File size: 54,321 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
"""

Discrete Fourier Transforms



Routines in this module:



fft(a, n=None, axis=-1, norm="backward")

ifft(a, n=None, axis=-1, norm="backward")

rfft(a, n=None, axis=-1, norm="backward")

irfft(a, n=None, axis=-1, norm="backward")

hfft(a, n=None, axis=-1, norm="backward")

ihfft(a, n=None, axis=-1, norm="backward")

fftn(a, s=None, axes=None, norm="backward")

ifftn(a, s=None, axes=None, norm="backward")

rfftn(a, s=None, axes=None, norm="backward")

irfftn(a, s=None, axes=None, norm="backward")

fft2(a, s=None, axes=(-2,-1), norm="backward")

ifft2(a, s=None, axes=(-2, -1), norm="backward")

rfft2(a, s=None, axes=(-2,-1), norm="backward")

irfft2(a, s=None, axes=(-2, -1), norm="backward")



i = inverse transform

r = transform of purely real data

h = Hermite transform

n = n-dimensional transform

2 = 2-dimensional transform

(Note: 2D routines are just nD routines with different default

behavior.)



"""
__all__ = ['fft', 'ifft', 'rfft', 'irfft', 'hfft', 'ihfft', 'rfftn',
           'irfftn', 'rfft2', 'irfft2', 'fft2', 'ifft2', 'fftn', 'ifftn']

import functools

from numpy.core import asarray, zeros, swapaxes, conjugate, take, sqrt
from . import _pocketfft_internal as pfi
from numpy.core.multiarray import normalize_axis_index
from numpy.core import overrides


array_function_dispatch = functools.partial(
    overrides.array_function_dispatch, module='numpy.fft')


# `inv_norm` is a float by which the result of the transform needs to be
# divided. This replaces the original, more intuitive 'fct` parameter to avoid
# divisions by zero (or alternatively additional checks) in the case of
# zero-length axes during its computation.
def _raw_fft(a, n, axis, is_real, is_forward, inv_norm):
    axis = normalize_axis_index(axis, a.ndim)
    if n is None:
        n = a.shape[axis]

    fct = 1/inv_norm

    if a.shape[axis] != n:
        s = list(a.shape)
        index = [slice(None)]*len(s)
        if s[axis] > n:
            index[axis] = slice(0, n)
            a = a[tuple(index)]
        else:
            index[axis] = slice(0, s[axis])
            s[axis] = n
            z = zeros(s, a.dtype.char)
            z[tuple(index)] = a
            a = z

    if axis == a.ndim-1:
        r = pfi.execute(a, is_real, is_forward, fct)
    else:
        a = swapaxes(a, axis, -1)
        r = pfi.execute(a, is_real, is_forward, fct)
        r = swapaxes(r, axis, -1)
    return r


def _get_forward_norm(n, norm):
    if n < 1:
        raise ValueError(f"Invalid number of FFT data points ({n}) specified.")

    if norm is None or norm == "backward":
        return 1
    elif norm == "ortho":
        return sqrt(n)
    elif norm == "forward":
        return n
    raise ValueError(f'Invalid norm value {norm}; should be "backward",'
                     '"ortho" or "forward".')


def _get_backward_norm(n, norm):
    if n < 1:
        raise ValueError(f"Invalid number of FFT data points ({n}) specified.")

    if norm is None or norm == "backward":
        return n
    elif norm == "ortho":
        return sqrt(n)
    elif norm == "forward":
        return 1
    raise ValueError(f'Invalid norm value {norm}; should be "backward", '
                     '"ortho" or "forward".')


_SWAP_DIRECTION_MAP = {"backward": "forward", None: "forward",
                       "ortho": "ortho", "forward": "backward"}


def _swap_direction(norm):
    try:
        return _SWAP_DIRECTION_MAP[norm]
    except KeyError:
        raise ValueError(f'Invalid norm value {norm}; should be "backward", '
                         '"ortho" or "forward".') from None


def _fft_dispatcher(a, n=None, axis=None, norm=None):
    return (a,)


@array_function_dispatch(_fft_dispatcher)
def fft(a, n=None, axis=-1, norm=None):
    """

    Compute the one-dimensional discrete Fourier Transform.



    This function computes the one-dimensional *n*-point discrete Fourier

    Transform (DFT) with the efficient Fast Fourier Transform (FFT)

    algorithm [CT].



    Parameters

    ----------

    a : array_like

        Input array, can be complex.

    n : int, optional

        Length of the transformed axis of the output.

        If `n` is smaller than the length of the input, the input is cropped.

        If it is larger, the input is padded with zeros.  If `n` is not given,

        the length of the input along the axis specified by `axis` is used.

    axis : int, optional

        Axis over which to compute the FFT.  If not given, the last axis is

        used.

    norm : {"backward", "ortho", "forward"}, optional

        .. versionadded:: 1.10.0



        Normalization mode (see `numpy.fft`). Default is "backward".

        Indicates which direction of the forward/backward pair of transforms

        is scaled and with what normalization factor.



        .. versionadded:: 1.20.0



            The "backward", "forward" values were added.



    Returns

    -------

    out : complex ndarray

        The truncated or zero-padded input, transformed along the axis

        indicated by `axis`, or the last one if `axis` is not specified.



    Raises

    ------

    IndexError

        If `axis` is not a valid axis of `a`.



    See Also

    --------

    numpy.fft : for definition of the DFT and conventions used.

    ifft : The inverse of `fft`.

    fft2 : The two-dimensional FFT.

    fftn : The *n*-dimensional FFT.

    rfftn : The *n*-dimensional FFT of real input.

    fftfreq : Frequency bins for given FFT parameters.



    Notes

    -----

    FFT (Fast Fourier Transform) refers to a way the discrete Fourier

    Transform (DFT) can be calculated efficiently, by using symmetries in the

    calculated terms.  The symmetry is highest when `n` is a power of 2, and

    the transform is therefore most efficient for these sizes.



    The DFT is defined, with the conventions used in this implementation, in

    the documentation for the `numpy.fft` module.



    References

    ----------

    .. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the

            machine calculation of complex Fourier series," *Math. Comput.*

            19: 297-301.



    Examples

    --------

    >>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))

    array([-2.33486982e-16+1.14423775e-17j,  8.00000000e+00-1.25557246e-15j,

            2.33486982e-16+2.33486982e-16j,  0.00000000e+00+1.22464680e-16j,

           -1.14423775e-17+2.33486982e-16j,  0.00000000e+00+5.20784380e-16j,

            1.14423775e-17+1.14423775e-17j,  0.00000000e+00+1.22464680e-16j])



    In this example, real input has an FFT which is Hermitian, i.e., symmetric

    in the real part and anti-symmetric in the imaginary part, as described in

    the `numpy.fft` documentation:



    >>> import matplotlib.pyplot as plt

    >>> t = np.arange(256)

    >>> sp = np.fft.fft(np.sin(t))

    >>> freq = np.fft.fftfreq(t.shape[-1])

    >>> plt.plot(freq, sp.real, freq, sp.imag)

    [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>]

    >>> plt.show()



    """
    a = asarray(a)
    if n is None:
        n = a.shape[axis]
    inv_norm = _get_forward_norm(n, norm)
    output = _raw_fft(a, n, axis, False, True, inv_norm)
    return output


@array_function_dispatch(_fft_dispatcher)
def ifft(a, n=None, axis=-1, norm=None):
    """

    Compute the one-dimensional inverse discrete Fourier Transform.



    This function computes the inverse of the one-dimensional *n*-point

    discrete Fourier transform computed by `fft`.  In other words,

    ``ifft(fft(a)) == a`` to within numerical accuracy.

    For a general description of the algorithm and definitions,

    see `numpy.fft`.



    The input should be ordered in the same way as is returned by `fft`,

    i.e.,



    * ``a[0]`` should contain the zero frequency term,

    * ``a[1:n//2]`` should contain the positive-frequency terms,

    * ``a[n//2 + 1:]`` should contain the negative-frequency terms, in

      increasing order starting from the most negative frequency.



    For an even number of input points, ``A[n//2]`` represents the sum of

    the values at the positive and negative Nyquist frequencies, as the two

    are aliased together. See `numpy.fft` for details.



    Parameters

    ----------

    a : array_like

        Input array, can be complex.

    n : int, optional

        Length of the transformed axis of the output.

        If `n` is smaller than the length of the input, the input is cropped.

        If it is larger, the input is padded with zeros.  If `n` is not given,

        the length of the input along the axis specified by `axis` is used.

        See notes about padding issues.

    axis : int, optional

        Axis over which to compute the inverse DFT.  If not given, the last

        axis is used.

    norm : {"backward", "ortho", "forward"}, optional

        .. versionadded:: 1.10.0



        Normalization mode (see `numpy.fft`). Default is "backward".

        Indicates which direction of the forward/backward pair of transforms

        is scaled and with what normalization factor.



        .. versionadded:: 1.20.0



            The "backward", "forward" values were added.



    Returns

    -------

    out : complex ndarray

        The truncated or zero-padded input, transformed along the axis

        indicated by `axis`, or the last one if `axis` is not specified.



    Raises

    ------

    IndexError

        If `axis` is not a valid axis of `a`.



    See Also

    --------

    numpy.fft : An introduction, with definitions and general explanations.

    fft : The one-dimensional (forward) FFT, of which `ifft` is the inverse

    ifft2 : The two-dimensional inverse FFT.

    ifftn : The n-dimensional inverse FFT.



    Notes

    -----

    If the input parameter `n` is larger than the size of the input, the input

    is padded by appending zeros at the end.  Even though this is the common

    approach, it might lead to surprising results.  If a different padding is

    desired, it must be performed before calling `ifft`.



    Examples

    --------

    >>> np.fft.ifft([0, 4, 0, 0])

    array([ 1.+0.j,  0.+1.j, -1.+0.j,  0.-1.j]) # may vary



    Create and plot a band-limited signal with random phases:



    >>> import matplotlib.pyplot as plt

    >>> t = np.arange(400)

    >>> n = np.zeros((400,), dtype=complex)

    >>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,)))

    >>> s = np.fft.ifft(n)

    >>> plt.plot(t, s.real, label='real')

    [<matplotlib.lines.Line2D object at ...>]

    >>> plt.plot(t, s.imag, '--', label='imaginary')

    [<matplotlib.lines.Line2D object at ...>]

    >>> plt.legend()

    <matplotlib.legend.Legend object at ...>

    >>> plt.show()



    """
    a = asarray(a)
    if n is None:
        n = a.shape[axis]
    inv_norm = _get_backward_norm(n, norm)
    output = _raw_fft(a, n, axis, False, False, inv_norm)
    return output


@array_function_dispatch(_fft_dispatcher)
def rfft(a, n=None, axis=-1, norm=None):
    """

    Compute the one-dimensional discrete Fourier Transform for real input.



    This function computes the one-dimensional *n*-point discrete Fourier

    Transform (DFT) of a real-valued array by means of an efficient algorithm

    called the Fast Fourier Transform (FFT).



    Parameters

    ----------

    a : array_like

        Input array

    n : int, optional

        Number of points along transformation axis in the input to use.

        If `n` is smaller than the length of the input, the input is cropped.

        If it is larger, the input is padded with zeros. If `n` is not given,

        the length of the input along the axis specified by `axis` is used.

    axis : int, optional

        Axis over which to compute the FFT. If not given, the last axis is

        used.

    norm : {"backward", "ortho", "forward"}, optional

        .. versionadded:: 1.10.0



        Normalization mode (see `numpy.fft`). Default is "backward".

        Indicates which direction of the forward/backward pair of transforms

        is scaled and with what normalization factor.



        .. versionadded:: 1.20.0



            The "backward", "forward" values were added.



    Returns

    -------

    out : complex ndarray

        The truncated or zero-padded input, transformed along the axis

        indicated by `axis`, or the last one if `axis` is not specified.

        If `n` is even, the length of the transformed axis is ``(n/2)+1``.

        If `n` is odd, the length is ``(n+1)/2``.



    Raises

    ------

    IndexError

        If `axis` is not a valid axis of `a`.



    See Also

    --------

    numpy.fft : For definition of the DFT and conventions used.

    irfft : The inverse of `rfft`.

    fft : The one-dimensional FFT of general (complex) input.

    fftn : The *n*-dimensional FFT.

    rfftn : The *n*-dimensional FFT of real input.



    Notes

    -----

    When the DFT is computed for purely real input, the output is

    Hermitian-symmetric, i.e. the negative frequency terms are just the complex

    conjugates of the corresponding positive-frequency terms, and the

    negative-frequency terms are therefore redundant.  This function does not

    compute the negative frequency terms, and the length of the transformed

    axis of the output is therefore ``n//2 + 1``.



    When ``A = rfft(a)`` and fs is the sampling frequency, ``A[0]`` contains

    the zero-frequency term 0*fs, which is real due to Hermitian symmetry.



    If `n` is even, ``A[-1]`` contains the term representing both positive

    and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely

    real. If `n` is odd, there is no term at fs/2; ``A[-1]`` contains

    the largest positive frequency (fs/2*(n-1)/n), and is complex in the

    general case.



    If the input `a` contains an imaginary part, it is silently discarded.



    Examples

    --------

    >>> np.fft.fft([0, 1, 0, 0])

    array([ 1.+0.j,  0.-1.j, -1.+0.j,  0.+1.j]) # may vary

    >>> np.fft.rfft([0, 1, 0, 0])

    array([ 1.+0.j,  0.-1.j, -1.+0.j]) # may vary



    Notice how the final element of the `fft` output is the complex conjugate

    of the second element, for real input. For `rfft`, this symmetry is

    exploited to compute only the non-negative frequency terms.



    """
    a = asarray(a)
    if n is None:
        n = a.shape[axis]
    inv_norm = _get_forward_norm(n, norm)
    output = _raw_fft(a, n, axis, True, True, inv_norm)
    return output


@array_function_dispatch(_fft_dispatcher)
def irfft(a, n=None, axis=-1, norm=None):
    """

    Computes the inverse of `rfft`.



    This function computes the inverse of the one-dimensional *n*-point

    discrete Fourier Transform of real input computed by `rfft`.

    In other words, ``irfft(rfft(a), len(a)) == a`` to within numerical

    accuracy. (See Notes below for why ``len(a)`` is necessary here.)



    The input is expected to be in the form returned by `rfft`, i.e. the

    real zero-frequency term followed by the complex positive frequency terms

    in order of increasing frequency.  Since the discrete Fourier Transform of

    real input is Hermitian-symmetric, the negative frequency terms are taken

    to be the complex conjugates of the corresponding positive frequency terms.



    Parameters

    ----------

    a : array_like

        The input array.

    n : int, optional

        Length of the transformed axis of the output.

        For `n` output points, ``n//2+1`` input points are necessary.  If the

        input is longer than this, it is cropped.  If it is shorter than this,

        it is padded with zeros.  If `n` is not given, it is taken to be

        ``2*(m-1)`` where ``m`` is the length of the input along the axis

        specified by `axis`.

    axis : int, optional

        Axis over which to compute the inverse FFT. If not given, the last

        axis is used.

    norm : {"backward", "ortho", "forward"}, optional

        .. versionadded:: 1.10.0



        Normalization mode (see `numpy.fft`). Default is "backward".

        Indicates which direction of the forward/backward pair of transforms

        is scaled and with what normalization factor.



        .. versionadded:: 1.20.0



            The "backward", "forward" values were added.



    Returns

    -------

    out : ndarray

        The truncated or zero-padded input, transformed along the axis

        indicated by `axis`, or the last one if `axis` is not specified.

        The length of the transformed axis is `n`, or, if `n` is not given,

        ``2*(m-1)`` where ``m`` is the length of the transformed axis of the

        input. To get an odd number of output points, `n` must be specified.



    Raises

    ------

    IndexError

        If `axis` is not a valid axis of `a`.



    See Also

    --------

    numpy.fft : For definition of the DFT and conventions used.

    rfft : The one-dimensional FFT of real input, of which `irfft` is inverse.

    fft : The one-dimensional FFT.

    irfft2 : The inverse of the two-dimensional FFT of real input.

    irfftn : The inverse of the *n*-dimensional FFT of real input.



    Notes

    -----

    Returns the real valued `n`-point inverse discrete Fourier transform

    of `a`, where `a` contains the non-negative frequency terms of a

    Hermitian-symmetric sequence. `n` is the length of the result, not the

    input.



    If you specify an `n` such that `a` must be zero-padded or truncated, the

    extra/removed values will be added/removed at high frequencies. One can

    thus resample a series to `m` points via Fourier interpolation by:

    ``a_resamp = irfft(rfft(a), m)``.



    The correct interpretation of the hermitian input depends on the length of

    the original data, as given by `n`. This is because each input shape could

    correspond to either an odd or even length signal. By default, `irfft`

    assumes an even output length which puts the last entry at the Nyquist

    frequency; aliasing with its symmetric counterpart. By Hermitian symmetry,

    the value is thus treated as purely real. To avoid losing information, the

    correct length of the real input **must** be given.



    Examples

    --------

    >>> np.fft.ifft([1, -1j, -1, 1j])

    array([0.+0.j,  1.+0.j,  0.+0.j,  0.+0.j]) # may vary

    >>> np.fft.irfft([1, -1j, -1])

    array([0.,  1.,  0.,  0.])



    Notice how the last term in the input to the ordinary `ifft` is the

    complex conjugate of the second term, and the output has zero imaginary

    part everywhere.  When calling `irfft`, the negative frequencies are not

    specified, and the output array is purely real.



    """
    a = asarray(a)
    if n is None:
        n = (a.shape[axis] - 1) * 2
    inv_norm = _get_backward_norm(n, norm)
    output = _raw_fft(a, n, axis, True, False, inv_norm)
    return output


@array_function_dispatch(_fft_dispatcher)
def hfft(a, n=None, axis=-1, norm=None):
    """

    Compute the FFT of a signal that has Hermitian symmetry, i.e., a real

    spectrum.



    Parameters

    ----------

    a : array_like

        The input array.

    n : int, optional

        Length of the transformed axis of the output. For `n` output

        points, ``n//2 + 1`` input points are necessary.  If the input is

        longer than this, it is cropped.  If it is shorter than this, it is

        padded with zeros.  If `n` is not given, it is taken to be ``2*(m-1)``

        where ``m`` is the length of the input along the axis specified by

        `axis`.

    axis : int, optional

        Axis over which to compute the FFT. If not given, the last

        axis is used.

    norm : {"backward", "ortho", "forward"}, optional

        .. versionadded:: 1.10.0



        Normalization mode (see `numpy.fft`). Default is "backward".

        Indicates which direction of the forward/backward pair of transforms

        is scaled and with what normalization factor.



        .. versionadded:: 1.20.0



            The "backward", "forward" values were added.



    Returns

    -------

    out : ndarray

        The truncated or zero-padded input, transformed along the axis

        indicated by `axis`, or the last one if `axis` is not specified.

        The length of the transformed axis is `n`, or, if `n` is not given,

        ``2*m - 2`` where ``m`` is the length of the transformed axis of

        the input. To get an odd number of output points, `n` must be

        specified, for instance as ``2*m - 1`` in the typical case,



    Raises

    ------

    IndexError

        If `axis` is not a valid axis of `a`.



    See also

    --------

    rfft : Compute the one-dimensional FFT for real input.

    ihfft : The inverse of `hfft`.



    Notes

    -----

    `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the

    opposite case: here the signal has Hermitian symmetry in the time

    domain and is real in the frequency domain. So here it's `hfft` for

    which you must supply the length of the result if it is to be odd.



    * even: ``ihfft(hfft(a, 2*len(a) - 2)) == a``, within roundoff error,

    * odd: ``ihfft(hfft(a, 2*len(a) - 1)) == a``, within roundoff error.



    The correct interpretation of the hermitian input depends on the length of

    the original data, as given by `n`. This is because each input shape could

    correspond to either an odd or even length signal. By default, `hfft`

    assumes an even output length which puts the last entry at the Nyquist

    frequency; aliasing with its symmetric counterpart. By Hermitian symmetry,

    the value is thus treated as purely real. To avoid losing information, the

    shape of the full signal **must** be given.



    Examples

    --------

    >>> signal = np.array([1, 2, 3, 4, 3, 2])

    >>> np.fft.fft(signal)

    array([15.+0.j,  -4.+0.j,   0.+0.j,  -1.-0.j,   0.+0.j,  -4.+0.j]) # may vary

    >>> np.fft.hfft(signal[:4]) # Input first half of signal

    array([15.,  -4.,   0.,  -1.,   0.,  -4.])

    >>> np.fft.hfft(signal, 6)  # Input entire signal and truncate

    array([15.,  -4.,   0.,  -1.,   0.,  -4.])





    >>> signal = np.array([[1, 1.j], [-1.j, 2]])

    >>> np.conj(signal.T) - signal   # check Hermitian symmetry

    array([[ 0.-0.j,  -0.+0.j], # may vary

           [ 0.+0.j,  0.-0.j]])

    >>> freq_spectrum = np.fft.hfft(signal)

    >>> freq_spectrum

    array([[ 1.,  1.],

           [ 2., -2.]])



    """
    a = asarray(a)
    if n is None:
        n = (a.shape[axis] - 1) * 2
    new_norm = _swap_direction(norm)
    output = irfft(conjugate(a), n, axis, norm=new_norm)
    return output


@array_function_dispatch(_fft_dispatcher)
def ihfft(a, n=None, axis=-1, norm=None):
    """

    Compute the inverse FFT of a signal that has Hermitian symmetry.



    Parameters

    ----------

    a : array_like

        Input array.

    n : int, optional

        Length of the inverse FFT, the number of points along

        transformation axis in the input to use.  If `n` is smaller than

        the length of the input, the input is cropped.  If it is larger,

        the input is padded with zeros. If `n` is not given, the length of

        the input along the axis specified by `axis` is used.

    axis : int, optional

        Axis over which to compute the inverse FFT. If not given, the last

        axis is used.

    norm : {"backward", "ortho", "forward"}, optional

        .. versionadded:: 1.10.0



        Normalization mode (see `numpy.fft`). Default is "backward".

        Indicates which direction of the forward/backward pair of transforms

        is scaled and with what normalization factor.



        .. versionadded:: 1.20.0



            The "backward", "forward" values were added.



    Returns

    -------

    out : complex ndarray

        The truncated or zero-padded input, transformed along the axis

        indicated by `axis`, or the last one if `axis` is not specified.

        The length of the transformed axis is ``n//2 + 1``.



    See also

    --------

    hfft, irfft



    Notes

    -----

    `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the

    opposite case: here the signal has Hermitian symmetry in the time

    domain and is real in the frequency domain. So here it's `hfft` for

    which you must supply the length of the result if it is to be odd:



    * even: ``ihfft(hfft(a, 2*len(a) - 2)) == a``, within roundoff error,

    * odd: ``ihfft(hfft(a, 2*len(a) - 1)) == a``, within roundoff error.



    Examples

    --------

    >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4])

    >>> np.fft.ifft(spectrum)

    array([1.+0.j,  2.+0.j,  3.+0.j,  4.+0.j,  3.+0.j,  2.+0.j]) # may vary

    >>> np.fft.ihfft(spectrum)

    array([ 1.-0.j,  2.-0.j,  3.-0.j,  4.-0.j]) # may vary



    """
    a = asarray(a)
    if n is None:
        n = a.shape[axis]
    new_norm = _swap_direction(norm)
    output = conjugate(rfft(a, n, axis, norm=new_norm))
    return output


def _cook_nd_args(a, s=None, axes=None, invreal=0):
    if s is None:
        shapeless = 1
        if axes is None:
            s = list(a.shape)
        else:
            s = take(a.shape, axes)
    else:
        shapeless = 0
    s = list(s)
    if axes is None:
        axes = list(range(-len(s), 0))
    if len(s) != len(axes):
        raise ValueError("Shape and axes have different lengths.")
    if invreal and shapeless:
        s[-1] = (a.shape[axes[-1]] - 1) * 2
    return s, axes


def _raw_fftnd(a, s=None, axes=None, function=fft, norm=None):
    a = asarray(a)
    s, axes = _cook_nd_args(a, s, axes)
    itl = list(range(len(axes)))
    itl.reverse()
    for ii in itl:
        a = function(a, n=s[ii], axis=axes[ii], norm=norm)
    return a


def _fftn_dispatcher(a, s=None, axes=None, norm=None):
    return (a,)


@array_function_dispatch(_fftn_dispatcher)
def fftn(a, s=None, axes=None, norm=None):
    """

    Compute the N-dimensional discrete Fourier Transform.



    This function computes the *N*-dimensional discrete Fourier Transform over

    any number of axes in an *M*-dimensional array by means of the Fast Fourier

    Transform (FFT).



    Parameters

    ----------

    a : array_like

        Input array, can be complex.

    s : sequence of ints, optional

        Shape (length of each transformed axis) of the output

        (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).

        This corresponds to ``n`` for ``fft(x, n)``.

        Along any axis, if the given shape is smaller than that of the input,

        the input is cropped.  If it is larger, the input is padded with zeros.

        if `s` is not given, the shape of the input along the axes specified

        by `axes` is used.

    axes : sequence of ints, optional

        Axes over which to compute the FFT.  If not given, the last ``len(s)``

        axes are used, or all axes if `s` is also not specified.

        Repeated indices in `axes` means that the transform over that axis is

        performed multiple times.

    norm : {"backward", "ortho", "forward"}, optional

        .. versionadded:: 1.10.0



        Normalization mode (see `numpy.fft`). Default is "backward".

        Indicates which direction of the forward/backward pair of transforms

        is scaled and with what normalization factor.



        .. versionadded:: 1.20.0



            The "backward", "forward" values were added.



    Returns

    -------

    out : complex ndarray

        The truncated or zero-padded input, transformed along the axes

        indicated by `axes`, or by a combination of `s` and `a`,

        as explained in the parameters section above.



    Raises

    ------

    ValueError

        If `s` and `axes` have different length.

    IndexError

        If an element of `axes` is larger than than the number of axes of `a`.



    See Also

    --------

    numpy.fft : Overall view of discrete Fourier transforms, with definitions

        and conventions used.

    ifftn : The inverse of `fftn`, the inverse *n*-dimensional FFT.

    fft : The one-dimensional FFT, with definitions and conventions used.

    rfftn : The *n*-dimensional FFT of real input.

    fft2 : The two-dimensional FFT.

    fftshift : Shifts zero-frequency terms to centre of array



    Notes

    -----

    The output, analogously to `fft`, contains the term for zero frequency in

    the low-order corner of all axes, the positive frequency terms in the

    first half of all axes, the term for the Nyquist frequency in the middle

    of all axes and the negative frequency terms in the second half of all

    axes, in order of decreasingly negative frequency.



    See `numpy.fft` for details, definitions and conventions used.



    Examples

    --------

    >>> a = np.mgrid[:3, :3, :3][0]

    >>> np.fft.fftn(a, axes=(1, 2))

    array([[[ 0.+0.j,   0.+0.j,   0.+0.j], # may vary

            [ 0.+0.j,   0.+0.j,   0.+0.j],

            [ 0.+0.j,   0.+0.j,   0.+0.j]],

           [[ 9.+0.j,   0.+0.j,   0.+0.j],

            [ 0.+0.j,   0.+0.j,   0.+0.j],

            [ 0.+0.j,   0.+0.j,   0.+0.j]],

           [[18.+0.j,   0.+0.j,   0.+0.j],

            [ 0.+0.j,   0.+0.j,   0.+0.j],

            [ 0.+0.j,   0.+0.j,   0.+0.j]]])

    >>> np.fft.fftn(a, (2, 2), axes=(0, 1))

    array([[[ 2.+0.j,  2.+0.j,  2.+0.j], # may vary

            [ 0.+0.j,  0.+0.j,  0.+0.j]],

           [[-2.+0.j, -2.+0.j, -2.+0.j],

            [ 0.+0.j,  0.+0.j,  0.+0.j]]])



    >>> import matplotlib.pyplot as plt

    >>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12,

    ...                      2 * np.pi * np.arange(200) / 34)

    >>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape)

    >>> FS = np.fft.fftn(S)

    >>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2))

    <matplotlib.image.AxesImage object at 0x...>

    >>> plt.show()



    """
    return _raw_fftnd(a, s, axes, fft, norm)


@array_function_dispatch(_fftn_dispatcher)
def ifftn(a, s=None, axes=None, norm=None):
    """

    Compute the N-dimensional inverse discrete Fourier Transform.



    This function computes the inverse of the N-dimensional discrete

    Fourier Transform over any number of axes in an M-dimensional array by

    means of the Fast Fourier Transform (FFT).  In other words,

    ``ifftn(fftn(a)) == a`` to within numerical accuracy.

    For a description of the definitions and conventions used, see `numpy.fft`.



    The input, analogously to `ifft`, should be ordered in the same way as is

    returned by `fftn`, i.e. it should have the term for zero frequency

    in all axes in the low-order corner, the positive frequency terms in the

    first half of all axes, the term for the Nyquist frequency in the middle

    of all axes and the negative frequency terms in the second half of all

    axes, in order of decreasingly negative frequency.



    Parameters

    ----------

    a : array_like

        Input array, can be complex.

    s : sequence of ints, optional

        Shape (length of each transformed axis) of the output

        (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).

        This corresponds to ``n`` for ``ifft(x, n)``.

        Along any axis, if the given shape is smaller than that of the input,

        the input is cropped.  If it is larger, the input is padded with zeros.

        if `s` is not given, the shape of the input along the axes specified

        by `axes` is used.  See notes for issue on `ifft` zero padding.

    axes : sequence of ints, optional

        Axes over which to compute the IFFT.  If not given, the last ``len(s)``

        axes are used, or all axes if `s` is also not specified.

        Repeated indices in `axes` means that the inverse transform over that

        axis is performed multiple times.

    norm : {"backward", "ortho", "forward"}, optional

        .. versionadded:: 1.10.0



        Normalization mode (see `numpy.fft`). Default is "backward".

        Indicates which direction of the forward/backward pair of transforms

        is scaled and with what normalization factor.



        .. versionadded:: 1.20.0



            The "backward", "forward" values were added.



    Returns

    -------

    out : complex ndarray

        The truncated or zero-padded input, transformed along the axes

        indicated by `axes`, or by a combination of `s` or `a`,

        as explained in the parameters section above.



    Raises

    ------

    ValueError

        If `s` and `axes` have different length.

    IndexError

        If an element of `axes` is larger than than the number of axes of `a`.



    See Also

    --------

    numpy.fft : Overall view of discrete Fourier transforms, with definitions

         and conventions used.

    fftn : The forward *n*-dimensional FFT, of which `ifftn` is the inverse.

    ifft : The one-dimensional inverse FFT.

    ifft2 : The two-dimensional inverse FFT.

    ifftshift : Undoes `fftshift`, shifts zero-frequency terms to beginning

        of array.



    Notes

    -----

    See `numpy.fft` for definitions and conventions used.



    Zero-padding, analogously with `ifft`, is performed by appending zeros to

    the input along the specified dimension.  Although this is the common

    approach, it might lead to surprising results.  If another form of zero

    padding is desired, it must be performed before `ifftn` is called.



    Examples

    --------

    >>> a = np.eye(4)

    >>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,))

    array([[1.+0.j,  0.+0.j,  0.+0.j,  0.+0.j], # may vary

           [0.+0.j,  1.+0.j,  0.+0.j,  0.+0.j],

           [0.+0.j,  0.+0.j,  1.+0.j,  0.+0.j],

           [0.+0.j,  0.+0.j,  0.+0.j,  1.+0.j]])





    Create and plot an image with band-limited frequency content:



    >>> import matplotlib.pyplot as plt

    >>> n = np.zeros((200,200), dtype=complex)

    >>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20)))

    >>> im = np.fft.ifftn(n).real

    >>> plt.imshow(im)

    <matplotlib.image.AxesImage object at 0x...>

    >>> plt.show()



    """
    return _raw_fftnd(a, s, axes, ifft, norm)


@array_function_dispatch(_fftn_dispatcher)
def fft2(a, s=None, axes=(-2, -1), norm=None):
    """

    Compute the 2-dimensional discrete Fourier Transform.



    This function computes the *n*-dimensional discrete Fourier Transform

    over any axes in an *M*-dimensional array by means of the

    Fast Fourier Transform (FFT).  By default, the transform is computed over

    the last two axes of the input array, i.e., a 2-dimensional FFT.



    Parameters

    ----------

    a : array_like

        Input array, can be complex

    s : sequence of ints, optional

        Shape (length of each transformed axis) of the output

        (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).

        This corresponds to ``n`` for ``fft(x, n)``.

        Along each axis, if the given shape is smaller than that of the input,

        the input is cropped.  If it is larger, the input is padded with zeros.

        if `s` is not given, the shape of the input along the axes specified

        by `axes` is used.

    axes : sequence of ints, optional

        Axes over which to compute the FFT.  If not given, the last two

        axes are used.  A repeated index in `axes` means the transform over

        that axis is performed multiple times.  A one-element sequence means

        that a one-dimensional FFT is performed.

    norm : {"backward", "ortho", "forward"}, optional

        .. versionadded:: 1.10.0



        Normalization mode (see `numpy.fft`). Default is "backward".

        Indicates which direction of the forward/backward pair of transforms

        is scaled and with what normalization factor.



        .. versionadded:: 1.20.0



            The "backward", "forward" values were added.



    Returns

    -------

    out : complex ndarray

        The truncated or zero-padded input, transformed along the axes

        indicated by `axes`, or the last two axes if `axes` is not given.



    Raises

    ------

    ValueError

        If `s` and `axes` have different length, or `axes` not given and

        ``len(s) != 2``.

    IndexError

        If an element of `axes` is larger than than the number of axes of `a`.



    See Also

    --------

    numpy.fft : Overall view of discrete Fourier transforms, with definitions

         and conventions used.

    ifft2 : The inverse two-dimensional FFT.

    fft : The one-dimensional FFT.

    fftn : The *n*-dimensional FFT.

    fftshift : Shifts zero-frequency terms to the center of the array.

        For two-dimensional input, swaps first and third quadrants, and second

        and fourth quadrants.



    Notes

    -----

    `fft2` is just `fftn` with a different default for `axes`.



    The output, analogously to `fft`, contains the term for zero frequency in

    the low-order corner of the transformed axes, the positive frequency terms

    in the first half of these axes, the term for the Nyquist frequency in the

    middle of the axes and the negative frequency terms in the second half of

    the axes, in order of decreasingly negative frequency.



    See `fftn` for details and a plotting example, and `numpy.fft` for

    definitions and conventions used.





    Examples

    --------

    >>> a = np.mgrid[:5, :5][0]

    >>> np.fft.fft2(a)

    array([[ 50.  +0.j        ,   0.  +0.j        ,   0.  +0.j        , # may vary

              0.  +0.j        ,   0.  +0.j        ],

           [-12.5+17.20477401j,   0.  +0.j        ,   0.  +0.j        ,

              0.  +0.j        ,   0.  +0.j        ],

           [-12.5 +4.0614962j ,   0.  +0.j        ,   0.  +0.j        ,

              0.  +0.j        ,   0.  +0.j        ],

           [-12.5 -4.0614962j ,   0.  +0.j        ,   0.  +0.j        ,

              0.  +0.j        ,   0.  +0.j        ],

           [-12.5-17.20477401j,   0.  +0.j        ,   0.  +0.j        ,

              0.  +0.j        ,   0.  +0.j        ]])



    """
    return _raw_fftnd(a, s, axes, fft, norm)


@array_function_dispatch(_fftn_dispatcher)
def ifft2(a, s=None, axes=(-2, -1), norm=None):
    """

    Compute the 2-dimensional inverse discrete Fourier Transform.



    This function computes the inverse of the 2-dimensional discrete Fourier

    Transform over any number of axes in an M-dimensional array by means of

    the Fast Fourier Transform (FFT).  In other words, ``ifft2(fft2(a)) == a``

    to within numerical accuracy.  By default, the inverse transform is

    computed over the last two axes of the input array.



    The input, analogously to `ifft`, should be ordered in the same way as is

    returned by `fft2`, i.e. it should have the term for zero frequency

    in the low-order corner of the two axes, the positive frequency terms in

    the first half of these axes, the term for the Nyquist frequency in the

    middle of the axes and the negative frequency terms in the second half of

    both axes, in order of decreasingly negative frequency.



    Parameters

    ----------

    a : array_like

        Input array, can be complex.

    s : sequence of ints, optional

        Shape (length of each axis) of the output (``s[0]`` refers to axis 0,

        ``s[1]`` to axis 1, etc.).  This corresponds to `n` for ``ifft(x, n)``.

        Along each axis, if the given shape is smaller than that of the input,

        the input is cropped.  If it is larger, the input is padded with zeros.

        if `s` is not given, the shape of the input along the axes specified

        by `axes` is used.  See notes for issue on `ifft` zero padding.

    axes : sequence of ints, optional

        Axes over which to compute the FFT.  If not given, the last two

        axes are used.  A repeated index in `axes` means the transform over

        that axis is performed multiple times.  A one-element sequence means

        that a one-dimensional FFT is performed.

    norm : {"backward", "ortho", "forward"}, optional

        .. versionadded:: 1.10.0



        Normalization mode (see `numpy.fft`). Default is "backward".

        Indicates which direction of the forward/backward pair of transforms

        is scaled and with what normalization factor.



        .. versionadded:: 1.20.0



            The "backward", "forward" values were added.



    Returns

    -------

    out : complex ndarray

        The truncated or zero-padded input, transformed along the axes

        indicated by `axes`, or the last two axes if `axes` is not given.



    Raises

    ------

    ValueError

        If `s` and `axes` have different length, or `axes` not given and

        ``len(s) != 2``.

    IndexError

        If an element of `axes` is larger than than the number of axes of `a`.



    See Also

    --------

    numpy.fft : Overall view of discrete Fourier transforms, with definitions

         and conventions used.

    fft2 : The forward 2-dimensional FFT, of which `ifft2` is the inverse.

    ifftn : The inverse of the *n*-dimensional FFT.

    fft : The one-dimensional FFT.

    ifft : The one-dimensional inverse FFT.



    Notes

    -----

    `ifft2` is just `ifftn` with a different default for `axes`.



    See `ifftn` for details and a plotting example, and `numpy.fft` for

    definition and conventions used.



    Zero-padding, analogously with `ifft`, is performed by appending zeros to

    the input along the specified dimension.  Although this is the common

    approach, it might lead to surprising results.  If another form of zero

    padding is desired, it must be performed before `ifft2` is called.



    Examples

    --------

    >>> a = 4 * np.eye(4)

    >>> np.fft.ifft2(a)

    array([[1.+0.j,  0.+0.j,  0.+0.j,  0.+0.j], # may vary

           [0.+0.j,  0.+0.j,  0.+0.j,  1.+0.j],

           [0.+0.j,  0.+0.j,  1.+0.j,  0.+0.j],

           [0.+0.j,  1.+0.j,  0.+0.j,  0.+0.j]])



    """
    return _raw_fftnd(a, s, axes, ifft, norm)


@array_function_dispatch(_fftn_dispatcher)
def rfftn(a, s=None, axes=None, norm=None):
    """

    Compute the N-dimensional discrete Fourier Transform for real input.



    This function computes the N-dimensional discrete Fourier Transform over

    any number of axes in an M-dimensional real array by means of the Fast

    Fourier Transform (FFT).  By default, all axes are transformed, with the

    real transform performed over the last axis, while the remaining

    transforms are complex.



    Parameters

    ----------

    a : array_like

        Input array, taken to be real.

    s : sequence of ints, optional

        Shape (length along each transformed axis) to use from the input.

        (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).

        The final element of `s` corresponds to `n` for ``rfft(x, n)``, while

        for the remaining axes, it corresponds to `n` for ``fft(x, n)``.

        Along any axis, if the given shape is smaller than that of the input,

        the input is cropped.  If it is larger, the input is padded with zeros.

        if `s` is not given, the shape of the input along the axes specified

        by `axes` is used.

    axes : sequence of ints, optional

        Axes over which to compute the FFT.  If not given, the last ``len(s)``

        axes are used, or all axes if `s` is also not specified.

    norm : {"backward", "ortho", "forward"}, optional

        .. versionadded:: 1.10.0



        Normalization mode (see `numpy.fft`). Default is "backward".

        Indicates which direction of the forward/backward pair of transforms

        is scaled and with what normalization factor.



        .. versionadded:: 1.20.0



            The "backward", "forward" values were added.



    Returns

    -------

    out : complex ndarray

        The truncated or zero-padded input, transformed along the axes

        indicated by `axes`, or by a combination of `s` and `a`,

        as explained in the parameters section above.

        The length of the last axis transformed will be ``s[-1]//2+1``,

        while the remaining transformed axes will have lengths according to

        `s`, or unchanged from the input.



    Raises

    ------

    ValueError

        If `s` and `axes` have different length.

    IndexError

        If an element of `axes` is larger than than the number of axes of `a`.



    See Also

    --------

    irfftn : The inverse of `rfftn`, i.e. the inverse of the n-dimensional FFT

         of real input.

    fft : The one-dimensional FFT, with definitions and conventions used.

    rfft : The one-dimensional FFT of real input.

    fftn : The n-dimensional FFT.

    rfft2 : The two-dimensional FFT of real input.



    Notes

    -----

    The transform for real input is performed over the last transformation

    axis, as by `rfft`, then the transform over the remaining axes is

    performed as by `fftn`.  The order of the output is as for `rfft` for the

    final transformation axis, and as for `fftn` for the remaining

    transformation axes.



    See `fft` for details, definitions and conventions used.



    Examples

    --------

    >>> a = np.ones((2, 2, 2))

    >>> np.fft.rfftn(a)

    array([[[8.+0.j,  0.+0.j], # may vary

            [0.+0.j,  0.+0.j]],

           [[0.+0.j,  0.+0.j],

            [0.+0.j,  0.+0.j]]])



    >>> np.fft.rfftn(a, axes=(2, 0))

    array([[[4.+0.j,  0.+0.j], # may vary

            [4.+0.j,  0.+0.j]],

           [[0.+0.j,  0.+0.j],

            [0.+0.j,  0.+0.j]]])



    """
    a = asarray(a)
    s, axes = _cook_nd_args(a, s, axes)
    a = rfft(a, s[-1], axes[-1], norm)
    for ii in range(len(axes)-1):
        a = fft(a, s[ii], axes[ii], norm)
    return a


@array_function_dispatch(_fftn_dispatcher)
def rfft2(a, s=None, axes=(-2, -1), norm=None):
    """

    Compute the 2-dimensional FFT of a real array.



    Parameters

    ----------

    a : array

        Input array, taken to be real.

    s : sequence of ints, optional

        Shape of the FFT.

    axes : sequence of ints, optional

        Axes over which to compute the FFT.

    norm : {"backward", "ortho", "forward"}, optional

        .. versionadded:: 1.10.0



        Normalization mode (see `numpy.fft`). Default is "backward".

        Indicates which direction of the forward/backward pair of transforms

        is scaled and with what normalization factor.



        .. versionadded:: 1.20.0



            The "backward", "forward" values were added.



    Returns

    -------

    out : ndarray

        The result of the real 2-D FFT.



    See Also

    --------

    rfftn : Compute the N-dimensional discrete Fourier Transform for real

            input.



    Notes

    -----

    This is really just `rfftn` with different default behavior.

    For more details see `rfftn`.



    Examples

    --------

    >>> a = np.mgrid[:5, :5][0]

    >>> np.fft.rfft2(a)

    array([[ 50.  +0.j        ,   0.  +0.j        ,   0.  +0.j        ],

           [-12.5+17.20477401j,   0.  +0.j        ,   0.  +0.j        ],

           [-12.5 +4.0614962j ,   0.  +0.j        ,   0.  +0.j        ],

           [-12.5 -4.0614962j ,   0.  +0.j        ,   0.  +0.j        ],

           [-12.5-17.20477401j,   0.  +0.j        ,   0.  +0.j        ]])

    """
    return rfftn(a, s, axes, norm)


@array_function_dispatch(_fftn_dispatcher)
def irfftn(a, s=None, axes=None, norm=None):
    """

    Computes the inverse of `rfftn`.



    This function computes the inverse of the N-dimensional discrete

    Fourier Transform for real input over any number of axes in an

    M-dimensional array by means of the Fast Fourier Transform (FFT).  In

    other words, ``irfftn(rfftn(a), a.shape) == a`` to within numerical

    accuracy. (The ``a.shape`` is necessary like ``len(a)`` is for `irfft`,

    and for the same reason.)



    The input should be ordered in the same way as is returned by `rfftn`,

    i.e. as for `irfft` for the final transformation axis, and as for `ifftn`

    along all the other axes.



    Parameters

    ----------

    a : array_like

        Input array.

    s : sequence of ints, optional

        Shape (length of each transformed axis) of the output

        (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the

        number of input points used along this axis, except for the last axis,

        where ``s[-1]//2+1`` points of the input are used.

        Along any axis, if the shape indicated by `s` is smaller than that of

        the input, the input is cropped.  If it is larger, the input is padded

        with zeros. If `s` is not given, the shape of the input along the axes

        specified by axes is used. Except for the last axis which is taken to

        be ``2*(m-1)`` where ``m`` is the length of the input along that axis.

    axes : sequence of ints, optional

        Axes over which to compute the inverse FFT. If not given, the last

        `len(s)` axes are used, or all axes if `s` is also not specified.

        Repeated indices in `axes` means that the inverse transform over that

        axis is performed multiple times.

    norm : {"backward", "ortho", "forward"}, optional

        .. versionadded:: 1.10.0



        Normalization mode (see `numpy.fft`). Default is "backward".

        Indicates which direction of the forward/backward pair of transforms

        is scaled and with what normalization factor.



        .. versionadded:: 1.20.0



            The "backward", "forward" values were added.



    Returns

    -------

    out : ndarray

        The truncated or zero-padded input, transformed along the axes

        indicated by `axes`, or by a combination of `s` or `a`,

        as explained in the parameters section above.

        The length of each transformed axis is as given by the corresponding

        element of `s`, or the length of the input in every axis except for the

        last one if `s` is not given.  In the final transformed axis the length

        of the output when `s` is not given is ``2*(m-1)`` where ``m`` is the

        length of the final transformed axis of the input.  To get an odd

        number of output points in the final axis, `s` must be specified.



    Raises

    ------

    ValueError

        If `s` and `axes` have different length.

    IndexError

        If an element of `axes` is larger than than the number of axes of `a`.



    See Also

    --------

    rfftn : The forward n-dimensional FFT of real input,

            of which `ifftn` is the inverse.

    fft : The one-dimensional FFT, with definitions and conventions used.

    irfft : The inverse of the one-dimensional FFT of real input.

    irfft2 : The inverse of the two-dimensional FFT of real input.



    Notes

    -----

    See `fft` for definitions and conventions used.



    See `rfft` for definitions and conventions used for real input.



    The correct interpretation of the hermitian input depends on the shape of

    the original data, as given by `s`. This is because each input shape could

    correspond to either an odd or even length signal. By default, `irfftn`

    assumes an even output length which puts the last entry at the Nyquist

    frequency; aliasing with its symmetric counterpart. When performing the

    final complex to real transform, the last value is thus treated as purely

    real. To avoid losing information, the correct shape of the real input

    **must** be given.



    Examples

    --------

    >>> a = np.zeros((3, 2, 2))

    >>> a[0, 0, 0] = 3 * 2 * 2

    >>> np.fft.irfftn(a)

    array([[[1.,  1.],

            [1.,  1.]],

           [[1.,  1.],

            [1.,  1.]],

           [[1.,  1.],

            [1.,  1.]]])



    """
    a = asarray(a)
    s, axes = _cook_nd_args(a, s, axes, invreal=1)
    for ii in range(len(axes)-1):
        a = ifft(a, s[ii], axes[ii], norm)
    a = irfft(a, s[-1], axes[-1], norm)
    return a


@array_function_dispatch(_fftn_dispatcher)
def irfft2(a, s=None, axes=(-2, -1), norm=None):
    """

    Computes the inverse of `rfft2`.



    Parameters

    ----------

    a : array_like

        The input array

    s : sequence of ints, optional

        Shape of the real output to the inverse FFT.

    axes : sequence of ints, optional

        The axes over which to compute the inverse fft.

        Default is the last two axes.

    norm : {"backward", "ortho", "forward"}, optional

        .. versionadded:: 1.10.0



        Normalization mode (see `numpy.fft`). Default is "backward".

        Indicates which direction of the forward/backward pair of transforms

        is scaled and with what normalization factor.



        .. versionadded:: 1.20.0



            The "backward", "forward" values were added.



    Returns

    -------

    out : ndarray

        The result of the inverse real 2-D FFT.



    See Also

    --------

    rfft2 : The forward two-dimensional FFT of real input,

            of which `irfft2` is the inverse.

    rfft : The one-dimensional FFT for real input.

    irfft : The inverse of the one-dimensional FFT of real input.

    irfftn : Compute the inverse of the N-dimensional FFT of real input.



    Notes

    -----

    This is really `irfftn` with different defaults.

    For more details see `irfftn`.



    Examples

    --------

    >>> a = np.mgrid[:5, :5][0]

    >>> A = np.fft.rfft2(a)

    >>> np.fft.irfft2(A, s=a.shape)

    array([[0., 0., 0., 0., 0.],

           [1., 1., 1., 1., 1.],

           [2., 2., 2., 2., 2.],

           [3., 3., 3., 3., 3.],

           [4., 4., 4., 4., 4.]])

    """
    return irfftn(a, s, axes, norm)