File size: 10,741 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import warnings

# 2018-05-29, PendingDeprecationWarning added to matrix.__new__
# 2020-01-23, numpy 1.19.0 PendingDeprecatonWarning
warnings.warn("Importing from numpy.matlib is deprecated since 1.19.0. "
              "The matrix subclass is not the recommended way to represent "
              "matrices or deal with linear algebra (see "
              "https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html). "
              "Please adjust your code to use regular ndarray. ",
              PendingDeprecationWarning, stacklevel=2)

import numpy as np
from numpy.matrixlib.defmatrix import matrix, asmatrix
# Matlib.py contains all functions in the numpy namespace with a few
# replacements. See doc/source/reference/routines.matlib.rst for details.
# Need * as we're copying the numpy namespace.
from numpy import *  # noqa: F403

__version__ = np.__version__

__all__ = np.__all__[:] # copy numpy namespace
__all__ += ['rand', 'randn', 'repmat']

def empty(shape, dtype=None, order='C'):
    """Return a new matrix of given shape and type, without initializing entries.



    Parameters

    ----------

    shape : int or tuple of int

        Shape of the empty matrix.

    dtype : data-type, optional

        Desired output data-type.

    order : {'C', 'F'}, optional

        Whether to store multi-dimensional data in row-major

        (C-style) or column-major (Fortran-style) order in

        memory.



    See Also

    --------

    empty_like, zeros



    Notes

    -----

    `empty`, unlike `zeros`, does not set the matrix values to zero,

    and may therefore be marginally faster.  On the other hand, it requires

    the user to manually set all the values in the array, and should be

    used with caution.



    Examples

    --------

    >>> import numpy.matlib

    >>> np.matlib.empty((2, 2))    # filled with random data

    matrix([[  6.76425276e-320,   9.79033856e-307], # random

            [  7.39337286e-309,   3.22135945e-309]])

    >>> np.matlib.empty((2, 2), dtype=int)

    matrix([[ 6600475,        0], # random

            [ 6586976, 22740995]])



    """
    return ndarray.__new__(matrix, shape, dtype, order=order)

def ones(shape, dtype=None, order='C'):
    """

    Matrix of ones.



    Return a matrix of given shape and type, filled with ones.



    Parameters

    ----------

    shape : {sequence of ints, int}

        Shape of the matrix

    dtype : data-type, optional

        The desired data-type for the matrix, default is np.float64.

    order : {'C', 'F'}, optional

        Whether to store matrix in C- or Fortran-contiguous order,

        default is 'C'.



    Returns

    -------

    out : matrix

        Matrix of ones of given shape, dtype, and order.



    See Also

    --------

    ones : Array of ones.

    matlib.zeros : Zero matrix.



    Notes

    -----

    If `shape` has length one i.e. ``(N,)``, or is a scalar ``N``,

    `out` becomes a single row matrix of shape ``(1,N)``.



    Examples

    --------

    >>> np.matlib.ones((2,3))

    matrix([[1.,  1.,  1.],

            [1.,  1.,  1.]])



    >>> np.matlib.ones(2)

    matrix([[1.,  1.]])



    """
    a = ndarray.__new__(matrix, shape, dtype, order=order)
    a.fill(1)
    return a

def zeros(shape, dtype=None, order='C'):
    """

    Return a matrix of given shape and type, filled with zeros.



    Parameters

    ----------

    shape : int or sequence of ints

        Shape of the matrix

    dtype : data-type, optional

        The desired data-type for the matrix, default is float.

    order : {'C', 'F'}, optional

        Whether to store the result in C- or Fortran-contiguous order,

        default is 'C'.



    Returns

    -------

    out : matrix

        Zero matrix of given shape, dtype, and order.



    See Also

    --------

    numpy.zeros : Equivalent array function.

    matlib.ones : Return a matrix of ones.



    Notes

    -----

    If `shape` has length one i.e. ``(N,)``, or is a scalar ``N``,

    `out` becomes a single row matrix of shape ``(1,N)``.



    Examples

    --------

    >>> import numpy.matlib

    >>> np.matlib.zeros((2, 3))

    matrix([[0.,  0.,  0.],

            [0.,  0.,  0.]])



    >>> np.matlib.zeros(2)

    matrix([[0.,  0.]])



    """
    a = ndarray.__new__(matrix, shape, dtype, order=order)
    a.fill(0)
    return a

def identity(n,dtype=None):
    """

    Returns the square identity matrix of given size.



    Parameters

    ----------

    n : int

        Size of the returned identity matrix.

    dtype : data-type, optional

        Data-type of the output. Defaults to ``float``.



    Returns

    -------

    out : matrix

        `n` x `n` matrix with its main diagonal set to one,

        and all other elements zero.



    See Also

    --------

    numpy.identity : Equivalent array function.

    matlib.eye : More general matrix identity function.



    Examples

    --------

    >>> import numpy.matlib

    >>> np.matlib.identity(3, dtype=int)

    matrix([[1, 0, 0],

            [0, 1, 0],

            [0, 0, 1]])



    """
    a = array([1]+n*[0], dtype=dtype)
    b = empty((n, n), dtype=dtype)
    b.flat = a
    return b

def eye(n,M=None, k=0, dtype=float, order='C'):
    """

    Return a matrix with ones on the diagonal and zeros elsewhere.



    Parameters

    ----------

    n : int

        Number of rows in the output.

    M : int, optional

        Number of columns in the output, defaults to `n`.

    k : int, optional

        Index of the diagonal: 0 refers to the main diagonal,

        a positive value refers to an upper diagonal,

        and a negative value to a lower diagonal.

    dtype : dtype, optional

        Data-type of the returned matrix.

    order : {'C', 'F'}, optional

        Whether the output should be stored in row-major (C-style) or

        column-major (Fortran-style) order in memory.



        .. versionadded:: 1.14.0



    Returns

    -------

    I : matrix

        A `n` x `M` matrix where all elements are equal to zero,

        except for the `k`-th diagonal, whose values are equal to one.



    See Also

    --------

    numpy.eye : Equivalent array function.

    identity : Square identity matrix.



    Examples

    --------

    >>> import numpy.matlib

    >>> np.matlib.eye(3, k=1, dtype=float)

    matrix([[0.,  1.,  0.],

            [0.,  0.,  1.],

            [0.,  0.,  0.]])



    """
    return asmatrix(np.eye(n, M=M, k=k, dtype=dtype, order=order))

def rand(*args):
    """

    Return a matrix of random values with given shape.



    Create a matrix of the given shape and propagate it with

    random samples from a uniform distribution over ``[0, 1)``.



    Parameters

    ----------

    \\*args : Arguments

        Shape of the output.

        If given as N integers, each integer specifies the size of one

        dimension.

        If given as a tuple, this tuple gives the complete shape.



    Returns

    -------

    out : ndarray

        The matrix of random values with shape given by `\\*args`.



    See Also

    --------

    randn, numpy.random.RandomState.rand



    Examples

    --------

    >>> np.random.seed(123)

    >>> import numpy.matlib

    >>> np.matlib.rand(2, 3)

    matrix([[0.69646919, 0.28613933, 0.22685145],

            [0.55131477, 0.71946897, 0.42310646]])

    >>> np.matlib.rand((2, 3))

    matrix([[0.9807642 , 0.68482974, 0.4809319 ],

            [0.39211752, 0.34317802, 0.72904971]])



    If the first argument is a tuple, other arguments are ignored:



    >>> np.matlib.rand((2, 3), 4)

    matrix([[0.43857224, 0.0596779 , 0.39804426],

            [0.73799541, 0.18249173, 0.17545176]])



    """
    if isinstance(args[0], tuple):
        args = args[0]
    return asmatrix(np.random.rand(*args))

def randn(*args):
    """

    Return a random matrix with data from the "standard normal" distribution.



    `randn` generates a matrix filled with random floats sampled from a

    univariate "normal" (Gaussian) distribution of mean 0 and variance 1.



    Parameters

    ----------

    \\*args : Arguments

        Shape of the output.

        If given as N integers, each integer specifies the size of one

        dimension. If given as a tuple, this tuple gives the complete shape.



    Returns

    -------

    Z : matrix of floats

        A matrix of floating-point samples drawn from the standard normal

        distribution.



    See Also

    --------

    rand, numpy.random.RandomState.randn



    Notes

    -----

    For random samples from :math:`N(\\mu, \\sigma^2)`, use:



    ``sigma * np.matlib.randn(...) + mu``



    Examples

    --------

    >>> np.random.seed(123)

    >>> import numpy.matlib

    >>> np.matlib.randn(1)

    matrix([[-1.0856306]])

    >>> np.matlib.randn(1, 2, 3)

    matrix([[ 0.99734545,  0.2829785 , -1.50629471],

            [-0.57860025,  1.65143654, -2.42667924]])



    Two-by-four matrix of samples from :math:`N(3, 6.25)`:



    >>> 2.5 * np.matlib.randn((2, 4)) + 3

    matrix([[1.92771843, 6.16484065, 0.83314899, 1.30278462],

            [2.76322758, 6.72847407, 1.40274501, 1.8900451 ]])



    """
    if isinstance(args[0], tuple):
        args = args[0]
    return asmatrix(np.random.randn(*args))

def repmat(a, m, n):
    """

    Repeat a 0-D to 2-D array or matrix MxN times.



    Parameters

    ----------

    a : array_like

        The array or matrix to be repeated.

    m, n : int

        The number of times `a` is repeated along the first and second axes.



    Returns

    -------

    out : ndarray

        The result of repeating `a`.



    Examples

    --------

    >>> import numpy.matlib

    >>> a0 = np.array(1)

    >>> np.matlib.repmat(a0, 2, 3)

    array([[1, 1, 1],

           [1, 1, 1]])



    >>> a1 = np.arange(4)

    >>> np.matlib.repmat(a1, 2, 2)

    array([[0, 1, 2, 3, 0, 1, 2, 3],

           [0, 1, 2, 3, 0, 1, 2, 3]])



    >>> a2 = np.asmatrix(np.arange(6).reshape(2, 3))

    >>> np.matlib.repmat(a2, 2, 3)

    matrix([[0, 1, 2, 0, 1, 2, 0, 1, 2],

            [3, 4, 5, 3, 4, 5, 3, 4, 5],

            [0, 1, 2, 0, 1, 2, 0, 1, 2],

            [3, 4, 5, 3, 4, 5, 3, 4, 5]])



    """
    a = asanyarray(a)
    ndim = a.ndim
    if ndim == 0:
        origrows, origcols = (1, 1)
    elif ndim == 1:
        origrows, origcols = (1, a.shape[0])
    else:
        origrows, origcols = a.shape
    rows = origrows * m
    cols = origcols * n
    c = a.reshape(1, a.size).repeat(m, 0).reshape(rows, origcols).repeat(n, 0)
    return c.reshape(rows, cols)