Spaces:
Running
Running
File size: 63,289 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 |
"""Array printing function
$Id: arrayprint.py,v 1.9 2005/09/13 13:58:44 teoliphant Exp $
"""
__all__ = ["array2string", "array_str", "array_repr", "set_string_function",
"set_printoptions", "get_printoptions", "printoptions",
"format_float_positional", "format_float_scientific"]
__docformat__ = 'restructuredtext'
#
# Written by Konrad Hinsen <[email protected]>
# last revision: 1996-3-13
# modified by Jim Hugunin 1997-3-3 for repr's and str's (and other details)
# and by Perry Greenfield 2000-4-1 for numarray
# and by Travis Oliphant 2005-8-22 for numpy
# Note: Both scalartypes.c.src and arrayprint.py implement strs for numpy
# scalars but for different purposes. scalartypes.c.src has str/reprs for when
# the scalar is printed on its own, while arrayprint.py has strs for when
# scalars are printed inside an ndarray. Only the latter strs are currently
# user-customizable.
import functools
import numbers
try:
from _thread import get_ident
except ImportError:
from _dummy_thread import get_ident
import numpy as np
from . import numerictypes as _nt
from .umath import absolute, isinf, isfinite, isnat
from . import multiarray
from .multiarray import (array, dragon4_positional, dragon4_scientific,
datetime_as_string, datetime_data, ndarray,
set_legacy_print_mode)
from .fromnumeric import any
from .numeric import concatenate, asarray, errstate
from .numerictypes import (longlong, intc, int_, float_, complex_, bool_,
flexible)
from .overrides import array_function_dispatch, set_module
import operator
import warnings
import contextlib
_format_options = {
'edgeitems': 3, # repr N leading and trailing items of each dimension
'threshold': 1000, # total items > triggers array summarization
'floatmode': 'maxprec',
'precision': 8, # precision of floating point representations
'suppress': False, # suppress printing small floating values in exp format
'linewidth': 75,
'nanstr': 'nan',
'infstr': 'inf',
'sign': '-',
'formatter': None,
'legacy': False}
def _make_options_dict(precision=None, threshold=None, edgeitems=None,
linewidth=None, suppress=None, nanstr=None, infstr=None,
sign=None, formatter=None, floatmode=None, legacy=None):
""" make a dictionary out of the non-None arguments, plus sanity checks """
options = {k: v for k, v in locals().items() if v is not None}
if suppress is not None:
options['suppress'] = bool(suppress)
modes = ['fixed', 'unique', 'maxprec', 'maxprec_equal']
if floatmode not in modes + [None]:
raise ValueError("floatmode option must be one of " +
", ".join('"{}"'.format(m) for m in modes))
if sign not in [None, '-', '+', ' ']:
raise ValueError("sign option must be one of ' ', '+', or '-'")
if legacy not in [None, False, '1.13']:
warnings.warn("legacy printing option can currently only be '1.13' or "
"`False`", stacklevel=3)
if threshold is not None:
# forbid the bad threshold arg suggested by stack overflow, gh-12351
if not isinstance(threshold, numbers.Number):
raise TypeError("threshold must be numeric")
if np.isnan(threshold):
raise ValueError("threshold must be non-NAN, try "
"sys.maxsize for untruncated representation")
if precision is not None:
# forbid the bad precision arg as suggested by issue #18254
try:
options['precision'] = operator.index(precision)
except TypeError as e:
raise TypeError('precision must be an integer') from e
return options
@set_module('numpy')
def set_printoptions(precision=None, threshold=None, edgeitems=None,
linewidth=None, suppress=None, nanstr=None, infstr=None,
formatter=None, sign=None, floatmode=None, *, legacy=None):
"""
Set printing options.
These options determine the way floating point numbers, arrays and
other NumPy objects are displayed.
Parameters
----------
precision : int or None, optional
Number of digits of precision for floating point output (default 8).
May be None if `floatmode` is not `fixed`, to print as many digits as
necessary to uniquely specify the value.
threshold : int, optional
Total number of array elements which trigger summarization
rather than full repr (default 1000).
To always use the full repr without summarization, pass `sys.maxsize`.
edgeitems : int, optional
Number of array items in summary at beginning and end of
each dimension (default 3).
linewidth : int, optional
The number of characters per line for the purpose of inserting
line breaks (default 75).
suppress : bool, optional
If True, always print floating point numbers using fixed point
notation, in which case numbers equal to zero in the current precision
will print as zero. If False, then scientific notation is used when
absolute value of the smallest number is < 1e-4 or the ratio of the
maximum absolute value to the minimum is > 1e3. The default is False.
nanstr : str, optional
String representation of floating point not-a-number (default nan).
infstr : str, optional
String representation of floating point infinity (default inf).
sign : string, either '-', '+', or ' ', optional
Controls printing of the sign of floating-point types. If '+', always
print the sign of positive values. If ' ', always prints a space
(whitespace character) in the sign position of positive values. If
'-', omit the sign character of positive values. (default '-')
formatter : dict of callables, optional
If not None, the keys should indicate the type(s) that the respective
formatting function applies to. Callables should return a string.
Types that are not specified (by their corresponding keys) are handled
by the default formatters. Individual types for which a formatter
can be set are:
- 'bool'
- 'int'
- 'timedelta' : a `numpy.timedelta64`
- 'datetime' : a `numpy.datetime64`
- 'float'
- 'longfloat' : 128-bit floats
- 'complexfloat'
- 'longcomplexfloat' : composed of two 128-bit floats
- 'numpystr' : types `numpy.string_` and `numpy.unicode_`
- 'object' : `np.object_` arrays
Other keys that can be used to set a group of types at once are:
- 'all' : sets all types
- 'int_kind' : sets 'int'
- 'float_kind' : sets 'float' and 'longfloat'
- 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'
- 'str_kind' : sets 'numpystr'
floatmode : str, optional
Controls the interpretation of the `precision` option for
floating-point types. Can take the following values
(default maxprec_equal):
* 'fixed': Always print exactly `precision` fractional digits,
even if this would print more or fewer digits than
necessary to specify the value uniquely.
* 'unique': Print the minimum number of fractional digits necessary
to represent each value uniquely. Different elements may
have a different number of digits. The value of the
`precision` option is ignored.
* 'maxprec': Print at most `precision` fractional digits, but if
an element can be uniquely represented with fewer digits
only print it with that many.
* 'maxprec_equal': Print at most `precision` fractional digits,
but if every element in the array can be uniquely
represented with an equal number of fewer digits, use that
many digits for all elements.
legacy : string or `False`, optional
If set to the string `'1.13'` enables 1.13 legacy printing mode. This
approximates numpy 1.13 print output by including a space in the sign
position of floats and different behavior for 0d arrays. If set to
`False`, disables legacy mode. Unrecognized strings will be ignored
with a warning for forward compatibility.
.. versionadded:: 1.14.0
See Also
--------
get_printoptions, printoptions, set_string_function, array2string
Notes
-----
`formatter` is always reset with a call to `set_printoptions`.
Use `printoptions` as a context manager to set the values temporarily.
Examples
--------
Floating point precision can be set:
>>> np.set_printoptions(precision=4)
>>> np.array([1.123456789])
[1.1235]
Long arrays can be summarised:
>>> np.set_printoptions(threshold=5)
>>> np.arange(10)
array([0, 1, 2, ..., 7, 8, 9])
Small results can be suppressed:
>>> eps = np.finfo(float).eps
>>> x = np.arange(4.)
>>> x**2 - (x + eps)**2
array([-4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00])
>>> np.set_printoptions(suppress=True)
>>> x**2 - (x + eps)**2
array([-0., -0., 0., 0.])
A custom formatter can be used to display array elements as desired:
>>> np.set_printoptions(formatter={'all':lambda x: 'int: '+str(-x)})
>>> x = np.arange(3)
>>> x
array([int: 0, int: -1, int: -2])
>>> np.set_printoptions() # formatter gets reset
>>> x
array([0, 1, 2])
To put back the default options, you can use:
>>> np.set_printoptions(edgeitems=3, infstr='inf',
... linewidth=75, nanstr='nan', precision=8,
... suppress=False, threshold=1000, formatter=None)
Also to temporarily override options, use `printoptions` as a context manager:
>>> with np.printoptions(precision=2, suppress=True, threshold=5):
... np.linspace(0, 10, 10)
array([ 0. , 1.11, 2.22, ..., 7.78, 8.89, 10. ])
"""
opt = _make_options_dict(precision, threshold, edgeitems, linewidth,
suppress, nanstr, infstr, sign, formatter,
floatmode, legacy)
# formatter is always reset
opt['formatter'] = formatter
_format_options.update(opt)
# set the C variable for legacy mode
if _format_options['legacy'] == '1.13':
set_legacy_print_mode(113)
# reset the sign option in legacy mode to avoid confusion
_format_options['sign'] = '-'
elif _format_options['legacy'] is False:
set_legacy_print_mode(0)
@set_module('numpy')
def get_printoptions():
"""
Return the current print options.
Returns
-------
print_opts : dict
Dictionary of current print options with keys
- precision : int
- threshold : int
- edgeitems : int
- linewidth : int
- suppress : bool
- nanstr : str
- infstr : str
- formatter : dict of callables
- sign : str
For a full description of these options, see `set_printoptions`.
See Also
--------
set_printoptions, printoptions, set_string_function
"""
return _format_options.copy()
@set_module('numpy')
@contextlib.contextmanager
def printoptions(*args, **kwargs):
"""Context manager for setting print options.
Set print options for the scope of the `with` block, and restore the old
options at the end. See `set_printoptions` for the full description of
available options.
Examples
--------
>>> from numpy.testing import assert_equal
>>> with np.printoptions(precision=2):
... np.array([2.0]) / 3
array([0.67])
The `as`-clause of the `with`-statement gives the current print options:
>>> with np.printoptions(precision=2) as opts:
... assert_equal(opts, np.get_printoptions())
See Also
--------
set_printoptions, get_printoptions
"""
opts = np.get_printoptions()
try:
np.set_printoptions(*args, **kwargs)
yield np.get_printoptions()
finally:
np.set_printoptions(**opts)
def _leading_trailing(a, edgeitems, index=()):
"""
Keep only the N-D corners (leading and trailing edges) of an array.
Should be passed a base-class ndarray, since it makes no guarantees about
preserving subclasses.
"""
axis = len(index)
if axis == a.ndim:
return a[index]
if a.shape[axis] > 2*edgeitems:
return concatenate((
_leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]),
_leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:])
), axis=axis)
else:
return _leading_trailing(a, edgeitems, index + np.index_exp[:])
def _object_format(o):
""" Object arrays containing lists should be printed unambiguously """
if type(o) is list:
fmt = 'list({!r})'
else:
fmt = '{!r}'
return fmt.format(o)
def repr_format(x):
return repr(x)
def str_format(x):
return str(x)
def _get_formatdict(data, *, precision, floatmode, suppress, sign, legacy,
formatter, **kwargs):
# note: extra arguments in kwargs are ignored
# wrapped in lambdas to avoid taking a code path with the wrong type of data
formatdict = {
'bool': lambda: BoolFormat(data),
'int': lambda: IntegerFormat(data),
'float': lambda: FloatingFormat(
data, precision, floatmode, suppress, sign, legacy=legacy),
'longfloat': lambda: FloatingFormat(
data, precision, floatmode, suppress, sign, legacy=legacy),
'complexfloat': lambda: ComplexFloatingFormat(
data, precision, floatmode, suppress, sign, legacy=legacy),
'longcomplexfloat': lambda: ComplexFloatingFormat(
data, precision, floatmode, suppress, sign, legacy=legacy),
'datetime': lambda: DatetimeFormat(data, legacy=legacy),
'timedelta': lambda: TimedeltaFormat(data),
'object': lambda: _object_format,
'void': lambda: str_format,
'numpystr': lambda: repr_format}
# we need to wrap values in `formatter` in a lambda, so that the interface
# is the same as the above values.
def indirect(x):
return lambda: x
if formatter is not None:
fkeys = [k for k in formatter.keys() if formatter[k] is not None]
if 'all' in fkeys:
for key in formatdict.keys():
formatdict[key] = indirect(formatter['all'])
if 'int_kind' in fkeys:
for key in ['int']:
formatdict[key] = indirect(formatter['int_kind'])
if 'float_kind' in fkeys:
for key in ['float', 'longfloat']:
formatdict[key] = indirect(formatter['float_kind'])
if 'complex_kind' in fkeys:
for key in ['complexfloat', 'longcomplexfloat']:
formatdict[key] = indirect(formatter['complex_kind'])
if 'str_kind' in fkeys:
formatdict['numpystr'] = indirect(formatter['str_kind'])
for key in formatdict.keys():
if key in fkeys:
formatdict[key] = indirect(formatter[key])
return formatdict
def _get_format_function(data, **options):
"""
find the right formatting function for the dtype_
"""
dtype_ = data.dtype
dtypeobj = dtype_.type
formatdict = _get_formatdict(data, **options)
if issubclass(dtypeobj, _nt.bool_):
return formatdict['bool']()
elif issubclass(dtypeobj, _nt.integer):
if issubclass(dtypeobj, _nt.timedelta64):
return formatdict['timedelta']()
else:
return formatdict['int']()
elif issubclass(dtypeobj, _nt.floating):
if issubclass(dtypeobj, _nt.longfloat):
return formatdict['longfloat']()
else:
return formatdict['float']()
elif issubclass(dtypeobj, _nt.complexfloating):
if issubclass(dtypeobj, _nt.clongfloat):
return formatdict['longcomplexfloat']()
else:
return formatdict['complexfloat']()
elif issubclass(dtypeobj, (_nt.unicode_, _nt.string_)):
return formatdict['numpystr']()
elif issubclass(dtypeobj, _nt.datetime64):
return formatdict['datetime']()
elif issubclass(dtypeobj, _nt.object_):
return formatdict['object']()
elif issubclass(dtypeobj, _nt.void):
if dtype_.names is not None:
return StructuredVoidFormat.from_data(data, **options)
else:
return formatdict['void']()
else:
return formatdict['numpystr']()
def _recursive_guard(fillvalue='...'):
"""
Like the python 3.2 reprlib.recursive_repr, but forwards *args and **kwargs
Decorates a function such that if it calls itself with the same first
argument, it returns `fillvalue` instead of recursing.
Largely copied from reprlib.recursive_repr
"""
def decorating_function(f):
repr_running = set()
@functools.wraps(f)
def wrapper(self, *args, **kwargs):
key = id(self), get_ident()
if key in repr_running:
return fillvalue
repr_running.add(key)
try:
return f(self, *args, **kwargs)
finally:
repr_running.discard(key)
return wrapper
return decorating_function
# gracefully handle recursive calls, when object arrays contain themselves
@_recursive_guard()
def _array2string(a, options, separator=' ', prefix=""):
# The formatter __init__s in _get_format_function cannot deal with
# subclasses yet, and we also need to avoid recursion issues in
# _formatArray with subclasses which return 0d arrays in place of scalars
data = asarray(a)
if a.shape == ():
a = data
if a.size > options['threshold']:
summary_insert = "..."
data = _leading_trailing(data, options['edgeitems'])
else:
summary_insert = ""
# find the right formatting function for the array
format_function = _get_format_function(data, **options)
# skip over "["
next_line_prefix = " "
# skip over array(
next_line_prefix += " "*len(prefix)
lst = _formatArray(a, format_function, options['linewidth'],
next_line_prefix, separator, options['edgeitems'],
summary_insert, options['legacy'])
return lst
def _array2string_dispatcher(
a, max_line_width=None, precision=None,
suppress_small=None, separator=None, prefix=None,
style=None, formatter=None, threshold=None,
edgeitems=None, sign=None, floatmode=None, suffix=None,
*, legacy=None):
return (a,)
@array_function_dispatch(_array2string_dispatcher, module='numpy')
def array2string(a, max_line_width=None, precision=None,
suppress_small=None, separator=' ', prefix="",
style=np._NoValue, formatter=None, threshold=None,
edgeitems=None, sign=None, floatmode=None, suffix="",
*, legacy=None):
"""
Return a string representation of an array.
Parameters
----------
a : ndarray
Input array.
max_line_width : int, optional
Inserts newlines if text is longer than `max_line_width`.
Defaults to ``numpy.get_printoptions()['linewidth']``.
precision : int or None, optional
Floating point precision.
Defaults to ``numpy.get_printoptions()['precision']``.
suppress_small : bool, optional
Represent numbers "very close" to zero as zero; default is False.
Very close is defined by precision: if the precision is 8, e.g.,
numbers smaller (in absolute value) than 5e-9 are represented as
zero.
Defaults to ``numpy.get_printoptions()['suppress']``.
separator : str, optional
Inserted between elements.
prefix : str, optional
suffix : str, optional
The length of the prefix and suffix strings are used to respectively
align and wrap the output. An array is typically printed as::
prefix + array2string(a) + suffix
The output is left-padded by the length of the prefix string, and
wrapping is forced at the column ``max_line_width - len(suffix)``.
It should be noted that the content of prefix and suffix strings are
not included in the output.
style : _NoValue, optional
Has no effect, do not use.
.. deprecated:: 1.14.0
formatter : dict of callables, optional
If not None, the keys should indicate the type(s) that the respective
formatting function applies to. Callables should return a string.
Types that are not specified (by their corresponding keys) are handled
by the default formatters. Individual types for which a formatter
can be set are:
- 'bool'
- 'int'
- 'timedelta' : a `numpy.timedelta64`
- 'datetime' : a `numpy.datetime64`
- 'float'
- 'longfloat' : 128-bit floats
- 'complexfloat'
- 'longcomplexfloat' : composed of two 128-bit floats
- 'void' : type `numpy.void`
- 'numpystr' : types `numpy.string_` and `numpy.unicode_`
Other keys that can be used to set a group of types at once are:
- 'all' : sets all types
- 'int_kind' : sets 'int'
- 'float_kind' : sets 'float' and 'longfloat'
- 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'
- 'str_kind' : sets 'numpystr'
threshold : int, optional
Total number of array elements which trigger summarization
rather than full repr.
Defaults to ``numpy.get_printoptions()['threshold']``.
edgeitems : int, optional
Number of array items in summary at beginning and end of
each dimension.
Defaults to ``numpy.get_printoptions()['edgeitems']``.
sign : string, either '-', '+', or ' ', optional
Controls printing of the sign of floating-point types. If '+', always
print the sign of positive values. If ' ', always prints a space
(whitespace character) in the sign position of positive values. If
'-', omit the sign character of positive values.
Defaults to ``numpy.get_printoptions()['sign']``.
floatmode : str, optional
Controls the interpretation of the `precision` option for
floating-point types.
Defaults to ``numpy.get_printoptions()['floatmode']``.
Can take the following values:
- 'fixed': Always print exactly `precision` fractional digits,
even if this would print more or fewer digits than
necessary to specify the value uniquely.
- 'unique': Print the minimum number of fractional digits necessary
to represent each value uniquely. Different elements may
have a different number of digits. The value of the
`precision` option is ignored.
- 'maxprec': Print at most `precision` fractional digits, but if
an element can be uniquely represented with fewer digits
only print it with that many.
- 'maxprec_equal': Print at most `precision` fractional digits,
but if every element in the array can be uniquely
represented with an equal number of fewer digits, use that
many digits for all elements.
legacy : string or `False`, optional
If set to the string `'1.13'` enables 1.13 legacy printing mode. This
approximates numpy 1.13 print output by including a space in the sign
position of floats and different behavior for 0d arrays. If set to
`False`, disables legacy mode. Unrecognized strings will be ignored
with a warning for forward compatibility.
.. versionadded:: 1.14.0
Returns
-------
array_str : str
String representation of the array.
Raises
------
TypeError
if a callable in `formatter` does not return a string.
See Also
--------
array_str, array_repr, set_printoptions, get_printoptions
Notes
-----
If a formatter is specified for a certain type, the `precision` keyword is
ignored for that type.
This is a very flexible function; `array_repr` and `array_str` are using
`array2string` internally so keywords with the same name should work
identically in all three functions.
Examples
--------
>>> x = np.array([1e-16,1,2,3])
>>> np.array2string(x, precision=2, separator=',',
... suppress_small=True)
'[0.,1.,2.,3.]'
>>> x = np.arange(3.)
>>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x})
'[0.00 1.00 2.00]'
>>> x = np.arange(3)
>>> np.array2string(x, formatter={'int':lambda x: hex(x)})
'[0x0 0x1 0x2]'
"""
overrides = _make_options_dict(precision, threshold, edgeitems,
max_line_width, suppress_small, None, None,
sign, formatter, floatmode, legacy)
options = _format_options.copy()
options.update(overrides)
if options['legacy'] == '1.13':
if style is np._NoValue:
style = repr
if a.shape == () and a.dtype.names is None:
return style(a.item())
elif style is not np._NoValue:
# Deprecation 11-9-2017 v1.14
warnings.warn("'style' argument is deprecated and no longer functional"
" except in 1.13 'legacy' mode",
DeprecationWarning, stacklevel=3)
if options['legacy'] != '1.13':
options['linewidth'] -= len(suffix)
# treat as a null array if any of shape elements == 0
if a.size == 0:
return "[]"
return _array2string(a, options, separator, prefix)
def _extendLine(s, line, word, line_width, next_line_prefix, legacy):
needs_wrap = len(line) + len(word) > line_width
if legacy != '1.13':
# don't wrap lines if it won't help
if len(line) <= len(next_line_prefix):
needs_wrap = False
if needs_wrap:
s += line.rstrip() + "\n"
line = next_line_prefix
line += word
return s, line
def _extendLine_pretty(s, line, word, line_width, next_line_prefix, legacy):
"""
Extends line with nicely formatted (possibly multi-line) string ``word``.
"""
words = word.splitlines()
if len(words) == 1 or legacy == '1.13':
return _extendLine(s, line, word, line_width, next_line_prefix, legacy)
max_word_length = max(len(word) for word in words)
if (len(line) + max_word_length > line_width and
len(line) > len(next_line_prefix)):
s += line.rstrip() + '\n'
line = next_line_prefix + words[0]
indent = next_line_prefix
else:
indent = len(line)*' '
line += words[0]
for word in words[1::]:
s += line.rstrip() + '\n'
line = indent + word
suffix_length = max_word_length - len(words[-1])
line += suffix_length*' '
return s, line
def _formatArray(a, format_function, line_width, next_line_prefix,
separator, edge_items, summary_insert, legacy):
"""formatArray is designed for two modes of operation:
1. Full output
2. Summarized output
"""
def recurser(index, hanging_indent, curr_width):
"""
By using this local function, we don't need to recurse with all the
arguments. Since this function is not created recursively, the cost is
not significant
"""
axis = len(index)
axes_left = a.ndim - axis
if axes_left == 0:
return format_function(a[index])
# when recursing, add a space to align with the [ added, and reduce the
# length of the line by 1
next_hanging_indent = hanging_indent + ' '
if legacy == '1.13':
next_width = curr_width
else:
next_width = curr_width - len(']')
a_len = a.shape[axis]
show_summary = summary_insert and 2*edge_items < a_len
if show_summary:
leading_items = edge_items
trailing_items = edge_items
else:
leading_items = 0
trailing_items = a_len
# stringify the array with the hanging indent on the first line too
s = ''
# last axis (rows) - wrap elements if they would not fit on one line
if axes_left == 1:
# the length up until the beginning of the separator / bracket
if legacy == '1.13':
elem_width = curr_width - len(separator.rstrip())
else:
elem_width = curr_width - max(len(separator.rstrip()), len(']'))
line = hanging_indent
for i in range(leading_items):
word = recurser(index + (i,), next_hanging_indent, next_width)
s, line = _extendLine_pretty(
s, line, word, elem_width, hanging_indent, legacy)
line += separator
if show_summary:
s, line = _extendLine(
s, line, summary_insert, elem_width, hanging_indent, legacy)
if legacy == '1.13':
line += ", "
else:
line += separator
for i in range(trailing_items, 1, -1):
word = recurser(index + (-i,), next_hanging_indent, next_width)
s, line = _extendLine_pretty(
s, line, word, elem_width, hanging_indent, legacy)
line += separator
if legacy == '1.13':
# width of the separator is not considered on 1.13
elem_width = curr_width
word = recurser(index + (-1,), next_hanging_indent, next_width)
s, line = _extendLine_pretty(
s, line, word, elem_width, hanging_indent, legacy)
s += line
# other axes - insert newlines between rows
else:
s = ''
line_sep = separator.rstrip() + '\n'*(axes_left - 1)
for i in range(leading_items):
nested = recurser(index + (i,), next_hanging_indent, next_width)
s += hanging_indent + nested + line_sep
if show_summary:
if legacy == '1.13':
# trailing space, fixed nbr of newlines, and fixed separator
s += hanging_indent + summary_insert + ", \n"
else:
s += hanging_indent + summary_insert + line_sep
for i in range(trailing_items, 1, -1):
nested = recurser(index + (-i,), next_hanging_indent,
next_width)
s += hanging_indent + nested + line_sep
nested = recurser(index + (-1,), next_hanging_indent, next_width)
s += hanging_indent + nested
# remove the hanging indent, and wrap in []
s = '[' + s[len(hanging_indent):] + ']'
return s
try:
# invoke the recursive part with an initial index and prefix
return recurser(index=(),
hanging_indent=next_line_prefix,
curr_width=line_width)
finally:
# recursive closures have a cyclic reference to themselves, which
# requires gc to collect (gh-10620). To avoid this problem, for
# performance and PyPy friendliness, we break the cycle:
recurser = None
def _none_or_positive_arg(x, name):
if x is None:
return -1
if x < 0:
raise ValueError("{} must be >= 0".format(name))
return x
class FloatingFormat:
""" Formatter for subtypes of np.floating """
def __init__(self, data, precision, floatmode, suppress_small, sign=False,
*, legacy=None):
# for backcompatibility, accept bools
if isinstance(sign, bool):
sign = '+' if sign else '-'
self._legacy = legacy
if self._legacy == '1.13':
# when not 0d, legacy does not support '-'
if data.shape != () and sign == '-':
sign = ' '
self.floatmode = floatmode
if floatmode == 'unique':
self.precision = None
else:
self.precision = precision
self.precision = _none_or_positive_arg(self.precision, 'precision')
self.suppress_small = suppress_small
self.sign = sign
self.exp_format = False
self.large_exponent = False
self.fillFormat(data)
def fillFormat(self, data):
# only the finite values are used to compute the number of digits
finite_vals = data[isfinite(data)]
# choose exponential mode based on the non-zero finite values:
abs_non_zero = absolute(finite_vals[finite_vals != 0])
if len(abs_non_zero) != 0:
max_val = np.max(abs_non_zero)
min_val = np.min(abs_non_zero)
with errstate(over='ignore'): # division can overflow
if max_val >= 1.e8 or (not self.suppress_small and
(min_val < 0.0001 or max_val/min_val > 1000.)):
self.exp_format = True
# do a first pass of printing all the numbers, to determine sizes
if len(finite_vals) == 0:
self.pad_left = 0
self.pad_right = 0
self.trim = '.'
self.exp_size = -1
self.unique = True
self.min_digits = None
elif self.exp_format:
trim, unique = '.', True
if self.floatmode == 'fixed' or self._legacy == '1.13':
trim, unique = 'k', False
strs = (dragon4_scientific(x, precision=self.precision,
unique=unique, trim=trim, sign=self.sign == '+')
for x in finite_vals)
frac_strs, _, exp_strs = zip(*(s.partition('e') for s in strs))
int_part, frac_part = zip(*(s.split('.') for s in frac_strs))
self.exp_size = max(len(s) for s in exp_strs) - 1
self.trim = 'k'
self.precision = max(len(s) for s in frac_part)
self.min_digits = self.precision
self.unique = unique
# for back-compat with np 1.13, use 2 spaces & sign and full prec
if self._legacy == '1.13':
self.pad_left = 3
else:
# this should be only 1 or 2. Can be calculated from sign.
self.pad_left = max(len(s) for s in int_part)
# pad_right is only needed for nan length calculation
self.pad_right = self.exp_size + 2 + self.precision
else:
trim, unique = '.', True
if self.floatmode == 'fixed':
trim, unique = 'k', False
strs = (dragon4_positional(x, precision=self.precision,
fractional=True,
unique=unique, trim=trim,
sign=self.sign == '+')
for x in finite_vals)
int_part, frac_part = zip(*(s.split('.') for s in strs))
if self._legacy == '1.13':
self.pad_left = 1 + max(len(s.lstrip('-+')) for s in int_part)
else:
self.pad_left = max(len(s) for s in int_part)
self.pad_right = max(len(s) for s in frac_part)
self.exp_size = -1
self.unique = unique
if self.floatmode in ['fixed', 'maxprec_equal']:
self.precision = self.min_digits = self.pad_right
self.trim = 'k'
else:
self.trim = '.'
self.min_digits = 0
if self._legacy != '1.13':
# account for sign = ' ' by adding one to pad_left
if self.sign == ' ' and not any(np.signbit(finite_vals)):
self.pad_left += 1
# if there are non-finite values, may need to increase pad_left
if data.size != finite_vals.size:
neginf = self.sign != '-' or any(data[isinf(data)] < 0)
nanlen = len(_format_options['nanstr'])
inflen = len(_format_options['infstr']) + neginf
offset = self.pad_right + 1 # +1 for decimal pt
self.pad_left = max(self.pad_left, nanlen - offset, inflen - offset)
def __call__(self, x):
if not np.isfinite(x):
with errstate(invalid='ignore'):
if np.isnan(x):
sign = '+' if self.sign == '+' else ''
ret = sign + _format_options['nanstr']
else: # isinf
sign = '-' if x < 0 else '+' if self.sign == '+' else ''
ret = sign + _format_options['infstr']
return ' '*(self.pad_left + self.pad_right + 1 - len(ret)) + ret
if self.exp_format:
return dragon4_scientific(x,
precision=self.precision,
min_digits=self.min_digits,
unique=self.unique,
trim=self.trim,
sign=self.sign == '+',
pad_left=self.pad_left,
exp_digits=self.exp_size)
else:
return dragon4_positional(x,
precision=self.precision,
min_digits=self.min_digits,
unique=self.unique,
fractional=True,
trim=self.trim,
sign=self.sign == '+',
pad_left=self.pad_left,
pad_right=self.pad_right)
@set_module('numpy')
def format_float_scientific(x, precision=None, unique=True, trim='k',
sign=False, pad_left=None, exp_digits=None,
min_digits=None):
"""
Format a floating-point scalar as a decimal string in scientific notation.
Provides control over rounding, trimming and padding. Uses and assumes
IEEE unbiased rounding. Uses the "Dragon4" algorithm.
Parameters
----------
x : python float or numpy floating scalar
Value to format.
precision : non-negative integer or None, optional
Maximum number of digits to print. May be None if `unique` is
`True`, but must be an integer if unique is `False`.
unique : boolean, optional
If `True`, use a digit-generation strategy which gives the shortest
representation which uniquely identifies the floating-point number from
other values of the same type, by judicious rounding. If `precision`
is given fewer digits than necessary can be printed. If `min_digits`
is given more can be printed, in which cases the last digit is rounded
with unbiased rounding.
If `False`, digits are generated as if printing an infinite-precision
value and stopping after `precision` digits, rounding the remaining
value with unbiased rounding
trim : one of 'k', '.', '0', '-', optional
Controls post-processing trimming of trailing digits, as follows:
* 'k' : keep trailing zeros, keep decimal point (no trimming)
* '.' : trim all trailing zeros, leave decimal point
* '0' : trim all but the zero before the decimal point. Insert the
zero if it is missing.
* '-' : trim trailing zeros and any trailing decimal point
sign : boolean, optional
Whether to show the sign for positive values.
pad_left : non-negative integer, optional
Pad the left side of the string with whitespace until at least that
many characters are to the left of the decimal point.
exp_digits : non-negative integer, optional
Pad the exponent with zeros until it contains at least this many digits.
If omitted, the exponent will be at least 2 digits.
min_digits : non-negative integer or None, optional
Minimum number of digits to print. This only has an effect for
`unique=True`. In that case more digits than necessary to uniquely
identify the value may be printed and rounded unbiased.
-- versionadded:: 1.21.0
Returns
-------
rep : string
The string representation of the floating point value
See Also
--------
format_float_positional
Examples
--------
>>> np.format_float_scientific(np.float32(np.pi))
'3.1415927e+00'
>>> s = np.float32(1.23e24)
>>> np.format_float_scientific(s, unique=False, precision=15)
'1.230000071797338e+24'
>>> np.format_float_scientific(s, exp_digits=4)
'1.23e+0024'
"""
precision = _none_or_positive_arg(precision, 'precision')
pad_left = _none_or_positive_arg(pad_left, 'pad_left')
exp_digits = _none_or_positive_arg(exp_digits, 'exp_digits')
min_digits = _none_or_positive_arg(min_digits, 'min_digits')
if min_digits > 0 and precision > 0 and min_digits > precision:
raise ValueError("min_digits must be less than or equal to precision")
return dragon4_scientific(x, precision=precision, unique=unique,
trim=trim, sign=sign, pad_left=pad_left,
exp_digits=exp_digits, min_digits=min_digits)
@set_module('numpy')
def format_float_positional(x, precision=None, unique=True,
fractional=True, trim='k', sign=False,
pad_left=None, pad_right=None, min_digits=None):
"""
Format a floating-point scalar as a decimal string in positional notation.
Provides control over rounding, trimming and padding. Uses and assumes
IEEE unbiased rounding. Uses the "Dragon4" algorithm.
Parameters
----------
x : python float or numpy floating scalar
Value to format.
precision : non-negative integer or None, optional
Maximum number of digits to print. May be None if `unique` is
`True`, but must be an integer if unique is `False`.
unique : boolean, optional
If `True`, use a digit-generation strategy which gives the shortest
representation which uniquely identifies the floating-point number from
other values of the same type, by judicious rounding. If `precision`
is given fewer digits than necessary can be printed, or if `min_digits`
is given more can be printed, in which cases the last digit is rounded
with unbiased rounding.
If `False`, digits are generated as if printing an infinite-precision
value and stopping after `precision` digits, rounding the remaining
value with unbiased rounding
fractional : boolean, optional
If `True`, the cutoffs of `precision` and `min_digits` refer to the
total number of digits after the decimal point, including leading
zeros.
If `False`, `precision` and `min_digits` refer to the total number of
significant digits, before or after the decimal point, ignoring leading
zeros.
trim : one of 'k', '.', '0', '-', optional
Controls post-processing trimming of trailing digits, as follows:
* 'k' : keep trailing zeros, keep decimal point (no trimming)
* '.' : trim all trailing zeros, leave decimal point
* '0' : trim all but the zero before the decimal point. Insert the
zero if it is missing.
* '-' : trim trailing zeros and any trailing decimal point
sign : boolean, optional
Whether to show the sign for positive values.
pad_left : non-negative integer, optional
Pad the left side of the string with whitespace until at least that
many characters are to the left of the decimal point.
pad_right : non-negative integer, optional
Pad the right side of the string with whitespace until at least that
many characters are to the right of the decimal point.
min_digits : non-negative integer or None, optional
Minimum number of digits to print. Only has an effect if `unique=True`
in which case additional digits past those necessary to uniquely
identify the value may be printed, rounding the last additional digit.
-- versionadded:: 1.21.0
Returns
-------
rep : string
The string representation of the floating point value
See Also
--------
format_float_scientific
Examples
--------
>>> np.format_float_positional(np.float32(np.pi))
'3.1415927'
>>> np.format_float_positional(np.float16(np.pi))
'3.14'
>>> np.format_float_positional(np.float16(0.3))
'0.3'
>>> np.format_float_positional(np.float16(0.3), unique=False, precision=10)
'0.3000488281'
"""
precision = _none_or_positive_arg(precision, 'precision')
pad_left = _none_or_positive_arg(pad_left, 'pad_left')
pad_right = _none_or_positive_arg(pad_right, 'pad_right')
min_digits = _none_or_positive_arg(min_digits, 'min_digits')
if not fractional and precision == 0:
raise ValueError("precision must be greater than 0 if "
"fractional=False")
if min_digits > 0 and precision > 0 and min_digits > precision:
raise ValueError("min_digits must be less than or equal to precision")
return dragon4_positional(x, precision=precision, unique=unique,
fractional=fractional, trim=trim,
sign=sign, pad_left=pad_left,
pad_right=pad_right, min_digits=min_digits)
class IntegerFormat:
def __init__(self, data):
if data.size > 0:
max_str_len = max(len(str(np.max(data))),
len(str(np.min(data))))
else:
max_str_len = 0
self.format = '%{}d'.format(max_str_len)
def __call__(self, x):
return self.format % x
class BoolFormat:
def __init__(self, data, **kwargs):
# add an extra space so " True" and "False" have the same length and
# array elements align nicely when printed, except in 0d arrays
self.truestr = ' True' if data.shape != () else 'True'
def __call__(self, x):
return self.truestr if x else "False"
class ComplexFloatingFormat:
""" Formatter for subtypes of np.complexfloating """
def __init__(self, x, precision, floatmode, suppress_small,
sign=False, *, legacy=None):
# for backcompatibility, accept bools
if isinstance(sign, bool):
sign = '+' if sign else '-'
floatmode_real = floatmode_imag = floatmode
if legacy == '1.13':
floatmode_real = 'maxprec_equal'
floatmode_imag = 'maxprec'
self.real_format = FloatingFormat(
x.real, precision, floatmode_real, suppress_small,
sign=sign, legacy=legacy
)
self.imag_format = FloatingFormat(
x.imag, precision, floatmode_imag, suppress_small,
sign='+', legacy=legacy
)
def __call__(self, x):
r = self.real_format(x.real)
i = self.imag_format(x.imag)
# add the 'j' before the terminal whitespace in i
sp = len(i.rstrip())
i = i[:sp] + 'j' + i[sp:]
return r + i
class _TimelikeFormat:
def __init__(self, data):
non_nat = data[~isnat(data)]
if len(non_nat) > 0:
# Max str length of non-NaT elements
max_str_len = max(len(self._format_non_nat(np.max(non_nat))),
len(self._format_non_nat(np.min(non_nat))))
else:
max_str_len = 0
if len(non_nat) < data.size:
# data contains a NaT
max_str_len = max(max_str_len, 5)
self._format = '%{}s'.format(max_str_len)
self._nat = "'NaT'".rjust(max_str_len)
def _format_non_nat(self, x):
# override in subclass
raise NotImplementedError
def __call__(self, x):
if isnat(x):
return self._nat
else:
return self._format % self._format_non_nat(x)
class DatetimeFormat(_TimelikeFormat):
def __init__(self, x, unit=None, timezone=None, casting='same_kind',
legacy=False):
# Get the unit from the dtype
if unit is None:
if x.dtype.kind == 'M':
unit = datetime_data(x.dtype)[0]
else:
unit = 's'
if timezone is None:
timezone = 'naive'
self.timezone = timezone
self.unit = unit
self.casting = casting
self.legacy = legacy
# must be called after the above are configured
super().__init__(x)
def __call__(self, x):
if self.legacy == '1.13':
return self._format_non_nat(x)
return super().__call__(x)
def _format_non_nat(self, x):
return "'%s'" % datetime_as_string(x,
unit=self.unit,
timezone=self.timezone,
casting=self.casting)
class TimedeltaFormat(_TimelikeFormat):
def _format_non_nat(self, x):
return str(x.astype('i8'))
class SubArrayFormat:
def __init__(self, format_function):
self.format_function = format_function
def __call__(self, arr):
if arr.ndim <= 1:
return "[" + ", ".join(self.format_function(a) for a in arr) + "]"
return "[" + ", ".join(self.__call__(a) for a in arr) + "]"
class StructuredVoidFormat:
"""
Formatter for structured np.void objects.
This does not work on structured alias types like np.dtype(('i4', 'i2,i2')),
as alias scalars lose their field information, and the implementation
relies upon np.void.__getitem__.
"""
def __init__(self, format_functions):
self.format_functions = format_functions
@classmethod
def from_data(cls, data, **options):
"""
This is a second way to initialize StructuredVoidFormat, using the raw data
as input. Added to avoid changing the signature of __init__.
"""
format_functions = []
for field_name in data.dtype.names:
format_function = _get_format_function(data[field_name], **options)
if data.dtype[field_name].shape != ():
format_function = SubArrayFormat(format_function)
format_functions.append(format_function)
return cls(format_functions)
def __call__(self, x):
str_fields = [
format_function(field)
for field, format_function in zip(x, self.format_functions)
]
if len(str_fields) == 1:
return "({},)".format(str_fields[0])
else:
return "({})".format(", ".join(str_fields))
def _void_scalar_repr(x):
"""
Implements the repr for structured-void scalars. It is called from the
scalartypes.c.src code, and is placed here because it uses the elementwise
formatters defined above.
"""
return StructuredVoidFormat.from_data(array(x), **_format_options)(x)
_typelessdata = [int_, float_, complex_, bool_]
if issubclass(intc, int):
_typelessdata.append(intc)
if issubclass(longlong, int):
_typelessdata.append(longlong)
def dtype_is_implied(dtype):
"""
Determine if the given dtype is implied by the representation of its values.
Parameters
----------
dtype : dtype
Data type
Returns
-------
implied : bool
True if the dtype is implied by the representation of its values.
Examples
--------
>>> np.core.arrayprint.dtype_is_implied(int)
True
>>> np.array([1, 2, 3], int)
array([1, 2, 3])
>>> np.core.arrayprint.dtype_is_implied(np.int8)
False
>>> np.array([1, 2, 3], np.int8)
array([1, 2, 3], dtype=int8)
"""
dtype = np.dtype(dtype)
if _format_options['legacy'] == '1.13' and dtype.type == bool_:
return False
# not just void types can be structured, and names are not part of the repr
if dtype.names is not None:
return False
return dtype.type in _typelessdata
def dtype_short_repr(dtype):
"""
Convert a dtype to a short form which evaluates to the same dtype.
The intent is roughly that the following holds
>>> from numpy import *
>>> dt = np.int64([1, 2]).dtype
>>> assert eval(dtype_short_repr(dt)) == dt
"""
if dtype.names is not None:
# structured dtypes give a list or tuple repr
return str(dtype)
elif issubclass(dtype.type, flexible):
# handle these separately so they don't give garbage like str256
return "'%s'" % str(dtype)
typename = dtype.name
# quote typenames which can't be represented as python variable names
if typename and not (typename[0].isalpha() and typename.isalnum()):
typename = repr(typename)
return typename
def _array_repr_implementation(
arr, max_line_width=None, precision=None, suppress_small=None,
array2string=array2string):
"""Internal version of array_repr() that allows overriding array2string."""
if max_line_width is None:
max_line_width = _format_options['linewidth']
if type(arr) is not ndarray:
class_name = type(arr).__name__
else:
class_name = "array"
skipdtype = dtype_is_implied(arr.dtype) and arr.size > 0
prefix = class_name + "("
suffix = ")" if skipdtype else ","
if (_format_options['legacy'] == '1.13' and
arr.shape == () and not arr.dtype.names):
lst = repr(arr.item())
elif arr.size > 0 or arr.shape == (0,):
lst = array2string(arr, max_line_width, precision, suppress_small,
', ', prefix, suffix=suffix)
else: # show zero-length shape unless it is (0,)
lst = "[], shape=%s" % (repr(arr.shape),)
arr_str = prefix + lst + suffix
if skipdtype:
return arr_str
dtype_str = "dtype={})".format(dtype_short_repr(arr.dtype))
# compute whether we should put dtype on a new line: Do so if adding the
# dtype would extend the last line past max_line_width.
# Note: This line gives the correct result even when rfind returns -1.
last_line_len = len(arr_str) - (arr_str.rfind('\n') + 1)
spacer = " "
if _format_options['legacy'] == '1.13':
if issubclass(arr.dtype.type, flexible):
spacer = '\n' + ' '*len(class_name + "(")
elif last_line_len + len(dtype_str) + 1 > max_line_width:
spacer = '\n' + ' '*len(class_name + "(")
return arr_str + spacer + dtype_str
def _array_repr_dispatcher(
arr, max_line_width=None, precision=None, suppress_small=None):
return (arr,)
@array_function_dispatch(_array_repr_dispatcher, module='numpy')
def array_repr(arr, max_line_width=None, precision=None, suppress_small=None):
"""
Return the string representation of an array.
Parameters
----------
arr : ndarray
Input array.
max_line_width : int, optional
Inserts newlines if text is longer than `max_line_width`.
Defaults to ``numpy.get_printoptions()['linewidth']``.
precision : int, optional
Floating point precision.
Defaults to ``numpy.get_printoptions()['precision']``.
suppress_small : bool, optional
Represent numbers "very close" to zero as zero; default is False.
Very close is defined by precision: if the precision is 8, e.g.,
numbers smaller (in absolute value) than 5e-9 are represented as
zero.
Defaults to ``numpy.get_printoptions()['suppress']``.
Returns
-------
string : str
The string representation of an array.
See Also
--------
array_str, array2string, set_printoptions
Examples
--------
>>> np.array_repr(np.array([1,2]))
'array([1, 2])'
>>> np.array_repr(np.ma.array([0.]))
'MaskedArray([0.])'
>>> np.array_repr(np.array([], np.int32))
'array([], dtype=int32)'
>>> x = np.array([1e-6, 4e-7, 2, 3])
>>> np.array_repr(x, precision=6, suppress_small=True)
'array([0.000001, 0. , 2. , 3. ])'
"""
return _array_repr_implementation(
arr, max_line_width, precision, suppress_small)
@_recursive_guard()
def _guarded_repr_or_str(v):
if isinstance(v, bytes):
return repr(v)
return str(v)
def _array_str_implementation(
a, max_line_width=None, precision=None, suppress_small=None,
array2string=array2string):
"""Internal version of array_str() that allows overriding array2string."""
if (_format_options['legacy'] == '1.13' and
a.shape == () and not a.dtype.names):
return str(a.item())
# the str of 0d arrays is a special case: It should appear like a scalar,
# so floats are not truncated by `precision`, and strings are not wrapped
# in quotes. So we return the str of the scalar value.
if a.shape == ():
# obtain a scalar and call str on it, avoiding problems for subclasses
# for which indexing with () returns a 0d instead of a scalar by using
# ndarray's getindex. Also guard against recursive 0d object arrays.
return _guarded_repr_or_str(np.ndarray.__getitem__(a, ()))
return array2string(a, max_line_width, precision, suppress_small, ' ', "")
def _array_str_dispatcher(
a, max_line_width=None, precision=None, suppress_small=None):
return (a,)
@array_function_dispatch(_array_str_dispatcher, module='numpy')
def array_str(a, max_line_width=None, precision=None, suppress_small=None):
"""
Return a string representation of the data in an array.
The data in the array is returned as a single string. This function is
similar to `array_repr`, the difference being that `array_repr` also
returns information on the kind of array and its data type.
Parameters
----------
a : ndarray
Input array.
max_line_width : int, optional
Inserts newlines if text is longer than `max_line_width`.
Defaults to ``numpy.get_printoptions()['linewidth']``.
precision : int, optional
Floating point precision.
Defaults to ``numpy.get_printoptions()['precision']``.
suppress_small : bool, optional
Represent numbers "very close" to zero as zero; default is False.
Very close is defined by precision: if the precision is 8, e.g.,
numbers smaller (in absolute value) than 5e-9 are represented as
zero.
Defaults to ``numpy.get_printoptions()['suppress']``.
See Also
--------
array2string, array_repr, set_printoptions
Examples
--------
>>> np.array_str(np.arange(3))
'[0 1 2]'
"""
return _array_str_implementation(
a, max_line_width, precision, suppress_small)
# needed if __array_function__ is disabled
_array2string_impl = getattr(array2string, '__wrapped__', array2string)
_default_array_str = functools.partial(_array_str_implementation,
array2string=_array2string_impl)
_default_array_repr = functools.partial(_array_repr_implementation,
array2string=_array2string_impl)
def set_string_function(f, repr=True):
"""
Set a Python function to be used when pretty printing arrays.
Parameters
----------
f : function or None
Function to be used to pretty print arrays. The function should expect
a single array argument and return a string of the representation of
the array. If None, the function is reset to the default NumPy function
to print arrays.
repr : bool, optional
If True (default), the function for pretty printing (``__repr__``)
is set, if False the function that returns the default string
representation (``__str__``) is set.
See Also
--------
set_printoptions, get_printoptions
Examples
--------
>>> def pprint(arr):
... return 'HA! - What are you going to do now?'
...
>>> np.set_string_function(pprint)
>>> a = np.arange(10)
>>> a
HA! - What are you going to do now?
>>> _ = a
>>> # [0 1 2 3 4 5 6 7 8 9]
We can reset the function to the default:
>>> np.set_string_function(None)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
`repr` affects either pretty printing or normal string representation.
Note that ``__repr__`` is still affected by setting ``__str__``
because the width of each array element in the returned string becomes
equal to the length of the result of ``__str__()``.
>>> x = np.arange(4)
>>> np.set_string_function(lambda x:'random', repr=False)
>>> x.__str__()
'random'
>>> x.__repr__()
'array([0, 1, 2, 3])'
"""
if f is None:
if repr:
return multiarray.set_string_function(_default_array_repr, 1)
else:
return multiarray.set_string_function(_default_array_str, 0)
else:
return multiarray.set_string_function(f, repr)
|