File size: 45,257 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
"""

Functions to operate on polynomials.



"""
__all__ = ['poly', 'roots', 'polyint', 'polyder', 'polyadd',
           'polysub', 'polymul', 'polydiv', 'polyval', 'poly1d',
           'polyfit', 'RankWarning']

import functools
import re
import warnings
import numpy.core.numeric as NX

from numpy.core import (isscalar, abs, finfo, atleast_1d, hstack, dot, array,
                        ones)
from numpy.core import overrides
from numpy.core.overrides import set_module
from numpy.lib.twodim_base import diag, vander
from numpy.lib.function_base import trim_zeros
from numpy.lib.type_check import iscomplex, real, imag, mintypecode
from numpy.linalg import eigvals, lstsq, inv


array_function_dispatch = functools.partial(
    overrides.array_function_dispatch, module='numpy')


@set_module('numpy')
class RankWarning(UserWarning):
    """

    Issued by `polyfit` when the Vandermonde matrix is rank deficient.



    For more information, a way to suppress the warning, and an example of

    `RankWarning` being issued, see `polyfit`.



    """
    pass


def _poly_dispatcher(seq_of_zeros):
    return seq_of_zeros


@array_function_dispatch(_poly_dispatcher)
def poly(seq_of_zeros):
    """

    Find the coefficients of a polynomial with the given sequence of roots.



    .. note::

       This forms part of the old polynomial API. Since version 1.4, the

       new polynomial API defined in `numpy.polynomial` is preferred.

       A summary of the differences can be found in the

       :doc:`transition guide </reference/routines.polynomials>`.



    Returns the coefficients of the polynomial whose leading coefficient

    is one for the given sequence of zeros (multiple roots must be included

    in the sequence as many times as their multiplicity; see Examples).

    A square matrix (or array, which will be treated as a matrix) can also

    be given, in which case the coefficients of the characteristic polynomial

    of the matrix are returned.



    Parameters

    ----------

    seq_of_zeros : array_like, shape (N,) or (N, N)

        A sequence of polynomial roots, or a square array or matrix object.



    Returns

    -------

    c : ndarray

        1D array of polynomial coefficients from highest to lowest degree:



        ``c[0] * x**(N) + c[1] * x**(N-1) + ... + c[N-1] * x + c[N]``

        where c[0] always equals 1.



    Raises

    ------

    ValueError

        If input is the wrong shape (the input must be a 1-D or square

        2-D array).



    See Also

    --------

    polyval : Compute polynomial values.

    roots : Return the roots of a polynomial.

    polyfit : Least squares polynomial fit.

    poly1d : A one-dimensional polynomial class.



    Notes

    -----

    Specifying the roots of a polynomial still leaves one degree of

    freedom, typically represented by an undetermined leading

    coefficient. [1]_ In the case of this function, that coefficient -

    the first one in the returned array - is always taken as one. (If

    for some reason you have one other point, the only automatic way

    presently to leverage that information is to use ``polyfit``.)



    The characteristic polynomial, :math:`p_a(t)`, of an `n`-by-`n`

    matrix **A** is given by



        :math:`p_a(t) = \\mathrm{det}(t\\, \\mathbf{I} - \\mathbf{A})`,



    where **I** is the `n`-by-`n` identity matrix. [2]_



    References

    ----------

    .. [1] M. Sullivan and M. Sullivan, III, "Algebra and Trignometry,

       Enhanced With Graphing Utilities," Prentice-Hall, pg. 318, 1996.



    .. [2] G. Strang, "Linear Algebra and Its Applications, 2nd Edition,"

       Academic Press, pg. 182, 1980.



    Examples

    --------

    Given a sequence of a polynomial's zeros:



    >>> np.poly((0, 0, 0)) # Multiple root example

    array([1., 0., 0., 0.])



    The line above represents z**3 + 0*z**2 + 0*z + 0.



    >>> np.poly((-1./2, 0, 1./2))

    array([ 1.  ,  0.  , -0.25,  0.  ])



    The line above represents z**3 - z/4



    >>> np.poly((np.random.random(1)[0], 0, np.random.random(1)[0]))

    array([ 1.        , -0.77086955,  0.08618131,  0.        ]) # random



    Given a square array object:



    >>> P = np.array([[0, 1./3], [-1./2, 0]])

    >>> np.poly(P)

    array([1.        , 0.        , 0.16666667])



    Note how in all cases the leading coefficient is always 1.



    """
    seq_of_zeros = atleast_1d(seq_of_zeros)
    sh = seq_of_zeros.shape

    if len(sh) == 2 and sh[0] == sh[1] and sh[0] != 0:
        seq_of_zeros = eigvals(seq_of_zeros)
    elif len(sh) == 1:
        dt = seq_of_zeros.dtype
        # Let object arrays slip through, e.g. for arbitrary precision
        if dt != object:
            seq_of_zeros = seq_of_zeros.astype(mintypecode(dt.char))
    else:
        raise ValueError("input must be 1d or non-empty square 2d array.")

    if len(seq_of_zeros) == 0:
        return 1.0
    dt = seq_of_zeros.dtype
    a = ones((1,), dtype=dt)
    for k in range(len(seq_of_zeros)):
        a = NX.convolve(a, array([1, -seq_of_zeros[k]], dtype=dt),
                        mode='full')

    if issubclass(a.dtype.type, NX.complexfloating):
        # if complex roots are all complex conjugates, the roots are real.
        roots = NX.asarray(seq_of_zeros, complex)
        if NX.all(NX.sort(roots) == NX.sort(roots.conjugate())):
            a = a.real.copy()

    return a


def _roots_dispatcher(p):
    return p


@array_function_dispatch(_roots_dispatcher)
def roots(p):
    """

    Return the roots of a polynomial with coefficients given in p.



    .. note::

       This forms part of the old polynomial API. Since version 1.4, the

       new polynomial API defined in `numpy.polynomial` is preferred.

       A summary of the differences can be found in the

       :doc:`transition guide </reference/routines.polynomials>`.



    The values in the rank-1 array `p` are coefficients of a polynomial.

    If the length of `p` is n+1 then the polynomial is described by::



      p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]



    Parameters

    ----------

    p : array_like

        Rank-1 array of polynomial coefficients.



    Returns

    -------

    out : ndarray

        An array containing the roots of the polynomial.



    Raises

    ------

    ValueError

        When `p` cannot be converted to a rank-1 array.



    See also

    --------

    poly : Find the coefficients of a polynomial with a given sequence

           of roots.

    polyval : Compute polynomial values.

    polyfit : Least squares polynomial fit.

    poly1d : A one-dimensional polynomial class.



    Notes

    -----

    The algorithm relies on computing the eigenvalues of the

    companion matrix [1]_.



    References

    ----------

    .. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*.  Cambridge, UK:

        Cambridge University Press, 1999, pp. 146-7.



    Examples

    --------

    >>> coeff = [3.2, 2, 1]

    >>> np.roots(coeff)

    array([-0.3125+0.46351241j, -0.3125-0.46351241j])



    """
    # If input is scalar, this makes it an array
    p = atleast_1d(p)
    if p.ndim != 1:
        raise ValueError("Input must be a rank-1 array.")

    # find non-zero array entries
    non_zero = NX.nonzero(NX.ravel(p))[0]

    # Return an empty array if polynomial is all zeros
    if len(non_zero) == 0:
        return NX.array([])

    # find the number of trailing zeros -- this is the number of roots at 0.
    trailing_zeros = len(p) - non_zero[-1] - 1

    # strip leading and trailing zeros
    p = p[int(non_zero[0]):int(non_zero[-1])+1]

    # casting: if incoming array isn't floating point, make it floating point.
    if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)):
        p = p.astype(float)

    N = len(p)
    if N > 1:
        # build companion matrix and find its eigenvalues (the roots)
        A = diag(NX.ones((N-2,), p.dtype), -1)
        A[0,:] = -p[1:] / p[0]
        roots = eigvals(A)
    else:
        roots = NX.array([])

    # tack any zeros onto the back of the array
    roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype)))
    return roots


def _polyint_dispatcher(p, m=None, k=None):
    return (p,)


@array_function_dispatch(_polyint_dispatcher)
def polyint(p, m=1, k=None):
    """

    Return an antiderivative (indefinite integral) of a polynomial.



    .. note::

       This forms part of the old polynomial API. Since version 1.4, the

       new polynomial API defined in `numpy.polynomial` is preferred.

       A summary of the differences can be found in the

       :doc:`transition guide </reference/routines.polynomials>`.



    The returned order `m` antiderivative `P` of polynomial `p` satisfies

    :math:`\\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1`

    integration constants `k`. The constants determine the low-order

    polynomial part



    .. math:: \\frac{k_{m-1}}{0!} x^0 + \\ldots + \\frac{k_0}{(m-1)!}x^{m-1}



    of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`.



    Parameters

    ----------

    p : array_like or poly1d

        Polynomial to integrate.

        A sequence is interpreted as polynomial coefficients, see `poly1d`.

    m : int, optional

        Order of the antiderivative. (Default: 1)

    k : list of `m` scalars or scalar, optional

        Integration constants. They are given in the order of integration:

        those corresponding to highest-order terms come first.



        If ``None`` (default), all constants are assumed to be zero.

        If `m = 1`, a single scalar can be given instead of a list.



    See Also

    --------

    polyder : derivative of a polynomial

    poly1d.integ : equivalent method



    Examples

    --------

    The defining property of the antiderivative:



    >>> p = np.poly1d([1,1,1])

    >>> P = np.polyint(p)

    >>> P

     poly1d([ 0.33333333,  0.5       ,  1.        ,  0.        ]) # may vary

    >>> np.polyder(P) == p

    True



    The integration constants default to zero, but can be specified:



    >>> P = np.polyint(p, 3)

    >>> P(0)

    0.0

    >>> np.polyder(P)(0)

    0.0

    >>> np.polyder(P, 2)(0)

    0.0

    >>> P = np.polyint(p, 3, k=[6,5,3])

    >>> P

    poly1d([ 0.01666667,  0.04166667,  0.16666667,  3. ,  5. ,  3. ]) # may vary



    Note that 3 = 6 / 2!, and that the constants are given in the order of

    integrations. Constant of the highest-order polynomial term comes first:



    >>> np.polyder(P, 2)(0)

    6.0

    >>> np.polyder(P, 1)(0)

    5.0

    >>> P(0)

    3.0



    """
    m = int(m)
    if m < 0:
        raise ValueError("Order of integral must be positive (see polyder)")
    if k is None:
        k = NX.zeros(m, float)
    k = atleast_1d(k)
    if len(k) == 1 and m > 1:
        k = k[0]*NX.ones(m, float)
    if len(k) < m:
        raise ValueError(
              "k must be a scalar or a rank-1 array of length 1 or >m.")

    truepoly = isinstance(p, poly1d)
    p = NX.asarray(p)
    if m == 0:
        if truepoly:
            return poly1d(p)
        return p
    else:
        # Note: this must work also with object and integer arrays
        y = NX.concatenate((p.__truediv__(NX.arange(len(p), 0, -1)), [k[0]]))
        val = polyint(y, m - 1, k=k[1:])
        if truepoly:
            return poly1d(val)
        return val


def _polyder_dispatcher(p, m=None):
    return (p,)


@array_function_dispatch(_polyder_dispatcher)
def polyder(p, m=1):
    """

    Return the derivative of the specified order of a polynomial.



    .. note::

       This forms part of the old polynomial API. Since version 1.4, the

       new polynomial API defined in `numpy.polynomial` is preferred.

       A summary of the differences can be found in the

       :doc:`transition guide </reference/routines.polynomials>`.



    Parameters

    ----------

    p : poly1d or sequence

        Polynomial to differentiate.

        A sequence is interpreted as polynomial coefficients, see `poly1d`.

    m : int, optional

        Order of differentiation (default: 1)



    Returns

    -------

    der : poly1d

        A new polynomial representing the derivative.



    See Also

    --------

    polyint : Anti-derivative of a polynomial.

    poly1d : Class for one-dimensional polynomials.



    Examples

    --------

    The derivative of the polynomial :math:`x^3 + x^2 + x^1 + 1` is:



    >>> p = np.poly1d([1,1,1,1])

    >>> p2 = np.polyder(p)

    >>> p2

    poly1d([3, 2, 1])



    which evaluates to:



    >>> p2(2.)

    17.0



    We can verify this, approximating the derivative with

    ``(f(x + h) - f(x))/h``:



    >>> (p(2. + 0.001) - p(2.)) / 0.001

    17.007000999997857



    The fourth-order derivative of a 3rd-order polynomial is zero:



    >>> np.polyder(p, 2)

    poly1d([6, 2])

    >>> np.polyder(p, 3)

    poly1d([6])

    >>> np.polyder(p, 4)

    poly1d([0])



    """
    m = int(m)
    if m < 0:
        raise ValueError("Order of derivative must be positive (see polyint)")

    truepoly = isinstance(p, poly1d)
    p = NX.asarray(p)
    n = len(p) - 1
    y = p[:-1] * NX.arange(n, 0, -1)
    if m == 0:
        val = p
    else:
        val = polyder(y, m - 1)
    if truepoly:
        val = poly1d(val)
    return val


def _polyfit_dispatcher(x, y, deg, rcond=None, full=None, w=None, cov=None):
    return (x, y, w)


@array_function_dispatch(_polyfit_dispatcher)
def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):
    """

    Least squares polynomial fit.



    .. note::

       This forms part of the old polynomial API. Since version 1.4, the

       new polynomial API defined in `numpy.polynomial` is preferred.

       A summary of the differences can be found in the

       :doc:`transition guide </reference/routines.polynomials>`.



    Fit a polynomial ``p(x) = p[0] * x**deg + ... + p[deg]`` of degree `deg`

    to points `(x, y)`. Returns a vector of coefficients `p` that minimises

    the squared error in the order `deg`, `deg-1`, ... `0`.



    The `Polynomial.fit <numpy.polynomial.polynomial.Polynomial.fit>` class

    method is recommended for new code as it is more stable numerically. See

    the documentation of the method for more information.



    Parameters

    ----------

    x : array_like, shape (M,)

        x-coordinates of the M sample points ``(x[i], y[i])``.

    y : array_like, shape (M,) or (M, K)

        y-coordinates of the sample points. Several data sets of sample

        points sharing the same x-coordinates can be fitted at once by

        passing in a 2D-array that contains one dataset per column.

    deg : int

        Degree of the fitting polynomial

    rcond : float, optional

        Relative condition number of the fit. Singular values smaller than

        this relative to the largest singular value will be ignored. The

        default value is len(x)*eps, where eps is the relative precision of

        the float type, about 2e-16 in most cases.

    full : bool, optional

        Switch determining nature of return value. When it is False (the

        default) just the coefficients are returned, when True diagnostic

        information from the singular value decomposition is also returned.

    w : array_like, shape (M,), optional

        Weights to apply to the y-coordinates of the sample points. For

        gaussian uncertainties, use 1/sigma (not 1/sigma**2).

    cov : bool or str, optional

        If given and not `False`, return not just the estimate but also its

        covariance matrix. By default, the covariance are scaled by

        chi2/dof, where dof = M - (deg + 1), i.e., the weights are presumed 

        to be unreliable except in a relative sense and everything is scaled 

        such that the reduced chi2 is unity. This scaling is omitted if 

        ``cov='unscaled'``, as is relevant for the case that the weights are 

        1/sigma**2, with sigma known to be a reliable estimate of the 

        uncertainty.



    Returns

    -------

    p : ndarray, shape (deg + 1,) or (deg + 1, K)

        Polynomial coefficients, highest power first.  If `y` was 2-D, the

        coefficients for `k`-th data set are in ``p[:,k]``.



    residuals, rank, singular_values, rcond

        Present only if `full` = True.  Residuals is sum of squared residuals

        of the least-squares fit, the effective rank of the scaled Vandermonde

        coefficient matrix, its singular values, and the specified value of

        `rcond`. For more details, see `linalg.lstsq`.



    V : ndarray, shape (M,M) or (M,M,K)

        Present only if `full` = False and `cov`=True.  The covariance

        matrix of the polynomial coefficient estimates.  The diagonal of

        this matrix are the variance estimates for each coefficient.  If y

        is a 2-D array, then the covariance matrix for the `k`-th data set

        are in ``V[:,:,k]``





    Warns

    -----

    RankWarning

        The rank of the coefficient matrix in the least-squares fit is

        deficient. The warning is only raised if `full` = False.



        The warnings can be turned off by



        >>> import warnings

        >>> warnings.simplefilter('ignore', np.RankWarning)



    See Also

    --------

    polyval : Compute polynomial values.

    linalg.lstsq : Computes a least-squares fit.

    scipy.interpolate.UnivariateSpline : Computes spline fits.



    Notes

    -----

    The solution minimizes the squared error



    .. math ::

        E = \\sum_{j=0}^k |p(x_j) - y_j|^2



    in the equations::



        x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0]

        x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1]

        ...

        x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k]



    The coefficient matrix of the coefficients `p` is a Vandermonde matrix.



    `polyfit` issues a `RankWarning` when the least-squares fit is badly

    conditioned. This implies that the best fit is not well-defined due

    to numerical error. The results may be improved by lowering the polynomial

    degree or by replacing `x` by `x` - `x`.mean(). The `rcond` parameter

    can also be set to a value smaller than its default, but the resulting

    fit may be spurious: including contributions from the small singular

    values can add numerical noise to the result.



    Note that fitting polynomial coefficients is inherently badly conditioned

    when the degree of the polynomial is large or the interval of sample points

    is badly centered. The quality of the fit should always be checked in these

    cases. When polynomial fits are not satisfactory, splines may be a good

    alternative.



    References

    ----------

    .. [1] Wikipedia, "Curve fitting",

           https://en.wikipedia.org/wiki/Curve_fitting

    .. [2] Wikipedia, "Polynomial interpolation",

           https://en.wikipedia.org/wiki/Polynomial_interpolation



    Examples

    --------

    >>> import warnings

    >>> x = np.array([0.0, 1.0, 2.0, 3.0,  4.0,  5.0])

    >>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])

    >>> z = np.polyfit(x, y, 3)

    >>> z

    array([ 0.08703704, -0.81349206,  1.69312169, -0.03968254]) # may vary



    It is convenient to use `poly1d` objects for dealing with polynomials:



    >>> p = np.poly1d(z)

    >>> p(0.5)

    0.6143849206349179 # may vary

    >>> p(3.5)

    -0.34732142857143039 # may vary

    >>> p(10)

    22.579365079365115 # may vary



    High-order polynomials may oscillate wildly:



    >>> with warnings.catch_warnings():

    ...     warnings.simplefilter('ignore', np.RankWarning)

    ...     p30 = np.poly1d(np.polyfit(x, y, 30))

    ...

    >>> p30(4)

    -0.80000000000000204 # may vary

    >>> p30(5)

    -0.99999999999999445 # may vary

    >>> p30(4.5)

    -0.10547061179440398 # may vary



    Illustration:



    >>> import matplotlib.pyplot as plt

    >>> xp = np.linspace(-2, 6, 100)

    >>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--')

    >>> plt.ylim(-2,2)

    (-2, 2)

    >>> plt.show()



    """
    order = int(deg) + 1
    x = NX.asarray(x) + 0.0
    y = NX.asarray(y) + 0.0

    # check arguments.
    if deg < 0:
        raise ValueError("expected deg >= 0")
    if x.ndim != 1:
        raise TypeError("expected 1D vector for x")
    if x.size == 0:
        raise TypeError("expected non-empty vector for x")
    if y.ndim < 1 or y.ndim > 2:
        raise TypeError("expected 1D or 2D array for y")
    if x.shape[0] != y.shape[0]:
        raise TypeError("expected x and y to have same length")

    # set rcond
    if rcond is None:
        rcond = len(x)*finfo(x.dtype).eps

    # set up least squares equation for powers of x
    lhs = vander(x, order)
    rhs = y

    # apply weighting
    if w is not None:
        w = NX.asarray(w) + 0.0
        if w.ndim != 1:
            raise TypeError("expected a 1-d array for weights")
        if w.shape[0] != y.shape[0]:
            raise TypeError("expected w and y to have the same length")
        lhs *= w[:, NX.newaxis]
        if rhs.ndim == 2:
            rhs *= w[:, NX.newaxis]
        else:
            rhs *= w

    # scale lhs to improve condition number and solve
    scale = NX.sqrt((lhs*lhs).sum(axis=0))
    lhs /= scale
    c, resids, rank, s = lstsq(lhs, rhs, rcond)
    c = (c.T/scale).T  # broadcast scale coefficients

    # warn on rank reduction, which indicates an ill conditioned matrix
    if rank != order and not full:
        msg = "Polyfit may be poorly conditioned"
        warnings.warn(msg, RankWarning, stacklevel=4)

    if full:
        return c, resids, rank, s, rcond
    elif cov:
        Vbase = inv(dot(lhs.T, lhs))
        Vbase /= NX.outer(scale, scale)
        if cov == "unscaled":
            fac = 1
        else:
            if len(x) <= order:
                raise ValueError("the number of data points must exceed order "
                                 "to scale the covariance matrix")
            # note, this used to be: fac = resids / (len(x) - order - 2.0)
            # it was deciced that the "- 2" (originally justified by "Bayesian
            # uncertainty analysis") is not was the user expects
            # (see gh-11196 and gh-11197)
            fac = resids / (len(x) - order)
        if y.ndim == 1:
            return c, Vbase * fac
        else:
            return c, Vbase[:,:, NX.newaxis] * fac
    else:
        return c


def _polyval_dispatcher(p, x):
    return (p, x)


@array_function_dispatch(_polyval_dispatcher)
def polyval(p, x):
    """

    Evaluate a polynomial at specific values.



    .. note::

       This forms part of the old polynomial API. Since version 1.4, the

       new polynomial API defined in `numpy.polynomial` is preferred.

       A summary of the differences can be found in the

       :doc:`transition guide </reference/routines.polynomials>`.



    If `p` is of length N, this function returns the value:



        ``p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1]``



    If `x` is a sequence, then ``p(x)`` is returned for each element of ``x``.

    If `x` is another polynomial then the composite polynomial ``p(x(t))``

    is returned.



    Parameters

    ----------

    p : array_like or poly1d object

       1D array of polynomial coefficients (including coefficients equal

       to zero) from highest degree to the constant term, or an

       instance of poly1d.

    x : array_like or poly1d object

       A number, an array of numbers, or an instance of poly1d, at

       which to evaluate `p`.



    Returns

    -------

    values : ndarray or poly1d

       If `x` is a poly1d instance, the result is the composition of the two

       polynomials, i.e., `x` is "substituted" in `p` and the simplified

       result is returned. In addition, the type of `x` - array_like or

       poly1d - governs the type of the output: `x` array_like => `values`

       array_like, `x` a poly1d object => `values` is also.



    See Also

    --------

    poly1d: A polynomial class.



    Notes

    -----

    Horner's scheme [1]_ is used to evaluate the polynomial. Even so,

    for polynomials of high degree the values may be inaccurate due to

    rounding errors. Use carefully.



    If `x` is a subtype of `ndarray` the return value will be of the same type.



    References

    ----------

    .. [1] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng.

       trans. Ed.), *Handbook of Mathematics*, New York, Van Nostrand

       Reinhold Co., 1985, pg. 720.



    Examples

    --------

    >>> np.polyval([3,0,1], 5)  # 3 * 5**2 + 0 * 5**1 + 1

    76

    >>> np.polyval([3,0,1], np.poly1d(5))

    poly1d([76])

    >>> np.polyval(np.poly1d([3,0,1]), 5)

    76

    >>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5))

    poly1d([76])



    """
    p = NX.asarray(p)
    if isinstance(x, poly1d):
        y = 0
    else:
        x = NX.asanyarray(x)
        y = NX.zeros_like(x)
    for i in range(len(p)):
        y = y * x + p[i]
    return y


def _binary_op_dispatcher(a1, a2):
    return (a1, a2)


@array_function_dispatch(_binary_op_dispatcher)
def polyadd(a1, a2):
    """

    Find the sum of two polynomials.



    .. note::

       This forms part of the old polynomial API. Since version 1.4, the

       new polynomial API defined in `numpy.polynomial` is preferred.

       A summary of the differences can be found in the

       :doc:`transition guide </reference/routines.polynomials>`.



    Returns the polynomial resulting from the sum of two input polynomials.

    Each input must be either a poly1d object or a 1D sequence of polynomial

    coefficients, from highest to lowest degree.



    Parameters

    ----------

    a1, a2 : array_like or poly1d object

        Input polynomials.



    Returns

    -------

    out : ndarray or poly1d object

        The sum of the inputs. If either input is a poly1d object, then the

        output is also a poly1d object. Otherwise, it is a 1D array of

        polynomial coefficients from highest to lowest degree.



    See Also

    --------

    poly1d : A one-dimensional polynomial class.

    poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval



    Examples

    --------

    >>> np.polyadd([1, 2], [9, 5, 4])

    array([9, 6, 6])



    Using poly1d objects:



    >>> p1 = np.poly1d([1, 2])

    >>> p2 = np.poly1d([9, 5, 4])

    >>> print(p1)

    1 x + 2

    >>> print(p2)

       2

    9 x + 5 x + 4

    >>> print(np.polyadd(p1, p2))

       2

    9 x + 6 x + 6



    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        val = a1 + a2
    elif diff > 0:
        zr = NX.zeros(diff, a1.dtype)
        val = NX.concatenate((zr, a1)) + a2
    else:
        zr = NX.zeros(abs(diff), a2.dtype)
        val = a1 + NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val


@array_function_dispatch(_binary_op_dispatcher)
def polysub(a1, a2):
    """

    Difference (subtraction) of two polynomials.



    .. note::

       This forms part of the old polynomial API. Since version 1.4, the

       new polynomial API defined in `numpy.polynomial` is preferred.

       A summary of the differences can be found in the

       :doc:`transition guide </reference/routines.polynomials>`.



    Given two polynomials `a1` and `a2`, returns ``a1 - a2``.

    `a1` and `a2` can be either array_like sequences of the polynomials'

    coefficients (including coefficients equal to zero), or `poly1d` objects.



    Parameters

    ----------

    a1, a2 : array_like or poly1d

        Minuend and subtrahend polynomials, respectively.



    Returns

    -------

    out : ndarray or poly1d

        Array or `poly1d` object of the difference polynomial's coefficients.



    See Also

    --------

    polyval, polydiv, polymul, polyadd



    Examples

    --------

    .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2)



    >>> np.polysub([2, 10, -2], [3, 10, -4])

    array([-1,  0,  2])



    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        val = a1 - a2
    elif diff > 0:
        zr = NX.zeros(diff, a1.dtype)
        val = NX.concatenate((zr, a1)) - a2
    else:
        zr = NX.zeros(abs(diff), a2.dtype)
        val = a1 - NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val


@array_function_dispatch(_binary_op_dispatcher)
def polymul(a1, a2):
    """

    Find the product of two polynomials.



    .. note::

       This forms part of the old polynomial API. Since version 1.4, the

       new polynomial API defined in `numpy.polynomial` is preferred.

       A summary of the differences can be found in the

       :doc:`transition guide </reference/routines.polynomials>`.



    Finds the polynomial resulting from the multiplication of the two input

    polynomials. Each input must be either a poly1d object or a 1D sequence

    of polynomial coefficients, from highest to lowest degree.



    Parameters

    ----------

    a1, a2 : array_like or poly1d object

        Input polynomials.



    Returns

    -------

    out : ndarray or poly1d object

        The polynomial resulting from the multiplication of the inputs. If

        either inputs is a poly1d object, then the output is also a poly1d

        object. Otherwise, it is a 1D array of polynomial coefficients from

        highest to lowest degree.



    See Also

    --------

    poly1d : A one-dimensional polynomial class.

    poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval

    convolve : Array convolution. Same output as polymul, but has parameter

               for overlap mode.



    Examples

    --------

    >>> np.polymul([1, 2, 3], [9, 5, 1])

    array([ 9, 23, 38, 17,  3])



    Using poly1d objects:



    >>> p1 = np.poly1d([1, 2, 3])

    >>> p2 = np.poly1d([9, 5, 1])

    >>> print(p1)

       2

    1 x + 2 x + 3

    >>> print(p2)

       2

    9 x + 5 x + 1

    >>> print(np.polymul(p1, p2))

       4      3      2

    9 x + 23 x + 38 x + 17 x + 3



    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1, a2 = poly1d(a1), poly1d(a2)
    val = NX.convolve(a1, a2)
    if truepoly:
        val = poly1d(val)
    return val


def _polydiv_dispatcher(u, v):
    return (u, v)


@array_function_dispatch(_polydiv_dispatcher)
def polydiv(u, v):
    """

    Returns the quotient and remainder of polynomial division.



    .. note::

       This forms part of the old polynomial API. Since version 1.4, the

       new polynomial API defined in `numpy.polynomial` is preferred.

       A summary of the differences can be found in the

       :doc:`transition guide </reference/routines.polynomials>`.



    The input arrays are the coefficients (including any coefficients

    equal to zero) of the "numerator" (dividend) and "denominator"

    (divisor) polynomials, respectively.



    Parameters

    ----------

    u : array_like or poly1d

        Dividend polynomial's coefficients.



    v : array_like or poly1d

        Divisor polynomial's coefficients.



    Returns

    -------

    q : ndarray

        Coefficients, including those equal to zero, of the quotient.

    r : ndarray

        Coefficients, including those equal to zero, of the remainder.



    See Also

    --------

    poly, polyadd, polyder, polydiv, polyfit, polyint, polymul, polysub

    polyval



    Notes

    -----

    Both `u` and `v` must be 0-d or 1-d (ndim = 0 or 1), but `u.ndim` need

    not equal `v.ndim`. In other words, all four possible combinations -

    ``u.ndim = v.ndim = 0``, ``u.ndim = v.ndim = 1``,

    ``u.ndim = 1, v.ndim = 0``, and ``u.ndim = 0, v.ndim = 1`` - work.



    Examples

    --------

    .. math:: \\frac{3x^2 + 5x + 2}{2x + 1} = 1.5x + 1.75, remainder 0.25



    >>> x = np.array([3.0, 5.0, 2.0])

    >>> y = np.array([2.0, 1.0])

    >>> np.polydiv(x, y)

    (array([1.5 , 1.75]), array([0.25]))



    """
    truepoly = (isinstance(u, poly1d) or isinstance(v, poly1d))
    u = atleast_1d(u) + 0.0
    v = atleast_1d(v) + 0.0
    # w has the common type
    w = u[0] + v[0]
    m = len(u) - 1
    n = len(v) - 1
    scale = 1. / v[0]
    q = NX.zeros((max(m - n + 1, 1),), w.dtype)
    r = u.astype(w.dtype)
    for k in range(0, m-n+1):
        d = scale * r[k]
        q[k] = d
        r[k:k+n+1] -= d*v
    while NX.allclose(r[0], 0, rtol=1e-14) and (r.shape[-1] > 1):
        r = r[1:]
    if truepoly:
        return poly1d(q), poly1d(r)
    return q, r

_poly_mat = re.compile(r"\*\*([0-9]*)")
def _raise_power(astr, wrap=70):
    n = 0
    line1 = ''
    line2 = ''
    output = ' '
    while True:
        mat = _poly_mat.search(astr, n)
        if mat is None:
            break
        span = mat.span()
        power = mat.groups()[0]
        partstr = astr[n:span[0]]
        n = span[1]
        toadd2 = partstr + ' '*(len(power)-1)
        toadd1 = ' '*(len(partstr)-1) + power
        if ((len(line2) + len(toadd2) > wrap) or
                (len(line1) + len(toadd1) > wrap)):
            output += line1 + "\n" + line2 + "\n "
            line1 = toadd1
            line2 = toadd2
        else:
            line2 += partstr + ' '*(len(power)-1)
            line1 += ' '*(len(partstr)-1) + power
    output += line1 + "\n" + line2
    return output + astr[n:]


@set_module('numpy')
class poly1d:
    """

    A one-dimensional polynomial class.



    .. note::

       This forms part of the old polynomial API. Since version 1.4, the

       new polynomial API defined in `numpy.polynomial` is preferred.

       A summary of the differences can be found in the

       :doc:`transition guide </reference/routines.polynomials>`.



    A convenience class, used to encapsulate "natural" operations on

    polynomials so that said operations may take on their customary

    form in code (see Examples).



    Parameters

    ----------

    c_or_r : array_like

        The polynomial's coefficients, in decreasing powers, or if

        the value of the second parameter is True, the polynomial's

        roots (values where the polynomial evaluates to 0).  For example,

        ``poly1d([1, 2, 3])`` returns an object that represents

        :math:`x^2 + 2x + 3`, whereas ``poly1d([1, 2, 3], True)`` returns

        one that represents :math:`(x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6`.

    r : bool, optional

        If True, `c_or_r` specifies the polynomial's roots; the default

        is False.

    variable : str, optional

        Changes the variable used when printing `p` from `x` to `variable`

        (see Examples).



    Examples

    --------

    Construct the polynomial :math:`x^2 + 2x + 3`:



    >>> p = np.poly1d([1, 2, 3])

    >>> print(np.poly1d(p))

       2

    1 x + 2 x + 3



    Evaluate the polynomial at :math:`x = 0.5`:



    >>> p(0.5)

    4.25



    Find the roots:



    >>> p.r

    array([-1.+1.41421356j, -1.-1.41421356j])

    >>> p(p.r)

    array([ -4.44089210e-16+0.j,  -4.44089210e-16+0.j]) # may vary



    These numbers in the previous line represent (0, 0) to machine precision



    Show the coefficients:



    >>> p.c

    array([1, 2, 3])



    Display the order (the leading zero-coefficients are removed):



    >>> p.order

    2



    Show the coefficient of the k-th power in the polynomial

    (which is equivalent to ``p.c[-(i+1)]``):



    >>> p[1]

    2



    Polynomials can be added, subtracted, multiplied, and divided

    (returns quotient and remainder):



    >>> p * p

    poly1d([ 1,  4, 10, 12,  9])



    >>> (p**3 + 4) / p

    (poly1d([ 1.,  4., 10., 12.,  9.]), poly1d([4.]))



    ``asarray(p)`` gives the coefficient array, so polynomials can be

    used in all functions that accept arrays:



    >>> p**2 # square of polynomial

    poly1d([ 1,  4, 10, 12,  9])



    >>> np.square(p) # square of individual coefficients

    array([1, 4, 9])



    The variable used in the string representation of `p` can be modified,

    using the `variable` parameter:



    >>> p = np.poly1d([1,2,3], variable='z')

    >>> print(p)

       2

    1 z + 2 z + 3



    Construct a polynomial from its roots:



    >>> np.poly1d([1, 2], True)

    poly1d([ 1., -3.,  2.])



    This is the same polynomial as obtained by:



    >>> np.poly1d([1, -1]) * np.poly1d([1, -2])

    poly1d([ 1, -3,  2])



    """
    __hash__ = None

    @property
    def coeffs(self):
        """ The polynomial coefficients """
        return self._coeffs

    @coeffs.setter
    def coeffs(self, value):
        # allowing this makes p.coeffs *= 2 legal
        if value is not self._coeffs:
            raise AttributeError("Cannot set attribute")

    @property
    def variable(self):
        """ The name of the polynomial variable """
        return self._variable

    # calculated attributes
    @property
    def order(self):
        """ The order or degree of the polynomial """
        return len(self._coeffs) - 1

    @property
    def roots(self):
        """ The roots of the polynomial, where self(x) == 0 """
        return roots(self._coeffs)

    # our internal _coeffs property need to be backed by __dict__['coeffs'] for
    # scipy to work correctly.
    @property
    def _coeffs(self):
        return self.__dict__['coeffs']
    @_coeffs.setter
    def _coeffs(self, coeffs):
        self.__dict__['coeffs'] = coeffs

    # alias attributes
    r = roots
    c = coef = coefficients = coeffs
    o = order

    def __init__(self, c_or_r, r=False, variable=None):
        if isinstance(c_or_r, poly1d):
            self._variable = c_or_r._variable
            self._coeffs = c_or_r._coeffs

            if set(c_or_r.__dict__) - set(self.__dict__):
                msg = ("In the future extra properties will not be copied "
                       "across when constructing one poly1d from another")
                warnings.warn(msg, FutureWarning, stacklevel=2)
                self.__dict__.update(c_or_r.__dict__)

            if variable is not None:
                self._variable = variable
            return
        if r:
            c_or_r = poly(c_or_r)
        c_or_r = atleast_1d(c_or_r)
        if c_or_r.ndim > 1:
            raise ValueError("Polynomial must be 1d only.")
        c_or_r = trim_zeros(c_or_r, trim='f')
        if len(c_or_r) == 0:
            c_or_r = NX.array([0], dtype=c_or_r.dtype)
        self._coeffs = c_or_r
        if variable is None:
            variable = 'x'
        self._variable = variable

    def __array__(self, t=None):
        if t:
            return NX.asarray(self.coeffs, t)
        else:
            return NX.asarray(self.coeffs)

    def __repr__(self):
        vals = repr(self.coeffs)
        vals = vals[6:-1]
        return "poly1d(%s)" % vals

    def __len__(self):
        return self.order

    def __str__(self):
        thestr = "0"
        var = self.variable

        # Remove leading zeros
        coeffs = self.coeffs[NX.logical_or.accumulate(self.coeffs != 0)]
        N = len(coeffs)-1

        def fmt_float(q):
            s = '%.4g' % q
            if s.endswith('.0000'):
                s = s[:-5]
            return s

        for k in range(len(coeffs)):
            if not iscomplex(coeffs[k]):
                coefstr = fmt_float(real(coeffs[k]))
            elif real(coeffs[k]) == 0:
                coefstr = '%sj' % fmt_float(imag(coeffs[k]))
            else:
                coefstr = '(%s + %sj)' % (fmt_float(real(coeffs[k])),
                                          fmt_float(imag(coeffs[k])))

            power = (N-k)
            if power == 0:
                if coefstr != '0':
                    newstr = '%s' % (coefstr,)
                else:
                    if k == 0:
                        newstr = '0'
                    else:
                        newstr = ''
            elif power == 1:
                if coefstr == '0':
                    newstr = ''
                elif coefstr == 'b':
                    newstr = var
                else:
                    newstr = '%s %s' % (coefstr, var)
            else:
                if coefstr == '0':
                    newstr = ''
                elif coefstr == 'b':
                    newstr = '%s**%d' % (var, power,)
                else:
                    newstr = '%s %s**%d' % (coefstr, var, power)

            if k > 0:
                if newstr != '':
                    if newstr.startswith('-'):
                        thestr = "%s - %s" % (thestr, newstr[1:])
                    else:
                        thestr = "%s + %s" % (thestr, newstr)
            else:
                thestr = newstr
        return _raise_power(thestr)

    def __call__(self, val):
        return polyval(self.coeffs, val)

    def __neg__(self):
        return poly1d(-self.coeffs)

    def __pos__(self):
        return self

    def __mul__(self, other):
        if isscalar(other):
            return poly1d(self.coeffs * other)
        else:
            other = poly1d(other)
            return poly1d(polymul(self.coeffs, other.coeffs))

    def __rmul__(self, other):
        if isscalar(other):
            return poly1d(other * self.coeffs)
        else:
            other = poly1d(other)
            return poly1d(polymul(self.coeffs, other.coeffs))

    def __add__(self, other):
        other = poly1d(other)
        return poly1d(polyadd(self.coeffs, other.coeffs))

    def __radd__(self, other):
        other = poly1d(other)
        return poly1d(polyadd(self.coeffs, other.coeffs))

    def __pow__(self, val):
        if not isscalar(val) or int(val) != val or val < 0:
            raise ValueError("Power to non-negative integers only.")
        res = [1]
        for _ in range(val):
            res = polymul(self.coeffs, res)
        return poly1d(res)

    def __sub__(self, other):
        other = poly1d(other)
        return poly1d(polysub(self.coeffs, other.coeffs))

    def __rsub__(self, other):
        other = poly1d(other)
        return poly1d(polysub(other.coeffs, self.coeffs))

    def __div__(self, other):
        if isscalar(other):
            return poly1d(self.coeffs/other)
        else:
            other = poly1d(other)
            return polydiv(self, other)

    __truediv__ = __div__

    def __rdiv__(self, other):
        if isscalar(other):
            return poly1d(other/self.coeffs)
        else:
            other = poly1d(other)
            return polydiv(other, self)

    __rtruediv__ = __rdiv__

    def __eq__(self, other):
        if not isinstance(other, poly1d):
            return NotImplemented
        if self.coeffs.shape != other.coeffs.shape:
            return False
        return (self.coeffs == other.coeffs).all()

    def __ne__(self, other):
        if not isinstance(other, poly1d):
            return NotImplemented
        return not self.__eq__(other)


    def __getitem__(self, val):
        ind = self.order - val
        if val > self.order:
            return 0
        if val < 0:
            return 0
        return self.coeffs[ind]

    def __setitem__(self, key, val):
        ind = self.order - key
        if key < 0:
            raise ValueError("Does not support negative powers.")
        if key > self.order:
            zr = NX.zeros(key-self.order, self.coeffs.dtype)
            self._coeffs = NX.concatenate((zr, self.coeffs))
            ind = 0
        self._coeffs[ind] = val
        return

    def __iter__(self):
        return iter(self.coeffs)

    def integ(self, m=1, k=0):
        """

        Return an antiderivative (indefinite integral) of this polynomial.



        Refer to `polyint` for full documentation.



        See Also

        --------

        polyint : equivalent function



        """
        return poly1d(polyint(self.coeffs, m=m, k=k))

    def deriv(self, m=1):
        """

        Return a derivative of this polynomial.



        Refer to `polyder` for full documentation.



        See Also

        --------

        polyder : equivalent function



        """
        return poly1d(polyder(self.coeffs, m=m))

# Stuff to do on module import

warnings.simplefilter('always', RankWarning)