
except KeyError:
val = int(-(1 << (self.bits-1)))
iinfo._min_vals[self.key] = val
return val
@property
def max(self):
"""Maximum value of given dtype."""
try:
val = iinfo._max_vals[self.key]
except KeyError:
if self.kind == 'u':
val = int((1 << self.bits) - 1)
else:
val = int((1 << (self.bits-1)) - 1)
iinfo._max_vals[self.key] = val
return val
def __str__(self):
"""String representation."""
fmt = (
'Machine parameters for %(dtype)s\n'
'---------------------------------------------------------------\n'
'min = %(min)s\n'
'max = %(max)s\n'
'---------------------------------------------------------------\n'
)
return fmt % {'dtype': self.dtype, 'min': self.min, 'max': self.max}
def __repr__(self):
return "%s(min=%s, max=%s, dtype=%s)" % (self.__class__.__name__,
self.min, self.max, self.dtype)
|