File size: 9,592 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# -*- coding: utf-8 -*-
"""

=========

Constants

=========



.. currentmodule:: numpy



NumPy includes several constants:



%(constant_list)s

"""
#
# Note: the docstring is autogenerated.
#
import re
import textwrap

# Maintain same format as in numpy.add_newdocs
constants = []
def add_newdoc(module, name, doc):
    constants.append((name, doc))

add_newdoc('numpy', 'pi',
    """

    ``pi = 3.1415926535897932384626433...``



    References

    ----------

    https://en.wikipedia.org/wiki/Pi



    """)

add_newdoc('numpy', 'e',
    """

    Euler's constant, base of natural logarithms, Napier's constant.



    ``e = 2.71828182845904523536028747135266249775724709369995...``



    See Also

    --------

    exp : Exponential function

    log : Natural logarithm



    References

    ----------

    https://en.wikipedia.org/wiki/E_%28mathematical_constant%29



    """)

add_newdoc('numpy', 'euler_gamma',
    """

    ``γ = 0.5772156649015328606065120900824024310421...``



    References

    ----------

    https://en.wikipedia.org/wiki/Euler-Mascheroni_constant



    """)

add_newdoc('numpy', 'inf',
    """

    IEEE 754 floating point representation of (positive) infinity.



    Returns

    -------

    y : float

        A floating point representation of positive infinity.



    See Also

    --------

    isinf : Shows which elements are positive or negative infinity



    isposinf : Shows which elements are positive infinity



    isneginf : Shows which elements are negative infinity



    isnan : Shows which elements are Not a Number



    isfinite : Shows which elements are finite (not one of Not a Number,

    positive infinity and negative infinity)



    Notes

    -----

    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic

    (IEEE 754). This means that Not a Number is not equivalent to infinity.

    Also that positive infinity is not equivalent to negative infinity. But

    infinity is equivalent to positive infinity.



    `Inf`, `Infinity`, `PINF` and `infty` are aliases for `inf`.



    Examples

    --------

    >>> np.inf

    inf

    >>> np.array([1]) / 0.

    array([ Inf])



    """)

add_newdoc('numpy', 'nan',
    """

    IEEE 754 floating point representation of Not a Number (NaN).



    Returns

    -------

    y : A floating point representation of Not a Number.



    See Also

    --------

    isnan : Shows which elements are Not a Number.



    isfinite : Shows which elements are finite (not one of

    Not a Number, positive infinity and negative infinity)



    Notes

    -----

    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic

    (IEEE 754). This means that Not a Number is not equivalent to infinity.



    `NaN` and `NAN` are aliases of `nan`.



    Examples

    --------

    >>> np.nan

    nan

    >>> np.log(-1)

    nan

    >>> np.log([-1, 1, 2])

    array([        NaN,  0.        ,  0.69314718])



    """)

add_newdoc('numpy', 'newaxis',
    """

    A convenient alias for None, useful for indexing arrays.



    Examples

    --------

    >>> newaxis is None

    True

    >>> x = np.arange(3)

    >>> x

    array([0, 1, 2])

    >>> x[:, newaxis]

    array([[0],

    [1],

    [2]])

    >>> x[:, newaxis, newaxis]

    array([[[0]],

    [[1]],

    [[2]]])

    >>> x[:, newaxis] * x

    array([[0, 0, 0],

    [0, 1, 2],

    [0, 2, 4]])



    Outer product, same as ``outer(x, y)``:



    >>> y = np.arange(3, 6)

    >>> x[:, newaxis] * y

    array([[ 0,  0,  0],

    [ 3,  4,  5],

    [ 6,  8, 10]])



    ``x[newaxis, :]`` is equivalent to ``x[newaxis]`` and ``x[None]``:



    >>> x[newaxis, :].shape

    (1, 3)

    >>> x[newaxis].shape

    (1, 3)

    >>> x[None].shape

    (1, 3)

    >>> x[:, newaxis].shape

    (3, 1)



    """)

add_newdoc('numpy', 'NZERO',
    """

    IEEE 754 floating point representation of negative zero.



    Returns

    -------

    y : float

        A floating point representation of negative zero.



    See Also

    --------

    PZERO : Defines positive zero.



    isinf : Shows which elements are positive or negative infinity.



    isposinf : Shows which elements are positive infinity.



    isneginf : Shows which elements are negative infinity.



    isnan : Shows which elements are Not a Number.



    isfinite : Shows which elements are finite - not one of

               Not a Number, positive infinity and negative infinity.



    Notes

    -----

    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic

    (IEEE 754). Negative zero is considered to be a finite number.



    Examples

    --------

    >>> np.NZERO

    -0.0

    >>> np.PZERO

    0.0



    >>> np.isfinite([np.NZERO])

    array([ True])

    >>> np.isnan([np.NZERO])

    array([False])

    >>> np.isinf([np.NZERO])

    array([False])



    """)

add_newdoc('numpy', 'PZERO',
    """

    IEEE 754 floating point representation of positive zero.



    Returns

    -------

    y : float

        A floating point representation of positive zero.



    See Also

    --------

    NZERO : Defines negative zero.



    isinf : Shows which elements are positive or negative infinity.



    isposinf : Shows which elements are positive infinity.



    isneginf : Shows which elements are negative infinity.



    isnan : Shows which elements are Not a Number.



    isfinite : Shows which elements are finite - not one of

               Not a Number, positive infinity and negative infinity.



    Notes

    -----

    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic

    (IEEE 754). Positive zero is considered to be a finite number.



    Examples

    --------

    >>> np.PZERO

    0.0

    >>> np.NZERO

    -0.0



    >>> np.isfinite([np.PZERO])

    array([ True])

    >>> np.isnan([np.PZERO])

    array([False])

    >>> np.isinf([np.PZERO])

    array([False])



    """)

add_newdoc('numpy', 'NAN',
    """

    IEEE 754 floating point representation of Not a Number (NaN).



    `NaN` and `NAN` are equivalent definitions of `nan`. Please use

    `nan` instead of `NAN`.



    See Also

    --------

    nan



    """)

add_newdoc('numpy', 'NaN',
    """

    IEEE 754 floating point representation of Not a Number (NaN).



    `NaN` and `NAN` are equivalent definitions of `nan`. Please use

    `nan` instead of `NaN`.



    See Also

    --------

    nan



    """)

add_newdoc('numpy', 'NINF',
    """

    IEEE 754 floating point representation of negative infinity.



    Returns

    -------

    y : float

        A floating point representation of negative infinity.



    See Also

    --------

    isinf : Shows which elements are positive or negative infinity



    isposinf : Shows which elements are positive infinity



    isneginf : Shows which elements are negative infinity



    isnan : Shows which elements are Not a Number



    isfinite : Shows which elements are finite (not one of Not a Number,

    positive infinity and negative infinity)



    Notes

    -----

    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic

    (IEEE 754). This means that Not a Number is not equivalent to infinity.

    Also that positive infinity is not equivalent to negative infinity. But

    infinity is equivalent to positive infinity.



    Examples

    --------

    >>> np.NINF

    -inf

    >>> np.log(0)

    -inf



    """)

add_newdoc('numpy', 'PINF',
    """

    IEEE 754 floating point representation of (positive) infinity.



    Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for

    `inf`. For more details, see `inf`.



    See Also

    --------

    inf



    """)

add_newdoc('numpy', 'infty',
    """

    IEEE 754 floating point representation of (positive) infinity.



    Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for

    `inf`. For more details, see `inf`.



    See Also

    --------

    inf



    """)

add_newdoc('numpy', 'Inf',
    """

    IEEE 754 floating point representation of (positive) infinity.



    Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for

    `inf`. For more details, see `inf`.



    See Also

    --------

    inf



    """)

add_newdoc('numpy', 'Infinity',
    """

    IEEE 754 floating point representation of (positive) infinity.



    Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for

    `inf`. For more details, see `inf`.



    See Also

    --------

    inf



    """)


if __doc__:
    constants_str = []
    constants.sort()
    for name, doc in constants:
        s = textwrap.dedent(doc).replace("\n", "\n    ")

        # Replace sections by rubrics
        lines = s.split("\n")
        new_lines = []
        for line in lines:
            m = re.match(r'^(\s+)[-=]+\s*$', line)
            if m and new_lines:
                prev = textwrap.dedent(new_lines.pop())
                new_lines.append('%s.. rubric:: %s' % (m.group(1), prev))
                new_lines.append('')
            else:
                new_lines.append(line)
        s = "\n".join(new_lines)

        # Done.
        constants_str.append(""".. data:: %s\n    %s""" % (name, s))
    constants_str = "\n".join(constants_str)

    __doc__ = __doc__ % dict(constant_list=constants_str)
    del constants_str, name, doc
    del line, lines, new_lines, m, s, prev

del constants, add_newdoc