Spaces:
Running
Running
File size: 12,542 Bytes
e11e4fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
# # Unity ML-Agents Toolkit
from typing import Dict, List, Optional
from collections import defaultdict
import abc
import time
import attr
import numpy as np
from mlagents_envs.side_channel.stats_side_channel import StatsAggregationMethod
from mlagents.trainers.policy.checkpoint_manager import (
ModelCheckpoint,
ModelCheckpointManager,
)
from mlagents_envs.logging_util import get_logger
from mlagents_envs.timers import timed
from mlagents.trainers.optimizer import Optimizer
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer
from mlagents.trainers.buffer import AgentBuffer, BufferKey
from mlagents.trainers.trainer import Trainer
from mlagents.trainers.torch_entities.components.reward_providers.base_reward_provider import (
BaseRewardProvider,
)
from mlagents_envs.timers import hierarchical_timer
from mlagents.trainers.model_saver.torch_model_saver import TorchModelSaver
from mlagents.trainers.agent_processor import AgentManagerQueue
from mlagents.trainers.trajectory import Trajectory
from mlagents.trainers.settings import TrainerSettings
from mlagents.trainers.stats import StatsPropertyType
from mlagents.trainers.model_saver.model_saver import BaseModelSaver
logger = get_logger(__name__)
class RLTrainer(Trainer):
"""
This class is the base class for trainers that use Reward Signals.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# collected_rewards is a dictionary from name of reward signal to a dictionary of agent_id to cumulative reward
# used for reporting only. We always want to report the environment reward to Tensorboard, regardless
# of what reward signals are actually present.
self.cumulative_returns_since_policy_update: List[float] = []
self.collected_rewards: Dict[str, Dict[str, int]] = {
"environment": defaultdict(lambda: 0)
}
self.update_buffer: AgentBuffer = AgentBuffer()
self._stats_reporter.add_property(
StatsPropertyType.HYPERPARAMETERS, self.trainer_settings.as_dict()
)
self._next_save_step = 0
self._next_summary_step = 0
self.model_saver = self.create_model_saver(
self.trainer_settings, self.artifact_path, self.load
)
self._has_warned_group_rewards = False
def end_episode(self) -> None:
"""
A signal that the Episode has ended. The buffer must be reset.
Get only called when the academy resets.
"""
for rewards in self.collected_rewards.values():
for agent_id in rewards:
rewards[agent_id] = 0
def _update_end_episode_stats(self, agent_id: str, optimizer: Optimizer) -> None:
for name, rewards in self.collected_rewards.items():
if name == "environment":
self.stats_reporter.add_stat(
"Environment/Cumulative Reward",
rewards.get(agent_id, 0),
aggregation=StatsAggregationMethod.HISTOGRAM,
)
self.cumulative_returns_since_policy_update.append(
rewards.get(agent_id, 0)
)
self.reward_buffer.appendleft(rewards.get(agent_id, 0))
rewards[agent_id] = 0
else:
if isinstance(optimizer.reward_signals[name], BaseRewardProvider):
self.stats_reporter.add_stat(
f"Policy/{optimizer.reward_signals[name].name.capitalize()} Reward",
rewards.get(agent_id, 0),
)
else:
self.stats_reporter.add_stat(
optimizer.reward_signals[name].stat_name,
rewards.get(agent_id, 0),
)
rewards[agent_id] = 0
def _clear_update_buffer(self) -> None:
"""
Clear the buffers that have been built up during inference.
"""
self.update_buffer.reset_agent()
@abc.abstractmethod
def _is_ready_update(self):
"""
Returns whether or not the trainer has enough elements to run update model
:return: A boolean corresponding to wether or not update_model() can be run
"""
return False
@abc.abstractmethod
def create_optimizer(self) -> TorchOptimizer:
"""
Creates an Optimizer object
"""
pass
@staticmethod
def create_model_saver(
trainer_settings: TrainerSettings, model_path: str, load: bool
) -> BaseModelSaver:
model_saver = TorchModelSaver( # type: ignore
trainer_settings, model_path, load
)
return model_saver
def _policy_mean_reward(self) -> Optional[float]:
"""Returns the mean episode reward for the current policy."""
rewards = self.cumulative_returns_since_policy_update
if len(rewards) == 0:
return None
else:
return sum(rewards) / len(rewards)
@timed
def _checkpoint(self) -> ModelCheckpoint:
"""
Checkpoints the policy associated with this trainer.
"""
n_policies = len(self.policies.keys())
if n_policies > 1:
logger.warning(
"Trainer has multiple policies, but default behavior only saves the first."
)
export_path, auxillary_paths = self.model_saver.save_checkpoint(
self.brain_name, self._step
)
new_checkpoint = ModelCheckpoint(
int(self._step),
export_path,
self._policy_mean_reward(),
time.time(),
auxillary_file_paths=auxillary_paths,
)
ModelCheckpointManager.add_checkpoint(
self.brain_name, new_checkpoint, self.trainer_settings.keep_checkpoints
)
return new_checkpoint
def save_model(self) -> None:
"""
Saves the policy associated with this trainer.
"""
n_policies = len(self.policies.keys())
if n_policies > 1:
logger.warning(
"Trainer has multiple policies, but default behavior only saves the first."
)
elif n_policies == 0:
logger.warning("Trainer has no policies, not saving anything.")
return
model_checkpoint = self._checkpoint()
self.model_saver.copy_final_model(model_checkpoint.file_path)
export_ext = "onnx"
final_checkpoint = attr.evolve(
model_checkpoint, file_path=f"{self.model_saver.model_path}.{export_ext}"
)
ModelCheckpointManager.track_final_checkpoint(self.brain_name, final_checkpoint)
@abc.abstractmethod
def _update_policy(self) -> bool:
"""
Uses demonstration_buffer to update model.
:return: Whether or not the policy was updated.
"""
pass
def _increment_step(self, n_steps: int, name_behavior_id: str) -> None:
"""
Increment the step count of the trainer
:param n_steps: number of steps to increment the step count by
"""
self._step += n_steps
self._next_summary_step = self._get_next_interval_step(self.summary_freq)
self._next_save_step = self._get_next_interval_step(
self.trainer_settings.checkpoint_interval
)
p = self.get_policy(name_behavior_id)
if p:
p.increment_step(n_steps)
self.stats_reporter.set_stat("Step", float(self.get_step))
def _get_next_interval_step(self, interval: int) -> int:
"""
Get the next step count that should result in an action.
:param interval: The interval between actions.
"""
return self._step + (interval - self._step % interval)
def _write_summary(self, step: int) -> None:
"""
Saves training statistics to Tensorboard.
"""
self.stats_reporter.add_stat("Is Training", float(self.should_still_train))
self.stats_reporter.write_stats(int(step))
@abc.abstractmethod
def _process_trajectory(self, trajectory: Trajectory) -> None:
"""
Takes a trajectory and processes it, putting it into the update buffer.
:param trajectory: The Trajectory tuple containing the steps to be processed.
"""
self._maybe_write_summary(self.get_step + len(trajectory.steps))
self._maybe_save_model(self.get_step + len(trajectory.steps))
self._increment_step(len(trajectory.steps), trajectory.behavior_id)
def _maybe_write_summary(self, step_after_process: int) -> None:
"""
If processing the trajectory will make the step exceed the next summary write,
write the summary. This logic ensures summaries are written on the update step and not in between.
:param step_after_process: the step count after processing the next trajectory.
"""
if self._next_summary_step == 0: # Don't write out the first one
self._next_summary_step = self._get_next_interval_step(self.summary_freq)
if step_after_process >= self._next_summary_step and self.get_step != 0:
self._write_summary(self._next_summary_step)
def _append_to_update_buffer(self, agentbuffer_trajectory: AgentBuffer) -> None:
"""
Append an AgentBuffer to the update buffer. If the trainer isn't training,
don't update to avoid a memory leak.
"""
if self.should_still_train:
seq_len = (
self.trainer_settings.network_settings.memory.sequence_length
if self.trainer_settings.network_settings.memory is not None
else 1
)
agentbuffer_trajectory.resequence_and_append(
self.update_buffer, training_length=seq_len
)
def _maybe_save_model(self, step_after_process: int) -> None:
"""
If processing the trajectory will make the step exceed the next model write,
save the model. This logic ensures models are written on the update step and not in between.
:param step_after_process: the step count after processing the next trajectory.
"""
if self._next_save_step == 0: # Don't save the first one
self._next_save_step = self._get_next_interval_step(
self.trainer_settings.checkpoint_interval
)
if step_after_process >= self._next_save_step and self.get_step != 0:
self._checkpoint()
def _warn_if_group_reward(self, buffer: AgentBuffer) -> None:
"""
Warn if the trainer receives a Group Reward but isn't a multiagent trainer (e.g. POCA).
"""
if not self._has_warned_group_rewards:
if np.any(buffer[BufferKey.GROUP_REWARD]):
logger.warning(
"An agent recieved a Group Reward, but you are not using a multi-agent trainer. "
"Please use the POCA trainer for best results."
)
self._has_warned_group_rewards = True
def advance(self) -> None:
"""
Steps the trainer, taking in trajectories and updates if ready.
Will block and wait briefly if there are no trajectories.
"""
with hierarchical_timer("process_trajectory"):
for traj_queue in self.trajectory_queues:
# We grab at most the maximum length of the queue.
# This ensures that even if the queue is being filled faster than it is
# being emptied, the trajectories in the queue are on-policy.
_queried = False
for _ in range(traj_queue.qsize()):
_queried = True
try:
t = traj_queue.get_nowait()
self._process_trajectory(t)
except AgentManagerQueue.Empty:
break
if self.threaded and not _queried:
# Yield thread to avoid busy-waiting
time.sleep(0.0001)
if self.should_still_train:
if self._is_ready_update():
with hierarchical_timer("_update_policy"):
if self._update_policy():
for q in self.policy_queues:
# Get policies that correspond to the policy queue in question
q.put(self.get_policy(q.behavior_id))
|