Spaces:
Running
Running
File size: 11,206 Bytes
e11e4fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
from typing import Tuple, Optional, Union
from mlagents.trainers.torch_entities.layers import linear_layer, Initialization, Swish
from mlagents.torch_utils import torch, nn
from mlagents.trainers.torch_entities.model_serialization import exporting_to_onnx
class Normalizer(nn.Module):
def __init__(self, vec_obs_size: int):
super().__init__()
self.register_buffer("normalization_steps", torch.tensor(1))
self.register_buffer("running_mean", torch.zeros(vec_obs_size))
self.register_buffer("running_variance", torch.ones(vec_obs_size))
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
normalized_state = torch.clamp(
(inputs - self.running_mean)
/ torch.sqrt(self.running_variance / self.normalization_steps),
-5,
5,
)
return normalized_state
def update(self, vector_input: torch.Tensor) -> None:
with torch.no_grad():
steps_increment = vector_input.size()[0]
total_new_steps = self.normalization_steps + steps_increment
input_to_old_mean = vector_input - self.running_mean
new_mean: torch.Tensor = self.running_mean + (
input_to_old_mean / total_new_steps
).sum(0)
input_to_new_mean = vector_input - new_mean
new_variance = self.running_variance + (
input_to_new_mean * input_to_old_mean
).sum(0)
# Update references. This is much faster than in-place data update.
self.running_mean: torch.Tensor = new_mean
self.running_variance: torch.Tensor = new_variance
self.normalization_steps: torch.Tensor = total_new_steps
def copy_from(self, other_normalizer: "Normalizer") -> None:
self.normalization_steps.data.copy_(other_normalizer.normalization_steps.data)
self.running_mean.data.copy_(other_normalizer.running_mean.data)
self.running_variance.copy_(other_normalizer.running_variance.data)
def conv_output_shape(
h_w: Tuple[int, int],
kernel_size: Union[int, Tuple[int, int]] = 1,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
) -> Tuple[int, int]:
"""
Calculates the output shape (height and width) of the output of a convolution layer.
kernel_size, stride, padding and dilation correspond to the inputs of the
torch.nn.Conv2d layer (https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html)
:param h_w: The height and width of the input.
:param kernel_size: The size of the kernel of the convolution (can be an int or a
tuple [width, height])
:param stride: The stride of the convolution
:param padding: The padding of the convolution
:param dilation: The dilation of the convolution
"""
from math import floor
if not isinstance(kernel_size, tuple):
kernel_size = (int(kernel_size), int(kernel_size))
h = floor(
((h_w[0] + (2 * padding) - (dilation * (kernel_size[0] - 1)) - 1) / stride) + 1
)
w = floor(
((h_w[1] + (2 * padding) - (dilation * (kernel_size[1] - 1)) - 1) / stride) + 1
)
return h, w
def pool_out_shape(h_w: Tuple[int, int], kernel_size: int) -> Tuple[int, int]:
"""
Calculates the output shape (height and width) of the output of a max pooling layer.
kernel_size corresponds to the inputs of the
torch.nn.MaxPool2d layer (https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html)
:param kernel_size: The size of the kernel of the convolution
"""
height = (h_w[0] - kernel_size) // 2 + 1
width = (h_w[1] - kernel_size) // 2 + 1
return height, width
class VectorInput(nn.Module):
def __init__(self, input_size: int, normalize: bool = False):
super().__init__()
self.normalizer: Optional[Normalizer] = None
if normalize:
self.normalizer = Normalizer(input_size)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
if self.normalizer is not None:
inputs = self.normalizer(inputs)
return inputs
def copy_normalization(self, other_input: "VectorInput") -> None:
if self.normalizer is not None and other_input.normalizer is not None:
self.normalizer.copy_from(other_input.normalizer)
def update_normalization(self, inputs: torch.Tensor) -> None:
if self.normalizer is not None:
self.normalizer.update(inputs)
class FullyConnectedVisualEncoder(nn.Module):
def __init__(
self, height: int, width: int, initial_channels: int, output_size: int
):
super().__init__()
self.output_size = output_size
self.input_size = height * width * initial_channels
self.dense = nn.Sequential(
linear_layer(
self.input_size,
self.output_size,
kernel_init=Initialization.KaimingHeNormal,
kernel_gain=1.41, # Use ReLU gain
),
nn.LeakyReLU(),
)
def forward(self, visual_obs: torch.Tensor) -> torch.Tensor:
if not exporting_to_onnx.is_exporting():
visual_obs = visual_obs.permute([0, 3, 1, 2])
hidden = visual_obs.reshape(-1, self.input_size)
return self.dense(hidden)
class SmallVisualEncoder(nn.Module):
"""
CNN architecture used by King in their Candy Crush predictor
https://www.researchgate.net/publication/328307928_Human-Like_Playtesting_with_Deep_Learning
"""
def __init__(
self, height: int, width: int, initial_channels: int, output_size: int
):
super().__init__()
self.h_size = output_size
conv_1_hw = conv_output_shape((height, width), 3, 1)
conv_2_hw = conv_output_shape(conv_1_hw, 3, 1)
self.final_flat = conv_2_hw[0] * conv_2_hw[1] * 144
self.conv_layers = nn.Sequential(
nn.Conv2d(initial_channels, 35, [3, 3], [1, 1]),
nn.LeakyReLU(),
nn.Conv2d(35, 144, [3, 3], [1, 1]),
nn.LeakyReLU(),
)
self.dense = nn.Sequential(
linear_layer(
self.final_flat,
self.h_size,
kernel_init=Initialization.KaimingHeNormal,
kernel_gain=1.41, # Use ReLU gain
),
nn.LeakyReLU(),
)
def forward(self, visual_obs: torch.Tensor) -> torch.Tensor:
if not exporting_to_onnx.is_exporting():
visual_obs = visual_obs.permute([0, 3, 1, 2])
hidden = self.conv_layers(visual_obs)
hidden = hidden.reshape(-1, self.final_flat)
return self.dense(hidden)
class SimpleVisualEncoder(nn.Module):
def __init__(
self, height: int, width: int, initial_channels: int, output_size: int
):
super().__init__()
self.h_size = output_size
conv_1_hw = conv_output_shape((height, width), 8, 4)
conv_2_hw = conv_output_shape(conv_1_hw, 4, 2)
self.final_flat = conv_2_hw[0] * conv_2_hw[1] * 32
self.conv_layers = nn.Sequential(
nn.Conv2d(initial_channels, 16, [8, 8], [4, 4]),
nn.LeakyReLU(),
nn.Conv2d(16, 32, [4, 4], [2, 2]),
nn.LeakyReLU(),
)
self.dense = nn.Sequential(
linear_layer(
self.final_flat,
self.h_size,
kernel_init=Initialization.KaimingHeNormal,
kernel_gain=1.41, # Use ReLU gain
),
nn.LeakyReLU(),
)
def forward(self, visual_obs: torch.Tensor) -> torch.Tensor:
if not exporting_to_onnx.is_exporting():
visual_obs = visual_obs.permute([0, 3, 1, 2])
hidden = self.conv_layers(visual_obs)
hidden = hidden.reshape(-1, self.final_flat)
return self.dense(hidden)
class NatureVisualEncoder(nn.Module):
def __init__(
self, height: int, width: int, initial_channels: int, output_size: int
):
super().__init__()
self.h_size = output_size
conv_1_hw = conv_output_shape((height, width), 8, 4)
conv_2_hw = conv_output_shape(conv_1_hw, 4, 2)
conv_3_hw = conv_output_shape(conv_2_hw, 3, 1)
self.final_flat = conv_3_hw[0] * conv_3_hw[1] * 64
self.conv_layers = nn.Sequential(
nn.Conv2d(initial_channels, 32, [8, 8], [4, 4]),
nn.LeakyReLU(),
nn.Conv2d(32, 64, [4, 4], [2, 2]),
nn.LeakyReLU(),
nn.Conv2d(64, 64, [3, 3], [1, 1]),
nn.LeakyReLU(),
)
self.dense = nn.Sequential(
linear_layer(
self.final_flat,
self.h_size,
kernel_init=Initialization.KaimingHeNormal,
kernel_gain=1.41, # Use ReLU gain
),
nn.LeakyReLU(),
)
def forward(self, visual_obs: torch.Tensor) -> torch.Tensor:
if not exporting_to_onnx.is_exporting():
visual_obs = visual_obs.permute([0, 3, 1, 2])
hidden = self.conv_layers(visual_obs)
hidden = hidden.reshape([-1, self.final_flat])
return self.dense(hidden)
class ResNetBlock(nn.Module):
def __init__(self, channel: int):
"""
Creates a ResNet Block.
:param channel: The number of channels in the input (and output) tensors of the
convolutions
"""
super().__init__()
self.layers = nn.Sequential(
Swish(),
nn.Conv2d(channel, channel, [3, 3], [1, 1], padding=1),
Swish(),
nn.Conv2d(channel, channel, [3, 3], [1, 1], padding=1),
)
def forward(self, input_tensor: torch.Tensor) -> torch.Tensor:
return input_tensor + self.layers(input_tensor)
class ResNetVisualEncoder(nn.Module):
def __init__(
self, height: int, width: int, initial_channels: int, output_size: int
):
super().__init__()
n_channels = [16, 32, 32] # channel for each stack
n_blocks = 2 # number of residual blocks
layers = []
last_channel = initial_channels
for _, channel in enumerate(n_channels):
layers.append(nn.Conv2d(last_channel, channel, [3, 3], [1, 1], padding=1))
layers.append(nn.MaxPool2d([3, 3], [2, 2]))
height, width = pool_out_shape((height, width), 3)
for _ in range(n_blocks):
layers.append(ResNetBlock(channel))
last_channel = channel
layers.append(Swish())
self.final_flat_size = n_channels[-1] * height * width
self.dense = linear_layer(
self.final_flat_size,
output_size,
kernel_init=Initialization.KaimingHeNormal,
kernel_gain=1.41, # Use ReLU gain
)
self.sequential = nn.Sequential(*layers)
def forward(self, visual_obs: torch.Tensor) -> torch.Tensor:
if not exporting_to_onnx.is_exporting():
visual_obs = visual_obs.permute([0, 3, 1, 2])
hidden = self.sequential(visual_obs)
before_out = hidden.reshape(-1, self.final_flat_size)
return torch.relu(self.dense(before_out))
|