Spaces:
Running
Running
File size: 12,147 Bytes
375a1cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
"""
Top-down car dynamics simulation.
Some ideas are taken from this great tutorial http://www.iforce2d.net/b2dtut/top-down-car by Chris Campbell.
This simulation is a bit more detailed, with wheels rotation.
Created by Oleg Klimov
"""
import math
import Box2D
import numpy as np
from gym.error import DependencyNotInstalled
try:
from Box2D.b2 import fixtureDef, polygonShape, revoluteJointDef
except ImportError:
raise DependencyNotInstalled("box2D is not installed, run `pip install gym[box2d]`")
SIZE = 0.02
ENGINE_POWER = 100000000 * SIZE * SIZE
WHEEL_MOMENT_OF_INERTIA = 4000 * SIZE * SIZE
FRICTION_LIMIT = (
1000000 * SIZE * SIZE
) # friction ~= mass ~= size^2 (calculated implicitly using density)
WHEEL_R = 27
WHEEL_W = 14
WHEELPOS = [(-55, +80), (+55, +80), (-55, -82), (+55, -82)]
HULL_POLY1 = [(-60, +130), (+60, +130), (+60, +110), (-60, +110)]
HULL_POLY2 = [(-15, +120), (+15, +120), (+20, +20), (-20, 20)]
HULL_POLY3 = [
(+25, +20),
(+50, -10),
(+50, -40),
(+20, -90),
(-20, -90),
(-50, -40),
(-50, -10),
(-25, +20),
]
HULL_POLY4 = [(-50, -120), (+50, -120), (+50, -90), (-50, -90)]
WHEEL_COLOR = (0, 0, 0)
WHEEL_WHITE = (77, 77, 77)
MUD_COLOR = (102, 102, 0)
class Car:
def __init__(self, world, init_angle, init_x, init_y):
self.world: Box2D.b2World = world
self.hull: Box2D.b2Body = self.world.CreateDynamicBody(
position=(init_x, init_y),
angle=init_angle,
fixtures=[
fixtureDef(
shape=polygonShape(
vertices=[(x * SIZE, y * SIZE) for x, y in HULL_POLY1]
),
density=1.0,
),
fixtureDef(
shape=polygonShape(
vertices=[(x * SIZE, y * SIZE) for x, y in HULL_POLY2]
),
density=1.0,
),
fixtureDef(
shape=polygonShape(
vertices=[(x * SIZE, y * SIZE) for x, y in HULL_POLY3]
),
density=1.0,
),
fixtureDef(
shape=polygonShape(
vertices=[(x * SIZE, y * SIZE) for x, y in HULL_POLY4]
),
density=1.0,
),
],
)
self.hull.color = (0.8, 0.0, 0.0)
self.wheels = []
self.fuel_spent = 0.0
WHEEL_POLY = [
(-WHEEL_W, +WHEEL_R),
(+WHEEL_W, +WHEEL_R),
(+WHEEL_W, -WHEEL_R),
(-WHEEL_W, -WHEEL_R),
]
for wx, wy in WHEELPOS:
front_k = 1.0 if wy > 0 else 1.0
w = self.world.CreateDynamicBody(
position=(init_x + wx * SIZE, init_y + wy * SIZE),
angle=init_angle,
fixtures=fixtureDef(
shape=polygonShape(
vertices=[
(x * front_k * SIZE, y * front_k * SIZE)
for x, y in WHEEL_POLY
]
),
density=0.1,
categoryBits=0x0020,
maskBits=0x001,
restitution=0.0,
),
)
w.wheel_rad = front_k * WHEEL_R * SIZE
w.color = WHEEL_COLOR
w.gas = 0.0
w.brake = 0.0
w.steer = 0.0
w.phase = 0.0 # wheel angle
w.omega = 0.0 # angular velocity
w.skid_start = None
w.skid_particle = None
rjd = revoluteJointDef(
bodyA=self.hull,
bodyB=w,
localAnchorA=(wx * SIZE, wy * SIZE),
localAnchorB=(0, 0),
enableMotor=True,
enableLimit=True,
maxMotorTorque=180 * 900 * SIZE * SIZE,
motorSpeed=0,
lowerAngle=-0.4,
upperAngle=+0.4,
)
w.joint = self.world.CreateJoint(rjd)
w.tiles = set()
w.userData = w
self.wheels.append(w)
self.drawlist = self.wheels + [self.hull]
self.particles = []
def gas(self, gas):
"""control: rear wheel drive
Args:
gas (float): How much gas gets applied. Gets clipped between 0 and 1.
"""
gas = np.clip(gas, 0, 1)
for w in self.wheels[2:4]:
diff = gas - w.gas
if diff > 0.1:
diff = 0.1 # gradually increase, but stop immediately
w.gas += diff
def brake(self, b):
"""control: brake
Args:
b (0..1): Degree to which the brakes are applied. More than 0.9 blocks the wheels to zero rotation"""
for w in self.wheels:
w.brake = b
def steer(self, s):
"""control: steer
Args:
s (-1..1): target position, it takes time to rotate steering wheel from side-to-side"""
self.wheels[0].steer = s
self.wheels[1].steer = s
def step(self, dt):
for w in self.wheels:
# Steer each wheel
dir = np.sign(w.steer - w.joint.angle)
val = abs(w.steer - w.joint.angle)
w.joint.motorSpeed = dir * min(50.0 * val, 3.0)
# Position => friction_limit
grass = True
friction_limit = FRICTION_LIMIT * 0.6 # Grass friction if no tile
for tile in w.tiles:
friction_limit = max(
friction_limit, FRICTION_LIMIT * tile.road_friction
)
grass = False
# Force
forw = w.GetWorldVector((0, 1))
side = w.GetWorldVector((1, 0))
v = w.linearVelocity
vf = forw[0] * v[0] + forw[1] * v[1] # forward speed
vs = side[0] * v[0] + side[1] * v[1] # side speed
# WHEEL_MOMENT_OF_INERTIA*np.square(w.omega)/2 = E -- energy
# WHEEL_MOMENT_OF_INERTIA*w.omega * domega/dt = dE/dt = W -- power
# domega = dt*W/WHEEL_MOMENT_OF_INERTIA/w.omega
# add small coef not to divide by zero
w.omega += (
dt
* ENGINE_POWER
* w.gas
/ WHEEL_MOMENT_OF_INERTIA
/ (abs(w.omega) + 5.0)
)
self.fuel_spent += dt * ENGINE_POWER * w.gas
if w.brake >= 0.9:
w.omega = 0
elif w.brake > 0:
BRAKE_FORCE = 15 # radians per second
dir = -np.sign(w.omega)
val = BRAKE_FORCE * w.brake
if abs(val) > abs(w.omega):
val = abs(w.omega) # low speed => same as = 0
w.omega += dir * val
w.phase += w.omega * dt
vr = w.omega * w.wheel_rad # rotating wheel speed
f_force = -vf + vr # force direction is direction of speed difference
p_force = -vs
# Physically correct is to always apply friction_limit until speed is equal.
# But dt is finite, that will lead to oscillations if difference is already near zero.
# Random coefficient to cut oscillations in few steps (have no effect on friction_limit)
f_force *= 205000 * SIZE * SIZE
p_force *= 205000 * SIZE * SIZE
force = np.sqrt(np.square(f_force) + np.square(p_force))
# Skid trace
if abs(force) > 2.0 * friction_limit:
if (
w.skid_particle
and w.skid_particle.grass == grass
and len(w.skid_particle.poly) < 30
):
w.skid_particle.poly.append((w.position[0], w.position[1]))
elif w.skid_start is None:
w.skid_start = w.position
else:
w.skid_particle = self._create_particle(
w.skid_start, w.position, grass
)
w.skid_start = None
else:
w.skid_start = None
w.skid_particle = None
if abs(force) > friction_limit:
f_force /= force
p_force /= force
force = friction_limit # Correct physics here
f_force *= force
p_force *= force
w.omega -= dt * f_force * w.wheel_rad / WHEEL_MOMENT_OF_INERTIA
w.ApplyForceToCenter(
(
p_force * side[0] + f_force * forw[0],
p_force * side[1] + f_force * forw[1],
),
True,
)
def draw(self, surface, zoom, translation, angle, draw_particles=True):
import pygame.draw
if draw_particles:
for p in self.particles:
poly = [pygame.math.Vector2(c).rotate_rad(angle) for c in p.poly]
poly = [
(
coords[0] * zoom + translation[0],
coords[1] * zoom + translation[1],
)
for coords in poly
]
pygame.draw.lines(
surface, color=p.color, points=poly, width=2, closed=False
)
for obj in self.drawlist:
for f in obj.fixtures:
trans = f.body.transform
path = [trans * v for v in f.shape.vertices]
path = [(coords[0], coords[1]) for coords in path]
path = [pygame.math.Vector2(c).rotate_rad(angle) for c in path]
path = [
(
coords[0] * zoom + translation[0],
coords[1] * zoom + translation[1],
)
for coords in path
]
color = [int(c * 255) for c in obj.color]
pygame.draw.polygon(surface, color=color, points=path)
if "phase" not in obj.__dict__:
continue
a1 = obj.phase
a2 = obj.phase + 1.2 # radians
s1 = math.sin(a1)
s2 = math.sin(a2)
c1 = math.cos(a1)
c2 = math.cos(a2)
if s1 > 0 and s2 > 0:
continue
if s1 > 0:
c1 = np.sign(c1)
if s2 > 0:
c2 = np.sign(c2)
white_poly = [
(-WHEEL_W * SIZE, +WHEEL_R * c1 * SIZE),
(+WHEEL_W * SIZE, +WHEEL_R * c1 * SIZE),
(+WHEEL_W * SIZE, +WHEEL_R * c2 * SIZE),
(-WHEEL_W * SIZE, +WHEEL_R * c2 * SIZE),
]
white_poly = [trans * v for v in white_poly]
white_poly = [(coords[0], coords[1]) for coords in white_poly]
white_poly = [
pygame.math.Vector2(c).rotate_rad(angle) for c in white_poly
]
white_poly = [
(
coords[0] * zoom + translation[0],
coords[1] * zoom + translation[1],
)
for coords in white_poly
]
pygame.draw.polygon(surface, color=WHEEL_WHITE, points=white_poly)
def _create_particle(self, point1, point2, grass):
class Particle:
pass
p = Particle()
p.color = WHEEL_COLOR if not grass else MUD_COLOR
p.ttl = 1
p.poly = [(point1[0], point1[1]), (point2[0], point2[1])]
p.grass = grass
self.particles.append(p)
while len(self.particles) > 30:
self.particles.pop(0)
return p
def destroy(self):
self.world.DestroyBody(self.hull)
self.hull = None
for w in self.wheels:
self.world.DestroyBody(w)
self.wheels = []
|