Spaces:
Running
Running
File size: 27,917 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 |
from mpmath import *
from mpmath.libmp import round_up, from_float, mpf_zeta_int
def test_zeta_int_bug():
assert mpf_zeta_int(0, 10) == from_float(-0.5)
def test_bernoulli():
assert bernfrac(0) == (1,1)
assert bernfrac(1) == (-1,2)
assert bernfrac(2) == (1,6)
assert bernfrac(3) == (0,1)
assert bernfrac(4) == (-1,30)
assert bernfrac(5) == (0,1)
assert bernfrac(6) == (1,42)
assert bernfrac(8) == (-1,30)
assert bernfrac(10) == (5,66)
assert bernfrac(12) == (-691,2730)
assert bernfrac(18) == (43867,798)
p, q = bernfrac(228)
assert p % 10**10 == 164918161
assert q == 625170
p, q = bernfrac(1000)
assert p % 10**10 == 7950421099
assert q == 342999030
mp.dps = 15
assert bernoulli(0) == 1
assert bernoulli(1) == -0.5
assert bernoulli(2).ae(1./6)
assert bernoulli(3) == 0
assert bernoulli(4).ae(-1./30)
assert bernoulli(5) == 0
assert bernoulli(6).ae(1./42)
assert str(bernoulli(10)) == '0.0757575757575758'
assert str(bernoulli(234)) == '7.62772793964344e+267'
assert str(bernoulli(10**5)) == '-5.82229431461335e+376755'
assert str(bernoulli(10**8+2)) == '1.19570355039953e+676752584'
mp.dps = 50
assert str(bernoulli(10)) == '0.075757575757575757575757575757575757575757575757576'
assert str(bernoulli(234)) == '7.6277279396434392486994969020496121553385863373331e+267'
assert str(bernoulli(10**5)) == '-5.8222943146133508236497045360612887555320691004308e+376755'
assert str(bernoulli(10**8+2)) == '1.1957035503995297272263047884604346914602088317782e+676752584'
mp.dps = 1000
assert bernoulli(10).ae(mpf(5)/66)
mp.dps = 50000
assert bernoulli(10).ae(mpf(5)/66)
mp.dps = 15
def test_bernpoly_eulerpoly():
mp.dps = 15
assert bernpoly(0,-1).ae(1)
assert bernpoly(0,0).ae(1)
assert bernpoly(0,'1/2').ae(1)
assert bernpoly(0,'3/4').ae(1)
assert bernpoly(0,1).ae(1)
assert bernpoly(0,2).ae(1)
assert bernpoly(1,-1).ae('-3/2')
assert bernpoly(1,0).ae('-1/2')
assert bernpoly(1,'1/2').ae(0)
assert bernpoly(1,'3/4').ae('1/4')
assert bernpoly(1,1).ae('1/2')
assert bernpoly(1,2).ae('3/2')
assert bernpoly(2,-1).ae('13/6')
assert bernpoly(2,0).ae('1/6')
assert bernpoly(2,'1/2').ae('-1/12')
assert bernpoly(2,'3/4').ae('-1/48')
assert bernpoly(2,1).ae('1/6')
assert bernpoly(2,2).ae('13/6')
assert bernpoly(3,-1).ae(-3)
assert bernpoly(3,0).ae(0)
assert bernpoly(3,'1/2').ae(0)
assert bernpoly(3,'3/4').ae('-3/64')
assert bernpoly(3,1).ae(0)
assert bernpoly(3,2).ae(3)
assert bernpoly(4,-1).ae('119/30')
assert bernpoly(4,0).ae('-1/30')
assert bernpoly(4,'1/2').ae('7/240')
assert bernpoly(4,'3/4').ae('7/3840')
assert bernpoly(4,1).ae('-1/30')
assert bernpoly(4,2).ae('119/30')
assert bernpoly(5,-1).ae(-5)
assert bernpoly(5,0).ae(0)
assert bernpoly(5,'1/2').ae(0)
assert bernpoly(5,'3/4').ae('25/1024')
assert bernpoly(5,1).ae(0)
assert bernpoly(5,2).ae(5)
assert bernpoly(10,-1).ae('665/66')
assert bernpoly(10,0).ae('5/66')
assert bernpoly(10,'1/2').ae('-2555/33792')
assert bernpoly(10,'3/4').ae('-2555/34603008')
assert bernpoly(10,1).ae('5/66')
assert bernpoly(10,2).ae('665/66')
assert bernpoly(11,-1).ae(-11)
assert bernpoly(11,0).ae(0)
assert bernpoly(11,'1/2').ae(0)
assert bernpoly(11,'3/4').ae('-555731/4194304')
assert bernpoly(11,1).ae(0)
assert bernpoly(11,2).ae(11)
assert eulerpoly(0,-1).ae(1)
assert eulerpoly(0,0).ae(1)
assert eulerpoly(0,'1/2').ae(1)
assert eulerpoly(0,'3/4').ae(1)
assert eulerpoly(0,1).ae(1)
assert eulerpoly(0,2).ae(1)
assert eulerpoly(1,-1).ae('-3/2')
assert eulerpoly(1,0).ae('-1/2')
assert eulerpoly(1,'1/2').ae(0)
assert eulerpoly(1,'3/4').ae('1/4')
assert eulerpoly(1,1).ae('1/2')
assert eulerpoly(1,2).ae('3/2')
assert eulerpoly(2,-1).ae(2)
assert eulerpoly(2,0).ae(0)
assert eulerpoly(2,'1/2').ae('-1/4')
assert eulerpoly(2,'3/4').ae('-3/16')
assert eulerpoly(2,1).ae(0)
assert eulerpoly(2,2).ae(2)
assert eulerpoly(3,-1).ae('-9/4')
assert eulerpoly(3,0).ae('1/4')
assert eulerpoly(3,'1/2').ae(0)
assert eulerpoly(3,'3/4').ae('-11/64')
assert eulerpoly(3,1).ae('-1/4')
assert eulerpoly(3,2).ae('9/4')
assert eulerpoly(4,-1).ae(2)
assert eulerpoly(4,0).ae(0)
assert eulerpoly(4,'1/2').ae('5/16')
assert eulerpoly(4,'3/4').ae('57/256')
assert eulerpoly(4,1).ae(0)
assert eulerpoly(4,2).ae(2)
assert eulerpoly(5,-1).ae('-3/2')
assert eulerpoly(5,0).ae('-1/2')
assert eulerpoly(5,'1/2').ae(0)
assert eulerpoly(5,'3/4').ae('361/1024')
assert eulerpoly(5,1).ae('1/2')
assert eulerpoly(5,2).ae('3/2')
assert eulerpoly(10,-1).ae(2)
assert eulerpoly(10,0).ae(0)
assert eulerpoly(10,'1/2').ae('-50521/1024')
assert eulerpoly(10,'3/4').ae('-36581523/1048576')
assert eulerpoly(10,1).ae(0)
assert eulerpoly(10,2).ae(2)
assert eulerpoly(11,-1).ae('-699/4')
assert eulerpoly(11,0).ae('691/4')
assert eulerpoly(11,'1/2').ae(0)
assert eulerpoly(11,'3/4').ae('-512343611/4194304')
assert eulerpoly(11,1).ae('-691/4')
assert eulerpoly(11,2).ae('699/4')
# Potential accuracy issues
assert bernpoly(10000,10000).ae('5.8196915936323387117e+39999')
assert bernpoly(200,17.5).ae(3.8048418524583064909e244)
assert eulerpoly(200,17.5).ae(-3.7309911582655785929e275)
def test_gamma():
mp.dps = 15
assert gamma(0.25).ae(3.6256099082219083119)
assert gamma(0.0001).ae(9999.4228832316241908)
assert gamma(300).ae('1.0201917073881354535e612')
assert gamma(-0.5).ae(-3.5449077018110320546)
assert gamma(-7.43).ae(0.00026524416464197007186)
#assert gamma(Rational(1,2)) == gamma(0.5)
#assert gamma(Rational(-7,3)).ae(gamma(mpf(-7)/3))
assert gamma(1+1j).ae(0.49801566811835604271 - 0.15494982830181068512j)
assert gamma(-1+0.01j).ae(-0.422733904013474115 + 99.985883082635367436j)
assert gamma(20+30j).ae(-1453876687.5534810 + 1163777777.8031573j)
# Should always give exact factorials when they can
# be represented as mpfs under the current working precision
fact = 1
for i in range(1, 18):
assert gamma(i) == fact
fact *= i
for dps in [170, 600]:
fact = 1
mp.dps = dps
for i in range(1, 105):
assert gamma(i) == fact
fact *= i
mp.dps = 100
assert gamma(0.5).ae(sqrt(pi))
mp.dps = 15
assert factorial(0) == fac(0) == 1
assert factorial(3) == 6
assert isnan(gamma(nan))
assert gamma(1100).ae('4.8579168073569433667e2866')
assert rgamma(0) == 0
assert rgamma(-1) == 0
assert rgamma(2) == 1.0
assert rgamma(3) == 0.5
assert loggamma(2+8j).ae(-8.5205176753667636926 + 10.8569497125597429366j)
assert loggamma('1e10000').ae('2.302485092994045684017991e10004')
assert loggamma('1e10000j').ae(mpc('-1.570796326794896619231322e10000','2.302485092994045684017991e10004'))
def test_fac2():
mp.dps = 15
assert [fac2(n) for n in range(10)] == [1,1,2,3,8,15,48,105,384,945]
assert fac2(-5).ae(1./3)
assert fac2(-11).ae(-1./945)
assert fac2(50).ae(5.20469842636666623e32)
assert fac2(0.5+0.75j).ae(0.81546769394688069176-0.34901016085573266889j)
assert fac2(inf) == inf
assert isnan(fac2(-inf))
def test_gamma_quotients():
mp.dps = 15
h = 1e-8
ep = 1e-4
G = gamma
assert gammaprod([-1],[-3,-4]) == 0
assert gammaprod([-1,0],[-5]) == inf
assert abs(gammaprod([-1],[-2]) - G(-1+h)/G(-2+h)) < 1e-4
assert abs(gammaprod([-4,-3],[-2,0]) - G(-4+h)*G(-3+h)/G(-2+h)/G(0+h)) < 1e-4
assert rf(3,0) == 1
assert rf(2.5,1) == 2.5
assert rf(-5,2) == 20
assert rf(j,j).ae(gamma(2*j)/gamma(j))
assert rf('-255.5815971722918','-0.5119253100282322').ae('-0.1952720278805729485') # issue 421
assert ff(-2,0) == 1
assert ff(-2,1) == -2
assert ff(4,3) == 24
assert ff(3,4) == 0
assert binomial(0,0) == 1
assert binomial(1,0) == 1
assert binomial(0,-1) == 0
assert binomial(3,2) == 3
assert binomial(5,2) == 10
assert binomial(5,3) == 10
assert binomial(5,5) == 1
assert binomial(-1,0) == 1
assert binomial(-2,-4) == 3
assert binomial(4.5, 1.5) == 6.5625
assert binomial(1100,1) == 1100
assert binomial(1100,2) == 604450
assert beta(1,1) == 1
assert beta(0,0) == inf
assert beta(3,0) == inf
assert beta(-1,-1) == inf
assert beta(1.5,1).ae(2/3.)
assert beta(1.5,2.5).ae(pi/16)
assert (10**15*beta(10,100)).ae(2.3455339739604649879)
assert beta(inf,inf) == 0
assert isnan(beta(-inf,inf))
assert isnan(beta(-3,inf))
assert isnan(beta(0,inf))
assert beta(inf,0.5) == beta(0.5,inf) == 0
assert beta(inf,-1.5) == inf
assert beta(inf,-0.5) == -inf
assert beta(1+2j,-1-j/2).ae(1.16396542451069943086+0.08511695947832914640j)
assert beta(-0.5,0.5) == 0
assert beta(-3,3).ae(-1/3.)
assert beta('-255.5815971722918','-0.5119253100282322').ae('18.157330562703710339') # issue 421
def test_zeta():
mp.dps = 15
assert zeta(2).ae(pi**2 / 6)
assert zeta(2.0).ae(pi**2 / 6)
assert zeta(mpc(2)).ae(pi**2 / 6)
assert zeta(100).ae(1)
assert zeta(0).ae(-0.5)
assert zeta(0.5).ae(-1.46035450880958681)
assert zeta(-1).ae(-mpf(1)/12)
assert zeta(-2) == 0
assert zeta(-3).ae(mpf(1)/120)
assert zeta(-4) == 0
assert zeta(-100) == 0
assert isnan(zeta(nan))
assert zeta(1e-30).ae(-0.5)
assert zeta(-1e-30).ae(-0.5)
# Zeros in the critical strip
assert zeta(mpc(0.5, 14.1347251417346937904)).ae(0)
assert zeta(mpc(0.5, 21.0220396387715549926)).ae(0)
assert zeta(mpc(0.5, 25.0108575801456887632)).ae(0)
assert zeta(mpc(1e-30,1e-40)).ae(-0.5)
assert zeta(mpc(-1e-30,1e-40)).ae(-0.5)
mp.dps = 50
im = '236.5242296658162058024755079556629786895294952121891237'
assert zeta(mpc(0.5, im)).ae(0, 1e-46)
mp.dps = 15
# Complex reflection formula
assert (zeta(-60+3j) / 10**34).ae(8.6270183987866146+15.337398548226238j)
# issue #358
assert zeta(0,0.5) == 0
assert zeta(0,0) == 0.5
assert zeta(0,0.5,1).ae(-0.34657359027997265)
# see issue #390
assert zeta(-1.5,0.5j).ae(-0.13671400162512768475 + 0.11411333638426559139j)
def test_altzeta():
mp.dps = 15
assert altzeta(-2) == 0
assert altzeta(-4) == 0
assert altzeta(-100) == 0
assert altzeta(0) == 0.5
assert altzeta(-1) == 0.25
assert altzeta(-3) == -0.125
assert altzeta(-5) == 0.25
assert altzeta(-21) == 1180529130.25
assert altzeta(1).ae(log(2))
assert altzeta(2).ae(pi**2/12)
assert altzeta(10).ae(73*pi**10/6842880)
assert altzeta(50) < 1
assert altzeta(60, rounding='d') < 1
assert altzeta(60, rounding='u') == 1
assert altzeta(10000, rounding='d') < 1
assert altzeta(10000, rounding='u') == 1
assert altzeta(3+0j) == altzeta(3)
s = 3+4j
assert altzeta(s).ae((1-2**(1-s))*zeta(s))
s = -3+4j
assert altzeta(s).ae((1-2**(1-s))*zeta(s))
assert altzeta(-100.5).ae(4.58595480083585913e+108)
assert altzeta(1.3).ae(0.73821404216623045)
assert altzeta(1e-30).ae(0.5)
assert altzeta(-1e-30).ae(0.5)
assert altzeta(mpc(1e-30,1e-40)).ae(0.5)
assert altzeta(mpc(-1e-30,1e-40)).ae(0.5)
def test_zeta_huge():
mp.dps = 15
assert zeta(inf) == 1
mp.dps = 50
assert zeta(100).ae('1.0000000000000000000000000000007888609052210118073522')
assert zeta(40*pi).ae('1.0000000000000000000000000000000000000148407238666182')
mp.dps = 10000
v = zeta(33000)
mp.dps = 15
assert str(v-1) == '1.02363019598118e-9934'
assert zeta(pi*1000, rounding=round_up) > 1
assert zeta(3000, rounding=round_up) > 1
assert zeta(pi*1000) == 1
assert zeta(3000) == 1
def test_zeta_negative():
mp.dps = 150
a = -pi*10**40
mp.dps = 15
assert str(zeta(a)) == '2.55880492708712e+1233536161668617575553892558646631323374078'
mp.dps = 50
assert str(zeta(a)) == '2.5588049270871154960875033337384432038436330847333e+1233536161668617575553892558646631323374078'
mp.dps = 15
def test_polygamma():
mp.dps = 15
psi0 = lambda z: psi(0,z)
psi1 = lambda z: psi(1,z)
assert psi0(3) == psi(0,3) == digamma(3)
#assert psi2(3) == psi(2,3) == tetragamma(3)
#assert psi3(3) == psi(3,3) == pentagamma(3)
assert psi0(pi).ae(0.97721330794200673)
assert psi0(-pi).ae(7.8859523853854902)
assert psi0(-pi+1).ae(7.5676424992016996)
assert psi0(pi+j).ae(1.04224048313859376 + 0.35853686544063749j)
assert psi0(-pi-j).ae(1.3404026194821986 - 2.8824392476809402j)
assert findroot(psi0, 1).ae(1.4616321449683622)
assert psi0(1e-10).ae(-10000000000.57722)
assert psi0(1e-40).ae(-1.000000000000000e+40)
assert psi0(1e-10+1e-10j).ae(-5000000000.577215 + 5000000000.000000j)
assert psi0(1e-40+1e-40j).ae(-5.000000000000000e+39 + 5.000000000000000e+39j)
assert psi0(inf) == inf
assert psi1(inf) == 0
assert psi(2,inf) == 0
assert psi1(pi).ae(0.37424376965420049)
assert psi1(-pi).ae(53.030438740085385)
assert psi1(pi+j).ae(0.32935710377142464 - 0.12222163911221135j)
assert psi1(-pi-j).ae(-0.30065008356019703 + 0.01149892486928227j)
assert (10**6*psi(4,1+10*pi*j)).ae(-6.1491803479004446 - 0.3921316371664063j)
assert psi0(1+10*pi*j).ae(3.4473994217222650 + 1.5548808324857071j)
assert isnan(psi0(nan))
assert isnan(psi0(-inf))
assert psi0(-100.5).ae(4.615124601338064)
assert psi0(3+0j).ae(psi0(3))
assert psi0(-100+3j).ae(4.6106071768714086321+3.1117510556817394626j)
assert isnan(psi(2,mpc(0,inf)))
assert isnan(psi(2,mpc(0,nan)))
assert isnan(psi(2,mpc(0,-inf)))
assert isnan(psi(2,mpc(1,inf)))
assert isnan(psi(2,mpc(1,nan)))
assert isnan(psi(2,mpc(1,-inf)))
assert isnan(psi(2,mpc(inf,inf)))
assert isnan(psi(2,mpc(nan,nan)))
assert isnan(psi(2,mpc(-inf,-inf)))
mp.dps = 30
# issue #534
assert digamma(-0.75+1j).ae(mpc('0.46317279488182026118963809283042317', '2.4821070143037957102007677817351115'))
mp.dps = 15
def test_polygamma_high_prec():
mp.dps = 100
assert str(psi(0,pi)) == "0.9772133079420067332920694864061823436408346099943256380095232865318105924777141317302075654362928734"
assert str(psi(10,pi)) == "-12.98876181434889529310283769414222588307175962213707170773803550518307617769657562747174101900659238"
def test_polygamma_identities():
mp.dps = 15
psi0 = lambda z: psi(0,z)
psi1 = lambda z: psi(1,z)
psi2 = lambda z: psi(2,z)
assert psi0(0.5).ae(-euler-2*log(2))
assert psi0(1).ae(-euler)
assert psi1(0.5).ae(0.5*pi**2)
assert psi1(1).ae(pi**2/6)
assert psi1(0.25).ae(pi**2 + 8*catalan)
assert psi2(1).ae(-2*apery)
mp.dps = 20
u = -182*apery+4*sqrt(3)*pi**3
mp.dps = 15
assert psi(2,5/6.).ae(u)
assert psi(3,0.5).ae(pi**4)
def test_foxtrot_identity():
# A test of the complex digamma function.
# See http://mathworld.wolfram.com/FoxTrotSeries.html and
# http://mathworld.wolfram.com/DigammaFunction.html
psi0 = lambda z: psi(0,z)
mp.dps = 50
a = (-1)**fraction(1,3)
b = (-1)**fraction(2,3)
x = -psi0(0.5*a) - psi0(-0.5*b) + psi0(0.5*(1+a)) + psi0(0.5*(1-b))
y = 2*pi*sech(0.5*sqrt(3)*pi)
assert x.ae(y)
mp.dps = 15
def test_polygamma_high_order():
mp.dps = 100
assert str(psi(50, pi)) == "-1344100348958402765749252447726432491812.641985273160531055707095989227897753035823152397679626136483"
assert str(psi(50, pi + 14*e)) == "-0.00000000000000000189793739550804321623512073101895801993019919886375952881053090844591920308111549337295143780341396"
assert str(psi(50, pi + 14*e*j)) == ("(-0.0000000000000000522516941152169248975225472155683565752375889510631513244785"
"9377385233700094871256507814151956624433 - 0.00000000000000001813157041407010184"
"702414110218205348527862196327980417757665282244728963891298080199341480881811613j)")
mp.dps = 15
assert str(psi(50, pi)) == "-1.34410034895841e+39"
assert str(psi(50, pi + 14*e)) == "-1.89793739550804e-18"
assert str(psi(50, pi + 14*e*j)) == "(-5.2251694115217e-17 - 1.81315704140701e-17j)"
def test_harmonic():
mp.dps = 15
assert harmonic(0) == 0
assert harmonic(1) == 1
assert harmonic(2) == 1.5
assert harmonic(3).ae(1. + 1./2 + 1./3)
assert harmonic(10**10).ae(23.603066594891989701)
assert harmonic(10**1000).ae(2303.162308658947)
assert harmonic(0.5).ae(2-2*log(2))
assert harmonic(inf) == inf
assert harmonic(2+0j) == 1.5+0j
assert harmonic(1+2j).ae(1.4918071802755104+0.92080728264223022j)
def test_gamma_huge_1():
mp.dps = 500
x = mpf(10**10) / 7
mp.dps = 15
assert str(gamma(x)) == "6.26075321389519e+12458010678"
mp.dps = 50
assert str(gamma(x)) == "6.2607532138951929201303779291707455874010420783933e+12458010678"
mp.dps = 15
def test_gamma_huge_2():
mp.dps = 500
x = mpf(10**100) / 19
mp.dps = 15
assert str(gamma(x)) == (\
"1.82341134776679e+5172997469323364168990133558175077136829182824042201886051511"
"9656908623426021308685461258226190190661")
mp.dps = 50
assert str(gamma(x)) == (\
"1.82341134776678875374414910350027596939980412984e+5172997469323364168990133558"
"1750771368291828240422018860515119656908623426021308685461258226190190661")
def test_gamma_huge_3():
mp.dps = 500
x = 10**80 // 3 + 10**70*j / 7
mp.dps = 15
y = gamma(x)
assert str(y.real) == (\
"-6.82925203918106e+2636286142112569524501781477865238132302397236429627932441916"
"056964386399485392600")
assert str(y.imag) == (\
"8.54647143678418e+26362861421125695245017814778652381323023972364296279324419160"
"56964386399485392600")
mp.dps = 50
y = gamma(x)
assert str(y.real) == (\
"-6.8292520391810548460682736226799637356016538421817e+26362861421125695245017814"
"77865238132302397236429627932441916056964386399485392600")
assert str(y.imag) == (\
"8.5464714367841748507479306948130687511711420234015e+263628614211256952450178147"
"7865238132302397236429627932441916056964386399485392600")
def test_gamma_huge_4():
x = 3200+11500j
mp.dps = 15
assert str(gamma(x)) == \
"(8.95783268539713e+5164 - 1.94678798329735e+5164j)"
mp.dps = 50
assert str(gamma(x)) == (\
"(8.9578326853971339570292952697675570822206567327092e+5164"
" - 1.9467879832973509568895402139429643650329524144794e+51"
"64j)")
mp.dps = 15
def test_gamma_huge_5():
mp.dps = 500
x = 10**60 * j / 3
mp.dps = 15
y = gamma(x)
assert str(y.real) == "-3.27753899634941e-227396058973640224580963937571892628368354580620654233316839"
assert str(y.imag) == "-7.1519888950416e-227396058973640224580963937571892628368354580620654233316841"
mp.dps = 50
y = gamma(x)
assert str(y.real) == (\
"-3.2775389963494132168950056995974690946983219123935e-22739605897364022458096393"
"7571892628368354580620654233316839")
assert str(y.imag) == (\
"-7.1519888950415979749736749222530209713136588885897e-22739605897364022458096393"
"7571892628368354580620654233316841")
mp.dps = 15
def test_gamma_huge_7():
mp.dps = 100
a = 3 + j/mpf(10)**1000
mp.dps = 15
y = gamma(a)
assert str(y.real) == "2.0"
# wrong
#assert str(y.imag) == "2.16735365342606e-1000"
assert str(y.imag) == "1.84556867019693e-1000"
mp.dps = 50
y = gamma(a)
assert str(y.real) == "2.0"
#assert str(y.imag) == "2.1673536534260596065418805612488708028522563689298e-1000"
assert str(y.imag) == "1.8455686701969342787869758198351951379156813281202e-1000"
def test_stieltjes():
mp.dps = 15
assert stieltjes(0).ae(+euler)
mp.dps = 25
assert stieltjes(1).ae('-0.07281584548367672486058637587')
assert stieltjes(2).ae('-0.009690363192872318484530386035')
assert stieltjes(3).ae('0.002053834420303345866160046543')
assert stieltjes(4).ae('0.002325370065467300057468170178')
mp.dps = 15
assert stieltjes(1).ae(-0.07281584548367672486058637587)
assert stieltjes(2).ae(-0.009690363192872318484530386035)
assert stieltjes(3).ae(0.002053834420303345866160046543)
assert stieltjes(4).ae(0.0023253700654673000574681701775)
def test_barnesg():
mp.dps = 15
assert barnesg(0) == barnesg(-1) == 0
assert [superfac(i) for i in range(8)] == [1, 1, 2, 12, 288, 34560, 24883200, 125411328000]
assert str(superfac(1000)) == '3.24570818422368e+1177245'
assert isnan(barnesg(nan))
assert isnan(superfac(nan))
assert isnan(hyperfac(nan))
assert barnesg(inf) == inf
assert superfac(inf) == inf
assert hyperfac(inf) == inf
assert isnan(superfac(-inf))
assert barnesg(0.7).ae(0.8068722730141471)
assert barnesg(2+3j).ae(-0.17810213864082169+0.04504542715447838j)
assert [hyperfac(n) for n in range(7)] == [1, 1, 4, 108, 27648, 86400000, 4031078400000]
assert [hyperfac(n) for n in range(0,-7,-1)] == [1,1,-1,-4,108,27648,-86400000]
a = barnesg(-3+0j)
assert a == 0 and isinstance(a, mpc)
a = hyperfac(-3+0j)
assert a == -4 and isinstance(a, mpc)
def test_polylog():
mp.dps = 15
zs = [mpmathify(z) for z in [0, 0.5, 0.99, 4, -0.5, -4, 1j, 3+4j]]
for z in zs: assert polylog(1, z).ae(-log(1-z))
for z in zs: assert polylog(0, z).ae(z/(1-z))
for z in zs: assert polylog(-1, z).ae(z/(1-z)**2)
for z in zs: assert polylog(-2, z).ae(z*(1+z)/(1-z)**3)
for z in zs: assert polylog(-3, z).ae(z*(1+4*z+z**2)/(1-z)**4)
assert polylog(3, 7).ae(5.3192579921456754382-5.9479244480803301023j)
assert polylog(3, -7).ae(-4.5693548977219423182)
assert polylog(2, 0.9).ae(1.2997147230049587252)
assert polylog(2, -0.9).ae(-0.75216317921726162037)
assert polylog(2, 0.9j).ae(-0.17177943786580149299+0.83598828572550503226j)
assert polylog(2, 1.1).ae(1.9619991013055685931-0.2994257606855892575j)
assert polylog(2, -1.1).ae(-0.89083809026228260587)
assert polylog(2, 1.1*sqrt(j)).ae(0.58841571107611387722+1.09962542118827026011j)
assert polylog(-2, 0.9).ae(1710)
assert polylog(-2, -0.9).ae(-90/6859.)
assert polylog(3, 0.9).ae(1.0496589501864398696)
assert polylog(-3, 0.9).ae(48690)
assert polylog(-3, -4).ae(-0.0064)
assert polylog(0.5+j/3, 0.5+j/2).ae(0.31739144796565650535 + 0.99255390416556261437j)
assert polylog(3+4j,1).ae(zeta(3+4j))
assert polylog(3+4j,-1).ae(-altzeta(3+4j))
# issue 390
assert polylog(1.5, -48.910886523731889).ae(-6.272992229311817)
assert polylog(1.5, 200).ae(-8.349608319033686529 - 8.159694826434266042j)
assert polylog(-2+0j, -2).ae(mpf(1)/13.5)
assert polylog(-2+0j, 1.25).ae(-180)
def test_bell_polyexp():
mp.dps = 15
# TODO: more tests for polyexp
assert (polyexp(0,1e-10)*10**10).ae(1.00000000005)
assert (polyexp(1,1e-10)*10**10).ae(1.0000000001)
assert polyexp(5,3j).ae(-607.7044517476176454+519.962786482001476087j)
assert polyexp(-1,3.5).ae(12.09537536175543444)
# bell(0,x) = 1
assert bell(0,0) == 1
assert bell(0,1) == 1
assert bell(0,2) == 1
assert bell(0,inf) == 1
assert bell(0,-inf) == 1
assert isnan(bell(0,nan))
# bell(1,x) = x
assert bell(1,4) == 4
assert bell(1,0) == 0
assert bell(1,inf) == inf
assert bell(1,-inf) == -inf
assert isnan(bell(1,nan))
# bell(2,x) = x*(1+x)
assert bell(2,-1) == 0
assert bell(2,0) == 0
# large orders / arguments
assert bell(10) == 115975
assert bell(10,1) == 115975
assert bell(10, -8) == 11054008
assert bell(5,-50) == -253087550
assert bell(50,-50).ae('3.4746902914629720259e74')
mp.dps = 80
assert bell(50,-50) == 347469029146297202586097646631767227177164818163463279814268368579055777450
assert bell(40,50) == 5575520134721105844739265207408344706846955281965031698187656176321717550
assert bell(74) == 5006908024247925379707076470957722220463116781409659160159536981161298714301202
mp.dps = 15
assert bell(10,20j) == 7504528595600+15649605360020j
# continuity of the generalization
assert bell(0.5,0).ae(sinc(pi*0.5))
def test_primezeta():
mp.dps = 15
assert primezeta(0.9).ae(1.8388316154446882243 + 3.1415926535897932385j)
assert primezeta(4).ae(0.076993139764246844943)
assert primezeta(1) == inf
assert primezeta(inf) == 0
assert isnan(primezeta(nan))
def test_rs_zeta():
mp.dps = 15
assert zeta(0.5+100000j).ae(1.0730320148577531321 + 5.7808485443635039843j)
assert zeta(0.75+100000j).ae(1.837852337251873704 + 1.9988492668661145358j)
assert zeta(0.5+1000000j, derivative=3).ae(1647.7744105852674733 - 1423.1270943036622097j)
assert zeta(1+1000000j, derivative=3).ae(3.4085866124523582894 - 18.179184721525947301j)
assert zeta(1+1000000j, derivative=1).ae(-0.10423479366985452134 - 0.74728992803359056244j)
assert zeta(0.5-1000000j, derivative=1).ae(11.636804066002521459 + 17.127254072212996004j)
# Additional sanity tests using fp arithmetic.
# Some more high-precision tests are found in the docstrings
def ae(x, y, tol=1e-6):
return abs(x-y) < tol*abs(y)
assert ae(fp.zeta(0.5-100000j), 1.0730320148577531321 - 5.7808485443635039843j)
assert ae(fp.zeta(0.75-100000j), 1.837852337251873704 - 1.9988492668661145358j)
assert ae(fp.zeta(0.5+1e6j), 0.076089069738227100006 + 2.8051021010192989554j)
assert ae(fp.zeta(0.5+1e6j, derivative=1), 11.636804066002521459 - 17.127254072212996004j)
assert ae(fp.zeta(1+1e6j), 0.94738726251047891048 + 0.59421999312091832833j)
assert ae(fp.zeta(1+1e6j, derivative=1), -0.10423479366985452134 - 0.74728992803359056244j)
assert ae(fp.zeta(0.5+100000j, derivative=1), 10.766962036817482375 - 30.92705282105996714j)
assert ae(fp.zeta(0.5+100000j, derivative=2), -119.40515625740538429 + 217.14780631141830251j)
assert ae(fp.zeta(0.5+100000j, derivative=3), 1129.7550282628460881 - 1685.4736895169690346j)
assert ae(fp.zeta(0.5+100000j, derivative=4), -10407.160819314958615 + 13777.786698628045085j)
assert ae(fp.zeta(0.75+100000j, derivative=1), -0.41742276699594321475 - 6.4453816275049955949j)
assert ae(fp.zeta(0.75+100000j, derivative=2), -9.214314279161977266 + 35.07290795337967899j)
assert ae(fp.zeta(0.75+100000j, derivative=3), 110.61331857820103469 - 236.87847130518129926j)
assert ae(fp.zeta(0.75+100000j, derivative=4), -1054.334275898559401 + 1769.9177890161596383j)
def test_siegelz():
mp.dps = 15
assert siegelz(100000).ae(5.87959246868176504171)
assert siegelz(100000, derivative=2).ae(-54.1172711010126452832)
assert siegelz(100000, derivative=3).ae(-278.930831343966552538)
assert siegelz(100000+j,derivative=1).ae(678.214511857070283307-379.742160779916375413j)
def test_zeta_near_1():
# Test for a former bug in mpf_zeta and mpc_zeta
mp.dps = 15
s1 = fadd(1, '1e-10', exact=True)
s2 = fadd(1, '-1e-10', exact=True)
s3 = fadd(1, '1e-10j', exact=True)
assert zeta(s1).ae(1.000000000057721566490881444e10)
assert zeta(s2).ae(-9.99999999942278433510574872e9)
z = zeta(s3)
assert z.real.ae(0.57721566490153286060)
assert z.imag.ae(-9.9999999999999999999927184e9)
mp.dps = 30
s1 = fadd(1, '1e-50', exact=True)
s2 = fadd(1, '-1e-50', exact=True)
s3 = fadd(1, '1e-50j', exact=True)
assert zeta(s1).ae('1e50')
assert zeta(s2).ae('-1e50')
z = zeta(s3)
assert z.real.ae('0.57721566490153286060651209008240243104215933593992')
assert z.imag.ae('-1e50')
|