File size: 30,000 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
""" Basic functions for manipulating 2d arrays



"""
import functools

from numpy.core.numeric import (
    asanyarray, arange, zeros, greater_equal, multiply, ones,
    asarray, where, int8, int16, int32, int64, intp, empty, promote_types,
    diagonal, nonzero, indices
    )
from numpy.core.overrides import set_array_function_like_doc, set_module
from numpy.core import overrides
from numpy.core import iinfo
from numpy.lib.stride_tricks import broadcast_to


__all__ = [
    'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'tri', 'triu',
    'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices',
    'tril_indices_from', 'triu_indices', 'triu_indices_from', ]


array_function_dispatch = functools.partial(
    overrides.array_function_dispatch, module='numpy')


i1 = iinfo(int8)
i2 = iinfo(int16)
i4 = iinfo(int32)


def _min_int(low, high):
    """ get small int that fits the range """
    if high <= i1.max and low >= i1.min:
        return int8
    if high <= i2.max and low >= i2.min:
        return int16
    if high <= i4.max and low >= i4.min:
        return int32
    return int64


def _flip_dispatcher(m):
    return (m,)


@array_function_dispatch(_flip_dispatcher)
def fliplr(m):
    """

    Reverse the order of elements along axis 1 (left/right).



    For a 2-D array, this flips the entries in each row in the left/right

    direction. Columns are preserved, but appear in a different order than

    before.



    Parameters

    ----------

    m : array_like

        Input array, must be at least 2-D.



    Returns

    -------

    f : ndarray

        A view of `m` with the columns reversed.  Since a view

        is returned, this operation is :math:`\\mathcal O(1)`.



    See Also

    --------

    flipud : Flip array in the up/down direction.

    flip : Flip array in one or more dimesions.

    rot90 : Rotate array counterclockwise.



    Notes

    -----

    Equivalent to ``m[:,::-1]`` or ``np.flip(m, axis=1)``.

    Requires the array to be at least 2-D.



    Examples

    --------

    >>> A = np.diag([1.,2.,3.])

    >>> A

    array([[1.,  0.,  0.],

           [0.,  2.,  0.],

           [0.,  0.,  3.]])

    >>> np.fliplr(A)

    array([[0.,  0.,  1.],

           [0.,  2.,  0.],

           [3.,  0.,  0.]])



    >>> A = np.random.randn(2,3,5)

    >>> np.all(np.fliplr(A) == A[:,::-1,...])

    True



    """
    m = asanyarray(m)
    if m.ndim < 2:
        raise ValueError("Input must be >= 2-d.")
    return m[:, ::-1]


@array_function_dispatch(_flip_dispatcher)
def flipud(m):
    """

    Reverse the order of elements along axis 0 (up/down).



    For a 2-D array, this flips the entries in each column in the up/down

    direction. Rows are preserved, but appear in a different order than before.



    Parameters

    ----------

    m : array_like

        Input array.



    Returns

    -------

    out : array_like

        A view of `m` with the rows reversed.  Since a view is

        returned, this operation is :math:`\\mathcal O(1)`.



    See Also

    --------

    fliplr : Flip array in the left/right direction.

    flip : Flip array in one or more dimesions.

    rot90 : Rotate array counterclockwise.



    Notes

    -----

    Equivalent to ``m[::-1, ...]`` or ``np.flip(m, axis=0)``.

    Requires the array to be at least 1-D.



    Examples

    --------

    >>> A = np.diag([1.0, 2, 3])

    >>> A

    array([[1.,  0.,  0.],

           [0.,  2.,  0.],

           [0.,  0.,  3.]])

    >>> np.flipud(A)

    array([[0.,  0.,  3.],

           [0.,  2.,  0.],

           [1.,  0.,  0.]])



    >>> A = np.random.randn(2,3,5)

    >>> np.all(np.flipud(A) == A[::-1,...])

    True



    >>> np.flipud([1,2])

    array([2, 1])



    """
    m = asanyarray(m)
    if m.ndim < 1:
        raise ValueError("Input must be >= 1-d.")
    return m[::-1, ...]


def _eye_dispatcher(N, M=None, k=None, dtype=None, order=None, *, like=None):
    return (like,)


@set_array_function_like_doc
@set_module('numpy')
def eye(N, M=None, k=0, dtype=float, order='C', *, like=None):
    """

    Return a 2-D array with ones on the diagonal and zeros elsewhere.



    Parameters

    ----------

    N : int

      Number of rows in the output.

    M : int, optional

      Number of columns in the output. If None, defaults to `N`.

    k : int, optional

      Index of the diagonal: 0 (the default) refers to the main diagonal,

      a positive value refers to an upper diagonal, and a negative value

      to a lower diagonal.

    dtype : data-type, optional

      Data-type of the returned array.

    order : {'C', 'F'}, optional

        Whether the output should be stored in row-major (C-style) or

        column-major (Fortran-style) order in memory.



        .. versionadded:: 1.14.0

    ${ARRAY_FUNCTION_LIKE}



        .. versionadded:: 1.20.0



    Returns

    -------

    I : ndarray of shape (N,M)

      An array where all elements are equal to zero, except for the `k`-th

      diagonal, whose values are equal to one.



    See Also

    --------

    identity : (almost) equivalent function

    diag : diagonal 2-D array from a 1-D array specified by the user.



    Examples

    --------

    >>> np.eye(2, dtype=int)

    array([[1, 0],

           [0, 1]])

    >>> np.eye(3, k=1)

    array([[0.,  1.,  0.],

           [0.,  0.,  1.],

           [0.,  0.,  0.]])



    """
    if like is not None:
        return _eye_with_like(N, M=M, k=k, dtype=dtype, order=order, like=like)
    if M is None:
        M = N
    m = zeros((N, M), dtype=dtype, order=order)
    if k >= M:
        return m
    if k >= 0:
        i = k
    else:
        i = (-k) * M
    m[:M-k].flat[i::M+1] = 1
    return m


_eye_with_like = array_function_dispatch(
    _eye_dispatcher
)(eye)


def _diag_dispatcher(v, k=None):
    return (v,)


@array_function_dispatch(_diag_dispatcher)
def diag(v, k=0):
    """

    Extract a diagonal or construct a diagonal array.



    See the more detailed documentation for ``numpy.diagonal`` if you use this

    function to extract a diagonal and wish to write to the resulting array;

    whether it returns a copy or a view depends on what version of numpy you

    are using.



    Parameters

    ----------

    v : array_like

        If `v` is a 2-D array, return a copy of its `k`-th diagonal.

        If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th

        diagonal.

    k : int, optional

        Diagonal in question. The default is 0. Use `k>0` for diagonals

        above the main diagonal, and `k<0` for diagonals below the main

        diagonal.



    Returns

    -------

    out : ndarray

        The extracted diagonal or constructed diagonal array.



    See Also

    --------

    diagonal : Return specified diagonals.

    diagflat : Create a 2-D array with the flattened input as a diagonal.

    trace : Sum along diagonals.

    triu : Upper triangle of an array.

    tril : Lower triangle of an array.



    Examples

    --------

    >>> x = np.arange(9).reshape((3,3))

    >>> x

    array([[0, 1, 2],

           [3, 4, 5],

           [6, 7, 8]])



    >>> np.diag(x)

    array([0, 4, 8])

    >>> np.diag(x, k=1)

    array([1, 5])

    >>> np.diag(x, k=-1)

    array([3, 7])



    >>> np.diag(np.diag(x))

    array([[0, 0, 0],

           [0, 4, 0],

           [0, 0, 8]])



    """
    v = asanyarray(v)
    s = v.shape
    if len(s) == 1:
        n = s[0]+abs(k)
        res = zeros((n, n), v.dtype)
        if k >= 0:
            i = k
        else:
            i = (-k) * n
        res[:n-k].flat[i::n+1] = v
        return res
    elif len(s) == 2:
        return diagonal(v, k)
    else:
        raise ValueError("Input must be 1- or 2-d.")


@array_function_dispatch(_diag_dispatcher)
def diagflat(v, k=0):
    """

    Create a two-dimensional array with the flattened input as a diagonal.



    Parameters

    ----------

    v : array_like

        Input data, which is flattened and set as the `k`-th

        diagonal of the output.

    k : int, optional

        Diagonal to set; 0, the default, corresponds to the "main" diagonal,

        a positive (negative) `k` giving the number of the diagonal above

        (below) the main.



    Returns

    -------

    out : ndarray

        The 2-D output array.



    See Also

    --------

    diag : MATLAB work-alike for 1-D and 2-D arrays.

    diagonal : Return specified diagonals.

    trace : Sum along diagonals.



    Examples

    --------

    >>> np.diagflat([[1,2], [3,4]])

    array([[1, 0, 0, 0],

           [0, 2, 0, 0],

           [0, 0, 3, 0],

           [0, 0, 0, 4]])



    >>> np.diagflat([1,2], 1)

    array([[0, 1, 0],

           [0, 0, 2],

           [0, 0, 0]])



    """
    try:
        wrap = v.__array_wrap__
    except AttributeError:
        wrap = None
    v = asarray(v).ravel()
    s = len(v)
    n = s + abs(k)
    res = zeros((n, n), v.dtype)
    if (k >= 0):
        i = arange(0, n-k, dtype=intp)
        fi = i+k+i*n
    else:
        i = arange(0, n+k, dtype=intp)
        fi = i+(i-k)*n
    res.flat[fi] = v
    if not wrap:
        return res
    return wrap(res)


def _tri_dispatcher(N, M=None, k=None, dtype=None, *, like=None):
    return (like,)


@set_array_function_like_doc
@set_module('numpy')
def tri(N, M=None, k=0, dtype=float, *, like=None):
    """

    An array with ones at and below the given diagonal and zeros elsewhere.



    Parameters

    ----------

    N : int

        Number of rows in the array.

    M : int, optional

        Number of columns in the array.

        By default, `M` is taken equal to `N`.

    k : int, optional

        The sub-diagonal at and below which the array is filled.

        `k` = 0 is the main diagonal, while `k` < 0 is below it,

        and `k` > 0 is above.  The default is 0.

    dtype : dtype, optional

        Data type of the returned array.  The default is float.

    ${ARRAY_FUNCTION_LIKE}



        .. versionadded:: 1.20.0



    Returns

    -------

    tri : ndarray of shape (N, M)

        Array with its lower triangle filled with ones and zero elsewhere;

        in other words ``T[i,j] == 1`` for ``j <= i + k``, 0 otherwise.



    Examples

    --------

    >>> np.tri(3, 5, 2, dtype=int)

    array([[1, 1, 1, 0, 0],

           [1, 1, 1, 1, 0],

           [1, 1, 1, 1, 1]])



    >>> np.tri(3, 5, -1)

    array([[0.,  0.,  0.,  0.,  0.],

           [1.,  0.,  0.,  0.,  0.],

           [1.,  1.,  0.,  0.,  0.]])



    """
    if like is not None:
        return _tri_with_like(N, M=M, k=k, dtype=dtype, like=like)

    if M is None:
        M = N

    m = greater_equal.outer(arange(N, dtype=_min_int(0, N)),
                            arange(-k, M-k, dtype=_min_int(-k, M - k)))

    # Avoid making a copy if the requested type is already bool
    m = m.astype(dtype, copy=False)

    return m


_tri_with_like = array_function_dispatch(
    _tri_dispatcher
)(tri)


def _trilu_dispatcher(m, k=None):
    return (m,)


@array_function_dispatch(_trilu_dispatcher)
def tril(m, k=0):
    """

    Lower triangle of an array.



    Return a copy of an array with elements above the `k`-th diagonal zeroed.



    Parameters

    ----------

    m : array_like, shape (M, N)

        Input array.

    k : int, optional

        Diagonal above which to zero elements.  `k = 0` (the default) is the

        main diagonal, `k < 0` is below it and `k > 0` is above.



    Returns

    -------

    tril : ndarray, shape (M, N)

        Lower triangle of `m`, of same shape and data-type as `m`.



    See Also

    --------

    triu : same thing, only for the upper triangle



    Examples

    --------

    >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)

    array([[ 0,  0,  0],

           [ 4,  0,  0],

           [ 7,  8,  0],

           [10, 11, 12]])



    """
    m = asanyarray(m)
    mask = tri(*m.shape[-2:], k=k, dtype=bool)

    return where(mask, m, zeros(1, m.dtype))


@array_function_dispatch(_trilu_dispatcher)
def triu(m, k=0):
    """

    Upper triangle of an array.



    Return a copy of an array with the elements below the `k`-th diagonal

    zeroed.



    Please refer to the documentation for `tril` for further details.



    See Also

    --------

    tril : lower triangle of an array



    Examples

    --------

    >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)

    array([[ 1,  2,  3],

           [ 4,  5,  6],

           [ 0,  8,  9],

           [ 0,  0, 12]])



    """
    m = asanyarray(m)
    mask = tri(*m.shape[-2:], k=k-1, dtype=bool)

    return where(mask, zeros(1, m.dtype), m)


def _vander_dispatcher(x, N=None, increasing=None):
    return (x,)


# Originally borrowed from John Hunter and matplotlib
@array_function_dispatch(_vander_dispatcher)
def vander(x, N=None, increasing=False):
    """

    Generate a Vandermonde matrix.



    The columns of the output matrix are powers of the input vector. The

    order of the powers is determined by the `increasing` boolean argument.

    Specifically, when `increasing` is False, the `i`-th output column is

    the input vector raised element-wise to the power of ``N - i - 1``. Such

    a matrix with a geometric progression in each row is named for Alexandre-

    Theophile Vandermonde.



    Parameters

    ----------

    x : array_like

        1-D input array.

    N : int, optional

        Number of columns in the output.  If `N` is not specified, a square

        array is returned (``N = len(x)``).

    increasing : bool, optional

        Order of the powers of the columns.  If True, the powers increase

        from left to right, if False (the default) they are reversed.



        .. versionadded:: 1.9.0



    Returns

    -------

    out : ndarray

        Vandermonde matrix.  If `increasing` is False, the first column is

        ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is

        True, the columns are ``x^0, x^1, ..., x^(N-1)``.



    See Also

    --------

    polynomial.polynomial.polyvander



    Examples

    --------

    >>> x = np.array([1, 2, 3, 5])

    >>> N = 3

    >>> np.vander(x, N)

    array([[ 1,  1,  1],

           [ 4,  2,  1],

           [ 9,  3,  1],

           [25,  5,  1]])



    >>> np.column_stack([x**(N-1-i) for i in range(N)])

    array([[ 1,  1,  1],

           [ 4,  2,  1],

           [ 9,  3,  1],

           [25,  5,  1]])



    >>> x = np.array([1, 2, 3, 5])

    >>> np.vander(x)

    array([[  1,   1,   1,   1],

           [  8,   4,   2,   1],

           [ 27,   9,   3,   1],

           [125,  25,   5,   1]])

    >>> np.vander(x, increasing=True)

    array([[  1,   1,   1,   1],

           [  1,   2,   4,   8],

           [  1,   3,   9,  27],

           [  1,   5,  25, 125]])



    The determinant of a square Vandermonde matrix is the product

    of the differences between the values of the input vector:



    >>> np.linalg.det(np.vander(x))

    48.000000000000043 # may vary

    >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1)

    48



    """
    x = asarray(x)
    if x.ndim != 1:
        raise ValueError("x must be a one-dimensional array or sequence.")
    if N is None:
        N = len(x)

    v = empty((len(x), N), dtype=promote_types(x.dtype, int))
    tmp = v[:, ::-1] if not increasing else v

    if N > 0:
        tmp[:, 0] = 1
    if N > 1:
        tmp[:, 1:] = x[:, None]
        multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1)

    return v


def _histogram2d_dispatcher(x, y, bins=None, range=None, normed=None,

                            weights=None, density=None):
    yield x
    yield y

    # This terrible logic is adapted from the checks in histogram2d
    try:
        N = len(bins)
    except TypeError:
        N = 1
    if N == 2:
        yield from bins  # bins=[x, y]
    else:
        yield bins

    yield weights


@array_function_dispatch(_histogram2d_dispatcher)
def histogram2d(x, y, bins=10, range=None, normed=None, weights=None,

                density=None):
    """

    Compute the bi-dimensional histogram of two data samples.



    Parameters

    ----------

    x : array_like, shape (N,)

        An array containing the x coordinates of the points to be

        histogrammed.

    y : array_like, shape (N,)

        An array containing the y coordinates of the points to be

        histogrammed.

    bins : int or array_like or [int, int] or [array, array], optional

        The bin specification:



          * If int, the number of bins for the two dimensions (nx=ny=bins).

          * If array_like, the bin edges for the two dimensions

            (x_edges=y_edges=bins).

          * If [int, int], the number of bins in each dimension

            (nx, ny = bins).

          * If [array, array], the bin edges in each dimension

            (x_edges, y_edges = bins).

          * A combination [int, array] or [array, int], where int

            is the number of bins and array is the bin edges.



    range : array_like, shape(2,2), optional

        The leftmost and rightmost edges of the bins along each dimension

        (if not specified explicitly in the `bins` parameters):

        ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range

        will be considered outliers and not tallied in the histogram.

    density : bool, optional

        If False, the default, returns the number of samples in each bin.

        If True, returns the probability *density* function at the bin,

        ``bin_count / sample_count / bin_area``.

    normed : bool, optional

        An alias for the density argument that behaves identically. To avoid

        confusion with the broken normed argument to `histogram`, `density`

        should be preferred.

    weights : array_like, shape(N,), optional

        An array of values ``w_i`` weighing each sample ``(x_i, y_i)``.

        Weights are normalized to 1 if `normed` is True. If `normed` is

        False, the values of the returned histogram are equal to the sum of

        the weights belonging to the samples falling into each bin.



    Returns

    -------

    H : ndarray, shape(nx, ny)

        The bi-dimensional histogram of samples `x` and `y`. Values in `x`

        are histogrammed along the first dimension and values in `y` are

        histogrammed along the second dimension.

    xedges : ndarray, shape(nx+1,)

        The bin edges along the first dimension.

    yedges : ndarray, shape(ny+1,)

        The bin edges along the second dimension.



    See Also

    --------

    histogram : 1D histogram

    histogramdd : Multidimensional histogram



    Notes

    -----

    When `normed` is True, then the returned histogram is the sample

    density, defined such that the sum over bins of the product

    ``bin_value * bin_area`` is 1.



    Please note that the histogram does not follow the Cartesian convention

    where `x` values are on the abscissa and `y` values on the ordinate

    axis.  Rather, `x` is histogrammed along the first dimension of the

    array (vertical), and `y` along the second dimension of the array

    (horizontal).  This ensures compatibility with `histogramdd`.



    Examples

    --------

    >>> from matplotlib.image import NonUniformImage

    >>> import matplotlib.pyplot as plt



    Construct a 2-D histogram with variable bin width. First define the bin

    edges:



    >>> xedges = [0, 1, 3, 5]

    >>> yedges = [0, 2, 3, 4, 6]



    Next we create a histogram H with random bin content:



    >>> x = np.random.normal(2, 1, 100)

    >>> y = np.random.normal(1, 1, 100)

    >>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges))

    >>> # Histogram does not follow Cartesian convention (see Notes),

    >>> # therefore transpose H for visualization purposes.

    >>> H = H.T



    :func:`imshow <matplotlib.pyplot.imshow>` can only display square bins:



    >>> fig = plt.figure(figsize=(7, 3))

    >>> ax = fig.add_subplot(131, title='imshow: square bins')

    >>> plt.imshow(H, interpolation='nearest', origin='lower',

    ...         extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])

    <matplotlib.image.AxesImage object at 0x...>



    :func:`pcolormesh <matplotlib.pyplot.pcolormesh>` can display actual edges:



    >>> ax = fig.add_subplot(132, title='pcolormesh: actual edges',

    ...         aspect='equal')

    >>> X, Y = np.meshgrid(xedges, yedges)

    >>> ax.pcolormesh(X, Y, H)

    <matplotlib.collections.QuadMesh object at 0x...>



    :class:`NonUniformImage <matplotlib.image.NonUniformImage>` can be used to

    display actual bin edges with interpolation:



    >>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated',

    ...         aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]])

    >>> im = NonUniformImage(ax, interpolation='bilinear')

    >>> xcenters = (xedges[:-1] + xedges[1:]) / 2

    >>> ycenters = (yedges[:-1] + yedges[1:]) / 2

    >>> im.set_data(xcenters, ycenters, H)

    >>> ax.images.append(im)

    >>> plt.show()



    """
    from numpy import histogramdd

    try:
        N = len(bins)
    except TypeError:
        N = 1

    if N != 1 and N != 2:
        xedges = yedges = asarray(bins)
        bins = [xedges, yedges]
    hist, edges = histogramdd([x, y], bins, range, normed, weights, density)
    return hist, edges[0], edges[1]


@set_module('numpy')
def mask_indices(n, mask_func, k=0):
    """

    Return the indices to access (n, n) arrays, given a masking function.



    Assume `mask_func` is a function that, for a square array a of size

    ``(n, n)`` with a possible offset argument `k`, when called as

    ``mask_func(a, k)`` returns a new array with zeros in certain locations

    (functions like `triu` or `tril` do precisely this). Then this function

    returns the indices where the non-zero values would be located.



    Parameters

    ----------

    n : int

        The returned indices will be valid to access arrays of shape (n, n).

    mask_func : callable

        A function whose call signature is similar to that of `triu`, `tril`.

        That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`.

        `k` is an optional argument to the function.

    k : scalar

        An optional argument which is passed through to `mask_func`. Functions

        like `triu`, `tril` take a second argument that is interpreted as an

        offset.



    Returns

    -------

    indices : tuple of arrays.

        The `n` arrays of indices corresponding to the locations where

        ``mask_func(np.ones((n, n)), k)`` is True.



    See Also

    --------

    triu, tril, triu_indices, tril_indices



    Notes

    -----

    .. versionadded:: 1.4.0



    Examples

    --------

    These are the indices that would allow you to access the upper triangular

    part of any 3x3 array:



    >>> iu = np.mask_indices(3, np.triu)



    For example, if `a` is a 3x3 array:



    >>> a = np.arange(9).reshape(3, 3)

    >>> a

    array([[0, 1, 2],

           [3, 4, 5],

           [6, 7, 8]])

    >>> a[iu]

    array([0, 1, 2, 4, 5, 8])



    An offset can be passed also to the masking function.  This gets us the

    indices starting on the first diagonal right of the main one:



    >>> iu1 = np.mask_indices(3, np.triu, 1)



    with which we now extract only three elements:



    >>> a[iu1]

    array([1, 2, 5])



    """
    m = ones((n, n), int)
    a = mask_func(m, k)
    return nonzero(a != 0)


@set_module('numpy')
def tril_indices(n, k=0, m=None):
    """

    Return the indices for the lower-triangle of an (n, m) array.



    Parameters

    ----------

    n : int

        The row dimension of the arrays for which the returned

        indices will be valid.

    k : int, optional

        Diagonal offset (see `tril` for details).

    m : int, optional

        .. versionadded:: 1.9.0



        The column dimension of the arrays for which the returned

        arrays will be valid.

        By default `m` is taken equal to `n`.





    Returns

    -------

    inds : tuple of arrays

        The indices for the triangle. The returned tuple contains two arrays,

        each with the indices along one dimension of the array.



    See also

    --------

    triu_indices : similar function, for upper-triangular.

    mask_indices : generic function accepting an arbitrary mask function.

    tril, triu



    Notes

    -----

    .. versionadded:: 1.4.0



    Examples

    --------

    Compute two different sets of indices to access 4x4 arrays, one for the

    lower triangular part starting at the main diagonal, and one starting two

    diagonals further right:



    >>> il1 = np.tril_indices(4)

    >>> il2 = np.tril_indices(4, 2)



    Here is how they can be used with a sample array:



    >>> a = np.arange(16).reshape(4, 4)

    >>> a

    array([[ 0,  1,  2,  3],

           [ 4,  5,  6,  7],

           [ 8,  9, 10, 11],

           [12, 13, 14, 15]])



    Both for indexing:



    >>> a[il1]

    array([ 0,  4,  5, ..., 13, 14, 15])



    And for assigning values:



    >>> a[il1] = -1

    >>> a

    array([[-1,  1,  2,  3],

           [-1, -1,  6,  7],

           [-1, -1, -1, 11],

           [-1, -1, -1, -1]])



    These cover almost the whole array (two diagonals right of the main one):



    >>> a[il2] = -10

    >>> a

    array([[-10, -10, -10,   3],

           [-10, -10, -10, -10],

           [-10, -10, -10, -10],

           [-10, -10, -10, -10]])



    """
    tri_ = tri(n, m, k=k, dtype=bool)

    return tuple(broadcast_to(inds, tri_.shape)[tri_]
                 for inds in indices(tri_.shape, sparse=True))


def _trilu_indices_form_dispatcher(arr, k=None):
    return (arr,)


@array_function_dispatch(_trilu_indices_form_dispatcher)
def tril_indices_from(arr, k=0):
    """

    Return the indices for the lower-triangle of arr.



    See `tril_indices` for full details.



    Parameters

    ----------

    arr : array_like

        The indices will be valid for square arrays whose dimensions are

        the same as arr.

    k : int, optional

        Diagonal offset (see `tril` for details).



    See Also

    --------

    tril_indices, tril



    Notes

    -----

    .. versionadded:: 1.4.0



    """
    if arr.ndim != 2:
        raise ValueError("input array must be 2-d")
    return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1])


@set_module('numpy')
def triu_indices(n, k=0, m=None):
    """

    Return the indices for the upper-triangle of an (n, m) array.



    Parameters

    ----------

    n : int

        The size of the arrays for which the returned indices will

        be valid.

    k : int, optional

        Diagonal offset (see `triu` for details).

    m : int, optional

        .. versionadded:: 1.9.0



        The column dimension of the arrays for which the returned

        arrays will be valid.

        By default `m` is taken equal to `n`.





    Returns

    -------

    inds : tuple, shape(2) of ndarrays, shape(`n`)

        The indices for the triangle. The returned tuple contains two arrays,

        each with the indices along one dimension of the array.  Can be used

        to slice a ndarray of shape(`n`, `n`).



    See also

    --------

    tril_indices : similar function, for lower-triangular.

    mask_indices : generic function accepting an arbitrary mask function.

    triu, tril



    Notes

    -----

    .. versionadded:: 1.4.0



    Examples

    --------

    Compute two different sets of indices to access 4x4 arrays, one for the

    upper triangular part starting at the main diagonal, and one starting two

    diagonals further right:



    >>> iu1 = np.triu_indices(4)

    >>> iu2 = np.triu_indices(4, 2)



    Here is how they can be used with a sample array:



    >>> a = np.arange(16).reshape(4, 4)

    >>> a

    array([[ 0,  1,  2,  3],

           [ 4,  5,  6,  7],

           [ 8,  9, 10, 11],

           [12, 13, 14, 15]])



    Both for indexing:



    >>> a[iu1]

    array([ 0,  1,  2, ..., 10, 11, 15])



    And for assigning values:



    >>> a[iu1] = -1

    >>> a

    array([[-1, -1, -1, -1],

           [ 4, -1, -1, -1],

           [ 8,  9, -1, -1],

           [12, 13, 14, -1]])



    These cover only a small part of the whole array (two diagonals right

    of the main one):



    >>> a[iu2] = -10

    >>> a

    array([[ -1,  -1, -10, -10],

           [  4,  -1,  -1, -10],

           [  8,   9,  -1,  -1],

           [ 12,  13,  14,  -1]])



    """
    tri_ = ~tri(n, m, k=k - 1, dtype=bool)

    return tuple(broadcast_to(inds, tri_.shape)[tri_]
                 for inds in indices(tri_.shape, sparse=True))


@array_function_dispatch(_trilu_indices_form_dispatcher)
def triu_indices_from(arr, k=0):
    """

    Return the indices for the upper-triangle of arr.



    See `triu_indices` for full details.



    Parameters

    ----------

    arr : ndarray, shape(N, N)

        The indices will be valid for square arrays.

    k : int, optional

        Diagonal offset (see `triu` for details).



    Returns

    -------

    triu_indices_from : tuple, shape(2) of ndarray, shape(N)

        Indices for the upper-triangle of `arr`.



    See Also

    --------

    triu_indices, triu



    Notes

    -----

    .. versionadded:: 1.4.0



    """
    if arr.ndim != 2:
        raise ValueError("input array must be 2-d")
    return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])