File size: 12,025 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
from contextlib import nullcontext

import numpy as np
from .numeric import uint8, ndarray, dtype
from numpy.compat import os_fspath, is_pathlib_path
from numpy.core.overrides import set_module

__all__ = ['memmap']

dtypedescr = dtype
valid_filemodes = ["r", "c", "r+", "w+"]
writeable_filemodes = ["r+", "w+"]

mode_equivalents = {
    "readonly":"r",
    "copyonwrite":"c",
    "readwrite":"r+",
    "write":"w+"
    }


@set_module('numpy')
class memmap(ndarray):
    """Create a memory-map to an array stored in a *binary* file on disk.



    Memory-mapped files are used for accessing small segments of large files

    on disk, without reading the entire file into memory.  NumPy's

    memmap's are array-like objects.  This differs from Python's ``mmap``

    module, which uses file-like objects.



    This subclass of ndarray has some unpleasant interactions with

    some operations, because it doesn't quite fit properly as a subclass.

    An alternative to using this subclass is to create the ``mmap``

    object yourself, then create an ndarray with ndarray.__new__ directly,

    passing the object created in its 'buffer=' parameter.



    This class may at some point be turned into a factory function

    which returns a view into an mmap buffer.



    Flush the memmap instance to write the changes to the file. Currently there

    is no API to close the underlying ``mmap``. It is tricky to ensure the

    resource is actually closed, since it may be shared between different

    memmap instances.





    Parameters

    ----------

    filename : str, file-like object, or pathlib.Path instance

        The file name or file object to be used as the array data buffer.

    dtype : data-type, optional

        The data-type used to interpret the file contents.

        Default is `uint8`.

    mode : {'r+', 'r', 'w+', 'c'}, optional

        The file is opened in this mode:



        +------+-------------------------------------------------------------+

        | 'r'  | Open existing file for reading only.                        |

        +------+-------------------------------------------------------------+

        | 'r+' | Open existing file for reading and writing.                 |

        +------+-------------------------------------------------------------+

        | 'w+' | Create or overwrite existing file for reading and writing.  |

        +------+-------------------------------------------------------------+

        | 'c'  | Copy-on-write: assignments affect data in memory, but       |

        |      | changes are not saved to disk.  The file on disk is         |

        |      | read-only.                                                  |

        +------+-------------------------------------------------------------+



        Default is 'r+'.

    offset : int, optional

        In the file, array data starts at this offset. Since `offset` is

        measured in bytes, it should normally be a multiple of the byte-size

        of `dtype`. When ``mode != 'r'``, even positive offsets beyond end of

        file are valid; The file will be extended to accommodate the

        additional data. By default, ``memmap`` will start at the beginning of

        the file, even if ``filename`` is a file pointer ``fp`` and

        ``fp.tell() != 0``.

    shape : tuple, optional

        The desired shape of the array. If ``mode == 'r'`` and the number

        of remaining bytes after `offset` is not a multiple of the byte-size

        of `dtype`, you must specify `shape`. By default, the returned array

        will be 1-D with the number of elements determined by file size

        and data-type.

    order : {'C', 'F'}, optional

        Specify the order of the ndarray memory layout:

        :term:`row-major`, C-style or :term:`column-major`,

        Fortran-style.  This only has an effect if the shape is

        greater than 1-D.  The default order is 'C'.



    Attributes

    ----------

    filename : str or pathlib.Path instance

        Path to the mapped file.

    offset : int

        Offset position in the file.

    mode : str

        File mode.



    Methods

    -------

    flush

        Flush any changes in memory to file on disk.

        When you delete a memmap object, flush is called first to write

        changes to disk.





    See also

    --------

    lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file.



    Notes

    -----

    The memmap object can be used anywhere an ndarray is accepted.

    Given a memmap ``fp``, ``isinstance(fp, numpy.ndarray)`` returns

    ``True``.



    Memory-mapped files cannot be larger than 2GB on 32-bit systems.



    When a memmap causes a file to be created or extended beyond its

    current size in the filesystem, the contents of the new part are

    unspecified. On systems with POSIX filesystem semantics, the extended

    part will be filled with zero bytes.



    Examples

    --------

    >>> data = np.arange(12, dtype='float32')

    >>> data.resize((3,4))



    This example uses a temporary file so that doctest doesn't write

    files to your directory. You would use a 'normal' filename.



    >>> from tempfile import mkdtemp

    >>> import os.path as path

    >>> filename = path.join(mkdtemp(), 'newfile.dat')



    Create a memmap with dtype and shape that matches our data:



    >>> fp = np.memmap(filename, dtype='float32', mode='w+', shape=(3,4))

    >>> fp

    memmap([[0., 0., 0., 0.],

            [0., 0., 0., 0.],

            [0., 0., 0., 0.]], dtype=float32)



    Write data to memmap array:



    >>> fp[:] = data[:]

    >>> fp

    memmap([[  0.,   1.,   2.,   3.],

            [  4.,   5.,   6.,   7.],

            [  8.,   9.,  10.,  11.]], dtype=float32)



    >>> fp.filename == path.abspath(filename)

    True



    Flushes memory changes to disk in order to read them back



    >>> fp.flush()



    Load the memmap and verify data was stored:



    >>> newfp = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))

    >>> newfp

    memmap([[  0.,   1.,   2.,   3.],

            [  4.,   5.,   6.,   7.],

            [  8.,   9.,  10.,  11.]], dtype=float32)



    Read-only memmap:



    >>> fpr = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))

    >>> fpr.flags.writeable

    False



    Copy-on-write memmap:



    >>> fpc = np.memmap(filename, dtype='float32', mode='c', shape=(3,4))

    >>> fpc.flags.writeable

    True



    It's possible to assign to copy-on-write array, but values are only

    written into the memory copy of the array, and not written to disk:



    >>> fpc

    memmap([[  0.,   1.,   2.,   3.],

            [  4.,   5.,   6.,   7.],

            [  8.,   9.,  10.,  11.]], dtype=float32)

    >>> fpc[0,:] = 0

    >>> fpc

    memmap([[  0.,   0.,   0.,   0.],

            [  4.,   5.,   6.,   7.],

            [  8.,   9.,  10.,  11.]], dtype=float32)



    File on disk is unchanged:



    >>> fpr

    memmap([[  0.,   1.,   2.,   3.],

            [  4.,   5.,   6.,   7.],

            [  8.,   9.,  10.,  11.]], dtype=float32)



    Offset into a memmap:



    >>> fpo = np.memmap(filename, dtype='float32', mode='r', offset=16)

    >>> fpo

    memmap([  4.,   5.,   6.,   7.,   8.,   9.,  10.,  11.], dtype=float32)



    """

    __array_priority__ = -100.0

    def __new__(subtype, filename, dtype=uint8, mode='r+', offset=0,

                shape=None, order='C'):
        # Import here to minimize 'import numpy' overhead
        import mmap
        import os.path
        try:
            mode = mode_equivalents[mode]
        except KeyError as e:
            if mode not in valid_filemodes:
                raise ValueError(
                    "mode must be one of {!r} (got {!r})"
                    .format(valid_filemodes + list(mode_equivalents.keys()), mode)
                ) from None

        if mode == 'w+' and shape is None:
            raise ValueError("shape must be given")

        if hasattr(filename, 'read'):
            f_ctx = nullcontext(filename)
        else:
            f_ctx = open(os_fspath(filename), ('r' if mode == 'c' else mode)+'b')

        with f_ctx as fid:
            fid.seek(0, 2)
            flen = fid.tell()
            descr = dtypedescr(dtype)
            _dbytes = descr.itemsize

            if shape is None:
                bytes = flen - offset
                if bytes % _dbytes:
                    raise ValueError("Size of available data is not a "
                            "multiple of the data-type size.")
                size = bytes // _dbytes
                shape = (size,)
            else:
                if not isinstance(shape, tuple):
                    shape = (shape,)
                size = np.intp(1)  # avoid default choice of np.int_, which might overflow
                for k in shape:
                    size *= k

            bytes = int(offset + size*_dbytes)

            if mode in ('w+', 'r+') and flen < bytes:
                fid.seek(bytes - 1, 0)
                fid.write(b'\0')
                fid.flush()

            if mode == 'c':
                acc = mmap.ACCESS_COPY
            elif mode == 'r':
                acc = mmap.ACCESS_READ
            else:
                acc = mmap.ACCESS_WRITE

            start = offset - offset % mmap.ALLOCATIONGRANULARITY
            bytes -= start
            array_offset = offset - start
            mm = mmap.mmap(fid.fileno(), bytes, access=acc, offset=start)

            self = ndarray.__new__(subtype, shape, dtype=descr, buffer=mm,
                                   offset=array_offset, order=order)
            self._mmap = mm
            self.offset = offset
            self.mode = mode

            if is_pathlib_path(filename):
                # special case - if we were constructed with a pathlib.path,
                # then filename is a path object, not a string
                self.filename = filename.resolve()
            elif hasattr(fid, "name") and isinstance(fid.name, str):
                # py3 returns int for TemporaryFile().name
                self.filename = os.path.abspath(fid.name)
            # same as memmap copies (e.g. memmap + 1)
            else:
                self.filename = None

        return self

    def __array_finalize__(self, obj):
        if hasattr(obj, '_mmap') and np.may_share_memory(self, obj):
            self._mmap = obj._mmap
            self.filename = obj.filename
            self.offset = obj.offset
            self.mode = obj.mode
        else:
            self._mmap = None
            self.filename = None
            self.offset = None
            self.mode = None

    def flush(self):
        """

        Write any changes in the array to the file on disk.



        For further information, see `memmap`.



        Parameters

        ----------

        None



        See Also

        --------

        memmap



        """
        if self.base is not None and hasattr(self.base, 'flush'):
            self.base.flush()

    def __array_wrap__(self, arr, context=None):
        arr = super().__array_wrap__(arr, context)

        # Return a memmap if a memmap was given as the output of the
        # ufunc. Leave the arr class unchanged if self is not a memmap
        # to keep original memmap subclasses behavior
        if self is arr or type(self) is not memmap:
            return arr
        # Return scalar instead of 0d memmap, e.g. for np.sum with
        # axis=None
        if arr.shape == ():
            return arr[()]
        # Return ndarray otherwise
        return arr.view(np.ndarray)

    def __getitem__(self, index):
        res = super().__getitem__(index)
        if type(res) is memmap and res._mmap is None:
            return res.view(type=ndarray)
        return res