Spaces:
Running
Running
File size: 42,432 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 |
import math
from ..libmp.backend import xrange
class QuadratureRule(object):
"""
Quadrature rules are implemented using this class, in order to
simplify the code and provide a common infrastructure
for tasks such as error estimation and node caching.
You can implement a custom quadrature rule by subclassing
:class:`QuadratureRule` and implementing the appropriate
methods. The subclass can then be used by :func:`~mpmath.quad` by
passing it as the *method* argument.
:class:`QuadratureRule` instances are supposed to be singletons.
:class:`QuadratureRule` therefore implements instance caching
in :func:`~mpmath.__new__`.
"""
def __init__(self, ctx):
self.ctx = ctx
self.standard_cache = {}
self.transformed_cache = {}
self.interval_count = {}
def clear(self):
"""
Delete cached node data.
"""
self.standard_cache = {}
self.transformed_cache = {}
self.interval_count = {}
def calc_nodes(self, degree, prec, verbose=False):
r"""
Compute nodes for the standard interval `[-1, 1]`. Subclasses
should probably implement only this method, and use
:func:`~mpmath.get_nodes` method to retrieve the nodes.
"""
raise NotImplementedError
def get_nodes(self, a, b, degree, prec, verbose=False):
"""
Return nodes for given interval, degree and precision. The
nodes are retrieved from a cache if already computed;
otherwise they are computed by calling :func:`~mpmath.calc_nodes`
and are then cached.
Subclasses should probably not implement this method,
but just implement :func:`~mpmath.calc_nodes` for the actual
node computation.
"""
key = (a, b, degree, prec)
if key in self.transformed_cache:
return self.transformed_cache[key]
orig = self.ctx.prec
try:
self.ctx.prec = prec+20
# Get nodes on standard interval
if (degree, prec) in self.standard_cache:
nodes = self.standard_cache[degree, prec]
else:
nodes = self.calc_nodes(degree, prec, verbose)
self.standard_cache[degree, prec] = nodes
# Transform to general interval
nodes = self.transform_nodes(nodes, a, b, verbose)
if key in self.interval_count:
self.transformed_cache[key] = nodes
else:
self.interval_count[key] = True
finally:
self.ctx.prec = orig
return nodes
def transform_nodes(self, nodes, a, b, verbose=False):
r"""
Rescale standardized nodes (for `[-1, 1]`) to a general
interval `[a, b]`. For a finite interval, a simple linear
change of variables is used. Otherwise, the following
transformations are used:
.. math ::
\lbrack a, \infty \rbrack : t = \frac{1}{x} + (a-1)
\lbrack -\infty, b \rbrack : t = (b+1) - \frac{1}{x}
\lbrack -\infty, \infty \rbrack : t = \frac{x}{\sqrt{1-x^2}}
"""
ctx = self.ctx
a = ctx.convert(a)
b = ctx.convert(b)
one = ctx.one
if (a, b) == (-one, one):
return nodes
half = ctx.mpf(0.5)
new_nodes = []
if ctx.isinf(a) or ctx.isinf(b):
if (a, b) == (ctx.ninf, ctx.inf):
p05 = -half
for x, w in nodes:
x2 = x*x
px1 = one-x2
spx1 = px1**p05
x = x*spx1
w *= spx1/px1
new_nodes.append((x, w))
elif a == ctx.ninf:
b1 = b+1
for x, w in nodes:
u = 2/(x+one)
x = b1-u
w *= half*u**2
new_nodes.append((x, w))
elif b == ctx.inf:
a1 = a-1
for x, w in nodes:
u = 2/(x+one)
x = a1+u
w *= half*u**2
new_nodes.append((x, w))
elif a == ctx.inf or b == ctx.ninf:
return [(x,-w) for (x,w) in self.transform_nodes(nodes, b, a, verbose)]
else:
raise NotImplementedError
else:
# Simple linear change of variables
C = (b-a)/2
D = (b+a)/2
for x, w in nodes:
new_nodes.append((D+C*x, C*w))
return new_nodes
def guess_degree(self, prec):
"""
Given a desired precision `p` in bits, estimate the degree `m`
of the quadrature required to accomplish full accuracy for
typical integrals. By default, :func:`~mpmath.quad` will perform up
to `m` iterations. The value of `m` should be a slight
overestimate, so that "slightly bad" integrals can be dealt
with automatically using a few extra iterations. On the
other hand, it should not be too big, so :func:`~mpmath.quad` can
quit within a reasonable amount of time when it is given
an "unsolvable" integral.
The default formula used by :func:`~mpmath.guess_degree` is tuned
for both :class:`TanhSinh` and :class:`GaussLegendre`.
The output is roughly as follows:
+---------+---------+
| `p` | `m` |
+=========+=========+
| 50 | 6 |
+---------+---------+
| 100 | 7 |
+---------+---------+
| 500 | 10 |
+---------+---------+
| 3000 | 12 |
+---------+---------+
This formula is based purely on a limited amount of
experimentation and will sometimes be wrong.
"""
# Expected degree
# XXX: use mag
g = int(4 + max(0, self.ctx.log(prec/30.0, 2)))
# Reasonable "worst case"
g += 2
return g
def estimate_error(self, results, prec, epsilon):
r"""
Given results from integrations `[I_1, I_2, \ldots, I_k]` done
with a quadrature of rule of degree `1, 2, \ldots, k`, estimate
the error of `I_k`.
For `k = 2`, we estimate `|I_{\infty}-I_2|` as `|I_2-I_1|`.
For `k > 2`, we extrapolate `|I_{\infty}-I_k| \approx |I_{k+1}-I_k|`
from `|I_k-I_{k-1}|` and `|I_k-I_{k-2}|` under the assumption
that each degree increment roughly doubles the accuracy of
the quadrature rule (this is true for both :class:`TanhSinh`
and :class:`GaussLegendre`). The extrapolation formula is given
by Borwein, Bailey & Girgensohn. Although not very conservative,
this method seems to be very robust in practice.
"""
if len(results) == 2:
return abs(results[0]-results[1])
try:
if results[-1] == results[-2] == results[-3]:
return self.ctx.zero
D1 = self.ctx.log(abs(results[-1]-results[-2]), 10)
D2 = self.ctx.log(abs(results[-1]-results[-3]), 10)
except ValueError:
return epsilon
D3 = -prec
D4 = min(0, max(D1**2/D2, 2*D1, D3))
return self.ctx.mpf(10) ** int(D4)
def summation(self, f, points, prec, epsilon, max_degree, verbose=False):
"""
Main integration function. Computes the 1D integral over
the interval specified by *points*. For each subinterval,
performs quadrature of degree from 1 up to *max_degree*
until :func:`~mpmath.estimate_error` signals convergence.
:func:`~mpmath.summation` transforms each subintegration to
the standard interval and then calls :func:`~mpmath.sum_next`.
"""
ctx = self.ctx
I = total_err = ctx.zero
for i in xrange(len(points)-1):
a, b = points[i], points[i+1]
if a == b:
continue
# XXX: we could use a single variable transformation,
# but this is not good in practice. We get better accuracy
# by having 0 as an endpoint.
if (a, b) == (ctx.ninf, ctx.inf):
_f = f
f = lambda x: _f(-x) + _f(x)
a, b = (ctx.zero, ctx.inf)
results = []
err = ctx.zero
for degree in xrange(1, max_degree+1):
nodes = self.get_nodes(a, b, degree, prec, verbose)
if verbose:
print("Integrating from %s to %s (degree %s of %s)" % \
(ctx.nstr(a), ctx.nstr(b), degree, max_degree))
result = self.sum_next(f, nodes, degree, prec, results, verbose)
results.append(result)
if degree > 1:
err = self.estimate_error(results, prec, epsilon)
if verbose:
print("Estimated error:", ctx.nstr(err), " epsilon:", ctx.nstr(epsilon), " result: ", ctx.nstr(result))
if err <= epsilon:
break
I += results[-1]
total_err += err
if total_err > epsilon:
if verbose:
print("Failed to reach full accuracy. Estimated error:", ctx.nstr(total_err))
return I, total_err
def sum_next(self, f, nodes, degree, prec, previous, verbose=False):
r"""
Evaluates the step sum `\sum w_k f(x_k)` where the *nodes* list
contains the `(w_k, x_k)` pairs.
:func:`~mpmath.summation` will supply the list *results* of
values computed by :func:`~mpmath.sum_next` at previous degrees, in
case the quadrature rule is able to reuse them.
"""
return self.ctx.fdot((w, f(x)) for (x,w) in nodes)
class TanhSinh(QuadratureRule):
r"""
This class implements "tanh-sinh" or "doubly exponential"
quadrature. This quadrature rule is based on the Euler-Maclaurin
integral formula. By performing a change of variables involving
nested exponentials / hyperbolic functions (hence the name), the
derivatives at the endpoints vanish rapidly. Since the error term
in the Euler-Maclaurin formula depends on the derivatives at the
endpoints, a simple step sum becomes extremely accurate. In
practice, this means that doubling the number of evaluation
points roughly doubles the number of accurate digits.
Comparison to Gauss-Legendre:
* Initial computation of nodes is usually faster
* Handles endpoint singularities better
* Handles infinite integration intervals better
* Is slower for smooth integrands once nodes have been computed
The implementation of the tanh-sinh algorithm is based on the
description given in Borwein, Bailey & Girgensohn, "Experimentation
in Mathematics - Computational Paths to Discovery", A K Peters,
2003, pages 312-313. In the present implementation, a few
improvements have been made:
* A more efficient scheme is used to compute nodes (exploiting
recurrence for the exponential function)
* The nodes are computed successively instead of all at once
**References**
* [Bailey]_
* http://users.cs.dal.ca/~jborwein/tanh-sinh.pdf
"""
def sum_next(self, f, nodes, degree, prec, previous, verbose=False):
"""
Step sum for tanh-sinh quadrature of degree `m`. We exploit the
fact that half of the abscissas at degree `m` are precisely the
abscissas from degree `m-1`. Thus reusing the result from
the previous level allows a 2x speedup.
"""
h = self.ctx.mpf(2)**(-degree)
# Abscissas overlap, so reusing saves half of the time
if previous:
S = previous[-1]/(h*2)
else:
S = self.ctx.zero
S += self.ctx.fdot((w,f(x)) for (x,w) in nodes)
return h*S
def calc_nodes(self, degree, prec, verbose=False):
r"""
The abscissas and weights for tanh-sinh quadrature of degree
`m` are given by
.. math::
x_k = \tanh(\pi/2 \sinh(t_k))
w_k = \pi/2 \cosh(t_k) / \cosh(\pi/2 \sinh(t_k))^2
where `t_k = t_0 + hk` for a step length `h \sim 2^{-m}`. The
list of nodes is actually infinite, but the weights die off so
rapidly that only a few are needed.
"""
ctx = self.ctx
nodes = []
extra = 20
ctx.prec += extra
tol = ctx.ldexp(1, -prec-10)
pi4 = ctx.pi/4
# For simplicity, we work in steps h = 1/2^n, with the first point
# offset so that we can reuse the sum from the previous degree
# We define degree 1 to include the "degree 0" steps, including
# the point x = 0. (It doesn't work well otherwise; not sure why.)
t0 = ctx.ldexp(1, -degree)
if degree == 1:
#nodes.append((mpf(0), pi4))
#nodes.append((-mpf(0), pi4))
nodes.append((ctx.zero, ctx.pi/2))
h = t0
else:
h = t0*2
# Since h is fixed, we can compute the next exponential
# by simply multiplying by exp(h)
expt0 = ctx.exp(t0)
a = pi4 * expt0
b = pi4 / expt0
udelta = ctx.exp(h)
urdelta = 1/udelta
for k in xrange(0, 20*2**degree+1):
# Reference implementation:
# t = t0 + k*h
# x = tanh(pi/2 * sinh(t))
# w = pi/2 * cosh(t) / cosh(pi/2 * sinh(t))**2
# Fast implementation. Note that c = exp(pi/2 * sinh(t))
c = ctx.exp(a-b)
d = 1/c
co = (c+d)/2
si = (c-d)/2
x = si / co
w = (a+b) / co**2
diff = abs(x-1)
if diff <= tol:
break
nodes.append((x, w))
nodes.append((-x, w))
a *= udelta
b *= urdelta
if verbose and k % 300 == 150:
# Note: the number displayed is rather arbitrary. Should
# figure out how to print something that looks more like a
# percentage
print("Calculating nodes:", ctx.nstr(-ctx.log(diff, 10) / prec))
ctx.prec -= extra
return nodes
class GaussLegendre(QuadratureRule):
r"""
This class implements Gauss-Legendre quadrature, which is
exceptionally efficient for polynomials and polynomial-like (i.e.
very smooth) integrands.
The abscissas and weights are given by roots and values of
Legendre polynomials, which are the orthogonal polynomials
on `[-1, 1]` with respect to the unit weight
(see :func:`~mpmath.legendre`).
In this implementation, we take the "degree" `m` of the quadrature
to denote a Gauss-Legendre rule of degree `3 \cdot 2^m` (following
Borwein, Bailey & Girgensohn). This way we get quadratic, rather
than linear, convergence as the degree is incremented.
Comparison to tanh-sinh quadrature:
* Is faster for smooth integrands once nodes have been computed
* Initial computation of nodes is usually slower
* Handles endpoint singularities worse
* Handles infinite integration intervals worse
"""
def calc_nodes(self, degree, prec, verbose=False):
r"""
Calculates the abscissas and weights for Gauss-Legendre
quadrature of degree of given degree (actually `3 \cdot 2^m`).
"""
ctx = self.ctx
# It is important that the epsilon is set lower than the
# "real" epsilon
epsilon = ctx.ldexp(1, -prec-8)
# Fairly high precision might be required for accurate
# evaluation of the roots
orig = ctx.prec
ctx.prec = int(prec*1.5)
if degree == 1:
x = ctx.sqrt(ctx.mpf(3)/5)
w = ctx.mpf(5)/9
nodes = [(-x,w),(ctx.zero,ctx.mpf(8)/9),(x,w)]
ctx.prec = orig
return nodes
nodes = []
n = 3*2**(degree-1)
upto = n//2 + 1
for j in xrange(1, upto):
# Asymptotic formula for the roots
r = ctx.mpf(math.cos(math.pi*(j-0.25)/(n+0.5)))
# Newton iteration
while 1:
t1, t2 = 1, 0
# Evaluates the Legendre polynomial using its defining
# recurrence relation
for j1 in xrange(1,n+1):
t3, t2, t1 = t2, t1, ((2*j1-1)*r*t1 - (j1-1)*t2)/j1
t4 = n*(r*t1-t2)/(r**2-1)
a = t1/t4
r = r - a
if abs(a) < epsilon:
break
x = r
w = 2/((1-r**2)*t4**2)
if verbose and j % 30 == 15:
print("Computing nodes (%i of %i)" % (j, upto))
nodes.append((x, w))
nodes.append((-x, w))
ctx.prec = orig
return nodes
class QuadratureMethods(object):
def __init__(ctx, *args, **kwargs):
ctx._gauss_legendre = GaussLegendre(ctx)
ctx._tanh_sinh = TanhSinh(ctx)
def quad(ctx, f, *points, **kwargs):
r"""
Computes a single, double or triple integral over a given
1D interval, 2D rectangle, or 3D cuboid. A basic example::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> quad(sin, [0, pi])
2.0
A basic 2D integral::
>>> f = lambda x, y: cos(x+y/2)
>>> quad(f, [-pi/2, pi/2], [0, pi])
4.0
**Interval format**
The integration range for each dimension may be specified
using a list or tuple. Arguments are interpreted as follows:
``quad(f, [x1, x2])`` -- calculates
`\int_{x_1}^{x_2} f(x) \, dx`
``quad(f, [x1, x2], [y1, y2])`` -- calculates
`\int_{x_1}^{x_2} \int_{y_1}^{y_2} f(x,y) \, dy \, dx`
``quad(f, [x1, x2], [y1, y2], [z1, z2])`` -- calculates
`\int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} f(x,y,z)
\, dz \, dy \, dx`
Endpoints may be finite or infinite. An interval descriptor
may also contain more than two points. In this
case, the integration is split into subintervals, between
each pair of consecutive points. This is useful for
dealing with mid-interval discontinuities, or integrating
over large intervals where the function is irregular or
oscillates.
**Options**
:func:`~mpmath.quad` recognizes the following keyword arguments:
*method*
Chooses integration algorithm (described below).
*error*
If set to true, :func:`~mpmath.quad` returns `(v, e)` where `v` is the
integral and `e` is the estimated error.
*maxdegree*
Maximum degree of the quadrature rule to try before
quitting.
*verbose*
Print details about progress.
**Algorithms**
Mpmath presently implements two integration algorithms: tanh-sinh
quadrature and Gauss-Legendre quadrature. These can be selected
using *method='tanh-sinh'* or *method='gauss-legendre'* or by
passing the classes *method=TanhSinh*, *method=GaussLegendre*.
The functions :func:`~mpmath.quadts` and :func:`~mpmath.quadgl` are also available
as shortcuts.
Both algorithms have the property that doubling the number of
evaluation points roughly doubles the accuracy, so both are ideal
for high precision quadrature (hundreds or thousands of digits).
At high precision, computing the nodes and weights for the
integration can be expensive (more expensive than computing the
function values). To make repeated integrations fast, nodes
are automatically cached.
The advantages of the tanh-sinh algorithm are that it tends to
handle endpoint singularities well, and that the nodes are cheap
to compute on the first run. For these reasons, it is used by
:func:`~mpmath.quad` as the default algorithm.
Gauss-Legendre quadrature often requires fewer function
evaluations, and is therefore often faster for repeated use, but
the algorithm does not handle endpoint singularities as well and
the nodes are more expensive to compute. Gauss-Legendre quadrature
can be a better choice if the integrand is smooth and repeated
integrations are required (e.g. for multiple integrals).
See the documentation for :class:`TanhSinh` and
:class:`GaussLegendre` for additional details.
**Examples of 1D integrals**
Intervals may be infinite or half-infinite. The following two
examples evaluate the limits of the inverse tangent function
(`\int 1/(1+x^2) = \tan^{-1} x`), and the Gaussian integral
`\int_{\infty}^{\infty} \exp(-x^2)\,dx = \sqrt{\pi}`::
>>> mp.dps = 15
>>> quad(lambda x: 2/(x**2+1), [0, inf])
3.14159265358979
>>> quad(lambda x: exp(-x**2), [-inf, inf])**2
3.14159265358979
Integrals can typically be resolved to high precision.
The following computes 50 digits of `\pi` by integrating the
area of the half-circle defined by `x^2 + y^2 \le 1`,
`-1 \le x \le 1`, `y \ge 0`::
>>> mp.dps = 50
>>> 2*quad(lambda x: sqrt(1-x**2), [-1, 1])
3.1415926535897932384626433832795028841971693993751
One can just as well compute 1000 digits (output truncated)::
>>> mp.dps = 1000
>>> 2*quad(lambda x: sqrt(1-x**2), [-1, 1]) #doctest:+ELLIPSIS
3.141592653589793238462643383279502884...216420199
Complex integrals are supported. The following computes
a residue at `z = 0` by integrating counterclockwise along the
diamond-shaped path from `1` to `+i` to `-1` to `-i` to `1`::
>>> mp.dps = 15
>>> chop(quad(lambda z: 1/z, [1,j,-1,-j,1]))
(0.0 + 6.28318530717959j)
**Examples of 2D and 3D integrals**
Here are several nice examples of analytically solvable
2D integrals (taken from MathWorld [1]) that can be evaluated
to high precision fairly rapidly by :func:`~mpmath.quad`::
>>> mp.dps = 30
>>> f = lambda x, y: (x-1)/((1-x*y)*log(x*y))
>>> quad(f, [0, 1], [0, 1])
0.577215664901532860606512090082
>>> +euler
0.577215664901532860606512090082
>>> f = lambda x, y: 1/sqrt(1+x**2+y**2)
>>> quad(f, [-1, 1], [-1, 1])
3.17343648530607134219175646705
>>> 4*log(2+sqrt(3))-2*pi/3
3.17343648530607134219175646705
>>> f = lambda x, y: 1/(1-x**2 * y**2)
>>> quad(f, [0, 1], [0, 1])
1.23370055013616982735431137498
>>> pi**2 / 8
1.23370055013616982735431137498
>>> quad(lambda x, y: 1/(1-x*y), [0, 1], [0, 1])
1.64493406684822643647241516665
>>> pi**2 / 6
1.64493406684822643647241516665
Multiple integrals may be done over infinite ranges::
>>> mp.dps = 15
>>> print(quad(lambda x,y: exp(-x-y), [0, inf], [1, inf]))
0.367879441171442
>>> print(1/e)
0.367879441171442
For nonrectangular areas, one can call :func:`~mpmath.quad` recursively.
For example, we can replicate the earlier example of calculating
`\pi` by integrating over the unit-circle, and actually use double
quadrature to actually measure the area circle::
>>> f = lambda x: quad(lambda y: 1, [-sqrt(1-x**2), sqrt(1-x**2)])
>>> quad(f, [-1, 1])
3.14159265358979
Here is a simple triple integral::
>>> mp.dps = 15
>>> f = lambda x,y,z: x*y/(1+z)
>>> quad(f, [0,1], [0,1], [1,2], method='gauss-legendre')
0.101366277027041
>>> (log(3)-log(2))/4
0.101366277027041
**Singularities**
Both tanh-sinh and Gauss-Legendre quadrature are designed to
integrate smooth (infinitely differentiable) functions. Neither
algorithm copes well with mid-interval singularities (such as
mid-interval discontinuities in `f(x)` or `f'(x)`).
The best solution is to split the integral into parts::
>>> mp.dps = 15
>>> quad(lambda x: abs(sin(x)), [0, 2*pi]) # Bad
3.99900894176779
>>> quad(lambda x: abs(sin(x)), [0, pi, 2*pi]) # Good
4.0
The tanh-sinh rule often works well for integrands having a
singularity at one or both endpoints::
>>> mp.dps = 15
>>> quad(log, [0, 1], method='tanh-sinh') # Good
-1.0
>>> quad(log, [0, 1], method='gauss-legendre') # Bad
-0.999932197413801
However, the result may still be inaccurate for some functions::
>>> quad(lambda x: 1/sqrt(x), [0, 1], method='tanh-sinh')
1.99999999946942
This problem is not due to the quadrature rule per se, but to
numerical amplification of errors in the nodes. The problem can be
circumvented by temporarily increasing the precision::
>>> mp.dps = 30
>>> a = quad(lambda x: 1/sqrt(x), [0, 1], method='tanh-sinh')
>>> mp.dps = 15
>>> +a
2.0
**Highly variable functions**
For functions that are smooth (in the sense of being infinitely
differentiable) but contain sharp mid-interval peaks or many
"bumps", :func:`~mpmath.quad` may fail to provide full accuracy. For
example, with default settings, :func:`~mpmath.quad` is able to integrate
`\sin(x)` accurately over an interval of length 100 but not over
length 1000::
>>> quad(sin, [0, 100]); 1-cos(100) # Good
0.137681127712316
0.137681127712316
>>> quad(sin, [0, 1000]); 1-cos(1000) # Bad
-37.8587612408485
0.437620923709297
One solution is to break the integration into 10 intervals of
length 100::
>>> quad(sin, linspace(0, 1000, 10)) # Good
0.437620923709297
Another is to increase the degree of the quadrature::
>>> quad(sin, [0, 1000], maxdegree=10) # Also good
0.437620923709297
Whether splitting the interval or increasing the degree is
more efficient differs from case to case. Another example is the
function `1/(1+x^2)`, which has a sharp peak centered around
`x = 0`::
>>> f = lambda x: 1/(1+x**2)
>>> quad(f, [-100, 100]) # Bad
3.64804647105268
>>> quad(f, [-100, 100], maxdegree=10) # Good
3.12159332021646
>>> quad(f, [-100, 0, 100]) # Also good
3.12159332021646
**References**
1. http://mathworld.wolfram.com/DoubleIntegral.html
"""
rule = kwargs.get('method', 'tanh-sinh')
if type(rule) is str:
if rule == 'tanh-sinh':
rule = ctx._tanh_sinh
elif rule == 'gauss-legendre':
rule = ctx._gauss_legendre
else:
raise ValueError("unknown quadrature rule: %s" % rule)
else:
rule = rule(ctx)
verbose = kwargs.get('verbose')
dim = len(points)
orig = prec = ctx.prec
epsilon = ctx.eps/8
m = kwargs.get('maxdegree') or rule.guess_degree(prec)
points = [ctx._as_points(p) for p in points]
try:
ctx.prec += 20
if dim == 1:
v, err = rule.summation(f, points[0], prec, epsilon, m, verbose)
elif dim == 2:
v, err = rule.summation(lambda x: \
rule.summation(lambda y: f(x,y), \
points[1], prec, epsilon, m)[0],
points[0], prec, epsilon, m, verbose)
elif dim == 3:
v, err = rule.summation(lambda x: \
rule.summation(lambda y: \
rule.summation(lambda z: f(x,y,z), \
points[2], prec, epsilon, m)[0],
points[1], prec, epsilon, m)[0],
points[0], prec, epsilon, m, verbose)
else:
raise NotImplementedError("quadrature must have dim 1, 2 or 3")
finally:
ctx.prec = orig
if kwargs.get("error"):
return +v, err
return +v
def quadts(ctx, *args, **kwargs):
"""
Performs tanh-sinh quadrature. The call
quadts(func, *points, ...)
is simply a shortcut for:
quad(func, *points, ..., method=TanhSinh)
For example, a single integral and a double integral:
quadts(lambda x: exp(cos(x)), [0, 1])
quadts(lambda x, y: exp(cos(x+y)), [0, 1], [0, 1])
See the documentation for quad for information about how points
arguments and keyword arguments are parsed.
See documentation for TanhSinh for algorithmic information about
tanh-sinh quadrature.
"""
kwargs['method'] = 'tanh-sinh'
return ctx.quad(*args, **kwargs)
def quadgl(ctx, *args, **kwargs):
"""
Performs Gauss-Legendre quadrature. The call
quadgl(func, *points, ...)
is simply a shortcut for:
quad(func, *points, ..., method=GaussLegendre)
For example, a single integral and a double integral:
quadgl(lambda x: exp(cos(x)), [0, 1])
quadgl(lambda x, y: exp(cos(x+y)), [0, 1], [0, 1])
See the documentation for quad for information about how points
arguments and keyword arguments are parsed.
See documentation for TanhSinh for algorithmic information about
tanh-sinh quadrature.
"""
kwargs['method'] = 'gauss-legendre'
return ctx.quad(*args, **kwargs)
def quadosc(ctx, f, interval, omega=None, period=None, zeros=None):
r"""
Calculates
.. math ::
I = \int_a^b f(x) dx
where at least one of `a` and `b` is infinite and where
`f(x) = g(x) \cos(\omega x + \phi)` for some slowly
decreasing function `g(x)`. With proper input, :func:`~mpmath.quadosc`
can also handle oscillatory integrals where the oscillation
rate is different from a pure sine or cosine wave.
In the standard case when `|a| < \infty, b = \infty`,
:func:`~mpmath.quadosc` works by evaluating the infinite series
.. math ::
I = \int_a^{x_1} f(x) dx +
\sum_{k=1}^{\infty} \int_{x_k}^{x_{k+1}} f(x) dx
where `x_k` are consecutive zeros (alternatively
some other periodic reference point) of `f(x)`.
Accordingly, :func:`~mpmath.quadosc` requires information about the
zeros of `f(x)`. For a periodic function, you can specify
the zeros by either providing the angular frequency `\omega`
(*omega*) or the *period* `2 \pi/\omega`. In general, you can
specify the `n`-th zero by providing the *zeros* arguments.
Below is an example of each::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> f = lambda x: sin(3*x)/(x**2+1)
>>> quadosc(f, [0,inf], omega=3)
0.37833007080198
>>> quadosc(f, [0,inf], period=2*pi/3)
0.37833007080198
>>> quadosc(f, [0,inf], zeros=lambda n: pi*n/3)
0.37833007080198
>>> (ei(3)*exp(-3)-exp(3)*ei(-3))/2 # Computed by Mathematica
0.37833007080198
Note that *zeros* was specified to multiply `n` by the
*half-period*, not the full period. In theory, it does not matter
whether each partial integral is done over a half period or a full
period. However, if done over half-periods, the infinite series
passed to :func:`~mpmath.nsum` becomes an *alternating series* and this
typically makes the extrapolation much more efficient.
Here is an example of an integration over the entire real line,
and a half-infinite integration starting at `-\infty`::
>>> quadosc(lambda x: cos(x)/(1+x**2), [-inf, inf], omega=1)
1.15572734979092
>>> pi/e
1.15572734979092
>>> quadosc(lambda x: cos(x)/x**2, [-inf, -1], period=2*pi)
-0.0844109505595739
>>> cos(1)+si(1)-pi/2
-0.0844109505595738
Of course, the integrand may contain a complex exponential just as
well as a real sine or cosine::
>>> quadosc(lambda x: exp(3*j*x)/(1+x**2), [-inf,inf], omega=3)
(0.156410688228254 + 0.0j)
>>> pi/e**3
0.156410688228254
>>> quadosc(lambda x: exp(3*j*x)/(2+x+x**2), [-inf,inf], omega=3)
(0.00317486988463794 - 0.0447701735209082j)
>>> 2*pi/sqrt(7)/exp(3*(j+sqrt(7))/2)
(0.00317486988463794 - 0.0447701735209082j)
**Non-periodic functions**
If `f(x) = g(x) h(x)` for some function `h(x)` that is not
strictly periodic, *omega* or *period* might not work, and it might
be necessary to use *zeros*.
A notable exception can be made for Bessel functions which, though not
periodic, are "asymptotically periodic" in a sufficiently strong sense
that the sum extrapolation will work out::
>>> quadosc(j0, [0, inf], period=2*pi)
1.0
>>> quadosc(j1, [0, inf], period=2*pi)
1.0
More properly, one should provide the exact Bessel function zeros::
>>> j0zero = lambda n: findroot(j0, pi*(n-0.25))
>>> quadosc(j0, [0, inf], zeros=j0zero)
1.0
For an example where *zeros* becomes necessary, consider the
complete Fresnel integrals
.. math ::
\int_0^{\infty} \cos x^2\,dx = \int_0^{\infty} \sin x^2\,dx
= \sqrt{\frac{\pi}{8}}.
Although the integrands do not decrease in magnitude as
`x \to \infty`, the integrals are convergent since the oscillation
rate increases (causing consecutive periods to asymptotically
cancel out). These integrals are virtually impossible to calculate
to any kind of accuracy using standard quadrature rules. However,
if one provides the correct asymptotic distribution of zeros
(`x_n \sim \sqrt{n}`), :func:`~mpmath.quadosc` works::
>>> mp.dps = 30
>>> f = lambda x: cos(x**2)
>>> quadosc(f, [0,inf], zeros=lambda n:sqrt(pi*n))
0.626657068657750125603941321203
>>> f = lambda x: sin(x**2)
>>> quadosc(f, [0,inf], zeros=lambda n:sqrt(pi*n))
0.626657068657750125603941321203
>>> sqrt(pi/8)
0.626657068657750125603941321203
(Interestingly, these integrals can still be evaluated if one
places some other constant than `\pi` in the square root sign.)
In general, if `f(x) \sim g(x) \cos(h(x))`, the zeros follow
the inverse-function distribution `h^{-1}(x)`::
>>> mp.dps = 15
>>> f = lambda x: sin(exp(x))
>>> quadosc(f, [1,inf], zeros=lambda n: log(n))
-0.25024394235267
>>> pi/2-si(e)
-0.250243942352671
**Non-alternating functions**
If the integrand oscillates around a positive value, without
alternating signs, the extrapolation might fail. A simple trick
that sometimes works is to multiply or divide the frequency by 2::
>>> f = lambda x: 1/x**2+sin(x)/x**4
>>> quadosc(f, [1,inf], omega=1) # Bad
1.28642190869861
>>> quadosc(f, [1,inf], omega=0.5) # Perfect
1.28652953559617
>>> 1+(cos(1)+ci(1)+sin(1))/6
1.28652953559617
**Fast decay**
:func:`~mpmath.quadosc` is primarily useful for slowly decaying
integrands. If the integrand decreases exponentially or faster,
:func:`~mpmath.quad` will likely handle it without trouble (and generally be
much faster than :func:`~mpmath.quadosc`)::
>>> quadosc(lambda x: cos(x)/exp(x), [0, inf], omega=1)
0.5
>>> quad(lambda x: cos(x)/exp(x), [0, inf])
0.5
"""
a, b = ctx._as_points(interval)
a = ctx.convert(a)
b = ctx.convert(b)
if [omega, period, zeros].count(None) != 2:
raise ValueError( \
"must specify exactly one of omega, period, zeros")
if a == ctx.ninf and b == ctx.inf:
s1 = ctx.quadosc(f, [a, 0], omega=omega, zeros=zeros, period=period)
s2 = ctx.quadosc(f, [0, b], omega=omega, zeros=zeros, period=period)
return s1 + s2
if a == ctx.ninf:
if zeros:
return ctx.quadosc(lambda x:f(-x), [-b,-a], lambda n: zeros(-n))
else:
return ctx.quadosc(lambda x:f(-x), [-b,-a], omega=omega, period=period)
if b != ctx.inf:
raise ValueError("quadosc requires an infinite integration interval")
if not zeros:
if omega:
period = 2*ctx.pi/omega
zeros = lambda n: n*period/2
#for n in range(1,10):
# p = zeros(n)
# if p > a:
# break
#if n >= 9:
# raise ValueError("zeros do not appear to be correctly indexed")
n = 1
s = ctx.quadgl(f, [a, zeros(n)])
def term(k):
return ctx.quadgl(f, [zeros(k), zeros(k+1)])
s += ctx.nsum(term, [n, ctx.inf])
return s
def quadsubdiv(ctx, f, interval, tol=None, maxintervals=None, **kwargs):
"""
Computes the integral of *f* over the interval or path specified
by *interval*, using :func:`~mpmath.quad` together with adaptive
subdivision of the interval.
This function gives an accurate answer for some integrals where
:func:`~mpmath.quad` fails::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> quad(lambda x: abs(sin(x)), [0, 2*pi])
3.99900894176779
>>> quadsubdiv(lambda x: abs(sin(x)), [0, 2*pi])
4.0
>>> quadsubdiv(sin, [0, 1000])
0.437620923709297
>>> quadsubdiv(lambda x: 1/(1+x**2), [-100, 100])
3.12159332021646
>>> quadsubdiv(lambda x: ceil(x), [0, 100])
5050.0
>>> quadsubdiv(lambda x: sin(x+exp(x)), [0,8])
0.347400172657248
The argument *maxintervals* can be set to limit the permissible
subdivision::
>>> quadsubdiv(lambda x: sin(x**2), [0,100], maxintervals=5, error=True)
(-5.40487904307774, 5.011)
>>> quadsubdiv(lambda x: sin(x**2), [0,100], maxintervals=100, error=True)
(0.631417921866934, 1.10101120134116e-17)
Subdivision does not guarantee a correct answer since, the error
estimate on subintervals may be inaccurate::
>>> quadsubdiv(lambda x: sech(10*x-2)**2 + sech(100*x-40)**4 + sech(1000*x-600)**6, [0,1], error=True)
(0.210802735500549, 1.0001111101e-17)
>>> mp.dps = 20
>>> quadsubdiv(lambda x: sech(10*x-2)**2 + sech(100*x-40)**4 + sech(1000*x-600)**6, [0,1], error=True)
(0.21080273550054927738, 2.200000001e-24)
The second answer is correct. We can get an accurate result at lower
precision by forcing a finer initial subdivision::
>>> mp.dps = 15
>>> quadsubdiv(lambda x: sech(10*x-2)**2 + sech(100*x-40)**4 + sech(1000*x-600)**6, linspace(0,1,5))
0.210802735500549
The following integral is too oscillatory for convergence, but we can get a
reasonable estimate::
>>> v, err = fp.quadsubdiv(lambda x: fp.sin(1/x), [0,1], error=True)
>>> round(v, 6), round(err, 6)
(0.504067, 1e-06)
>>> sin(1) - ci(1)
0.504067061906928
"""
queue = []
for i in range(len(interval)-1):
queue.append((interval[i], interval[i+1]))
total = ctx.zero
total_error = ctx.zero
if maxintervals is None:
maxintervals = 10 * ctx.prec
count = 0
quad_args = kwargs.copy()
quad_args["verbose"] = False
quad_args["error"] = True
if tol is None:
tol = +ctx.eps
orig = ctx.prec
try:
ctx.prec += 5
while queue:
a, b = queue.pop()
s, err = ctx.quad(f, [a, b], **quad_args)
if kwargs.get("verbose"):
print("subinterval", count, a, b, err)
if err < tol or count > maxintervals:
total += s
total_error += err
else:
count += 1
if count == maxintervals and kwargs.get("verbose"):
print("warning: number of intervals exceeded maxintervals")
if a == -ctx.inf and b == ctx.inf:
m = 0
elif a == -ctx.inf:
m = min(b-1, 2*b)
elif b == ctx.inf:
m = max(a+1, 2*a)
else:
m = a + (b - a) / 2
queue.append((a, m))
queue.append((m, b))
finally:
ctx.prec = orig
if kwargs.get("error"):
return +total, +total_error
else:
return +total
if __name__ == '__main__':
import doctest
doctest.testmod()
|