File size: 63,289 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
"""Array printing function



$Id: arrayprint.py,v 1.9 2005/09/13 13:58:44 teoliphant Exp $



"""
__all__ = ["array2string", "array_str", "array_repr", "set_string_function",
           "set_printoptions", "get_printoptions", "printoptions",
           "format_float_positional", "format_float_scientific"]
__docformat__ = 'restructuredtext'

#
# Written by Konrad Hinsen <[email protected]>
# last revision: 1996-3-13
# modified by Jim Hugunin 1997-3-3 for repr's and str's (and other details)
# and by Perry Greenfield 2000-4-1 for numarray
# and by Travis Oliphant  2005-8-22 for numpy


# Note: Both scalartypes.c.src and arrayprint.py implement strs for numpy
# scalars but for different purposes. scalartypes.c.src has str/reprs for when
# the scalar is printed on its own, while arrayprint.py has strs for when
# scalars are printed inside an ndarray. Only the latter strs are currently
# user-customizable.

import functools
import numbers
try:
    from _thread import get_ident
except ImportError:
    from _dummy_thread import get_ident

import numpy as np
from . import numerictypes as _nt
from .umath import absolute, isinf, isfinite, isnat
from . import multiarray
from .multiarray import (array, dragon4_positional, dragon4_scientific,
                         datetime_as_string, datetime_data, ndarray,
                         set_legacy_print_mode)
from .fromnumeric import any
from .numeric import concatenate, asarray, errstate
from .numerictypes import (longlong, intc, int_, float_, complex_, bool_,
                           flexible)
from .overrides import array_function_dispatch, set_module
import operator
import warnings
import contextlib

_format_options = {
    'edgeitems': 3,  # repr N leading and trailing items of each dimension
    'threshold': 1000,  # total items > triggers array summarization
    'floatmode': 'maxprec',
    'precision': 8,  # precision of floating point representations
    'suppress': False,  # suppress printing small floating values in exp format
    'linewidth': 75,
    'nanstr': 'nan',
    'infstr': 'inf',
    'sign': '-',
    'formatter': None,
    'legacy': False}

def _make_options_dict(precision=None, threshold=None, edgeitems=None,

                       linewidth=None, suppress=None, nanstr=None, infstr=None,

                       sign=None, formatter=None, floatmode=None, legacy=None):
    """ make a dictionary out of the non-None arguments, plus sanity checks """

    options = {k: v for k, v in locals().items() if v is not None}

    if suppress is not None:
        options['suppress'] = bool(suppress)

    modes = ['fixed', 'unique', 'maxprec', 'maxprec_equal']
    if floatmode not in modes + [None]:
        raise ValueError("floatmode option must be one of " +
                         ", ".join('"{}"'.format(m) for m in modes))

    if sign not in [None, '-', '+', ' ']:
        raise ValueError("sign option must be one of ' ', '+', or '-'")

    if legacy not in [None, False, '1.13']:
        warnings.warn("legacy printing option can currently only be '1.13' or "
                      "`False`", stacklevel=3)

    if threshold is not None:
        # forbid the bad threshold arg suggested by stack overflow, gh-12351
        if not isinstance(threshold, numbers.Number):
            raise TypeError("threshold must be numeric")
        if np.isnan(threshold):
            raise ValueError("threshold must be non-NAN, try "
                             "sys.maxsize for untruncated representation")

    if precision is not None:
        # forbid the bad precision arg as suggested by issue #18254
        try:
            options['precision'] = operator.index(precision)
        except TypeError as e:
            raise TypeError('precision must be an integer') from e

    return options


@set_module('numpy')
def set_printoptions(precision=None, threshold=None, edgeitems=None,

                     linewidth=None, suppress=None, nanstr=None, infstr=None,

                     formatter=None, sign=None, floatmode=None, *, legacy=None):
    """

    Set printing options.



    These options determine the way floating point numbers, arrays and

    other NumPy objects are displayed.



    Parameters

    ----------

    precision : int or None, optional

        Number of digits of precision for floating point output (default 8).

        May be None if `floatmode` is not `fixed`, to print as many digits as

        necessary to uniquely specify the value.

    threshold : int, optional

        Total number of array elements which trigger summarization

        rather than full repr (default 1000).

        To always use the full repr without summarization, pass `sys.maxsize`.

    edgeitems : int, optional

        Number of array items in summary at beginning and end of

        each dimension (default 3).

    linewidth : int, optional

        The number of characters per line for the purpose of inserting

        line breaks (default 75).

    suppress : bool, optional

        If True, always print floating point numbers using fixed point

        notation, in which case numbers equal to zero in the current precision

        will print as zero.  If False, then scientific notation is used when

        absolute value of the smallest number is < 1e-4 or the ratio of the

        maximum absolute value to the minimum is > 1e3. The default is False.

    nanstr : str, optional

        String representation of floating point not-a-number (default nan).

    infstr : str, optional

        String representation of floating point infinity (default inf).

    sign : string, either '-', '+', or ' ', optional

        Controls printing of the sign of floating-point types. If '+', always

        print the sign of positive values. If ' ', always prints a space

        (whitespace character) in the sign position of positive values.  If

        '-', omit the sign character of positive values. (default '-')

    formatter : dict of callables, optional

        If not None, the keys should indicate the type(s) that the respective

        formatting function applies to.  Callables should return a string.

        Types that are not specified (by their corresponding keys) are handled

        by the default formatters.  Individual types for which a formatter

        can be set are:



        - 'bool'

        - 'int'

        - 'timedelta' : a `numpy.timedelta64`

        - 'datetime' : a `numpy.datetime64`

        - 'float'

        - 'longfloat' : 128-bit floats

        - 'complexfloat'

        - 'longcomplexfloat' : composed of two 128-bit floats

        - 'numpystr' : types `numpy.string_` and `numpy.unicode_`

        - 'object' : `np.object_` arrays



        Other keys that can be used to set a group of types at once are:



        - 'all' : sets all types

        - 'int_kind' : sets 'int'

        - 'float_kind' : sets 'float' and 'longfloat'

        - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'

        - 'str_kind' : sets 'numpystr'

    floatmode : str, optional

        Controls the interpretation of the `precision` option for

        floating-point types. Can take the following values

        (default maxprec_equal):



        * 'fixed': Always print exactly `precision` fractional digits,

                even if this would print more or fewer digits than

                necessary to specify the value uniquely.

        * 'unique': Print the minimum number of fractional digits necessary

                to represent each value uniquely. Different elements may

                have a different number of digits. The value of the

                `precision` option is ignored.

        * 'maxprec': Print at most `precision` fractional digits, but if

                an element can be uniquely represented with fewer digits

                only print it with that many.

        * 'maxprec_equal': Print at most `precision` fractional digits,

                but if every element in the array can be uniquely

                represented with an equal number of fewer digits, use that

                many digits for all elements.

    legacy : string or `False`, optional

        If set to the string `'1.13'` enables 1.13 legacy printing mode. This

        approximates numpy 1.13 print output by including a space in the sign

        position of floats and different behavior for 0d arrays. If set to

        `False`, disables legacy mode. Unrecognized strings will be ignored

        with a warning for forward compatibility.



        .. versionadded:: 1.14.0



    See Also

    --------

    get_printoptions, printoptions, set_string_function, array2string



    Notes

    -----

    `formatter` is always reset with a call to `set_printoptions`.



    Use `printoptions` as a context manager to set the values temporarily.



    Examples

    --------

    Floating point precision can be set:



    >>> np.set_printoptions(precision=4)

    >>> np.array([1.123456789])

    [1.1235]



    Long arrays can be summarised:



    >>> np.set_printoptions(threshold=5)

    >>> np.arange(10)

    array([0, 1, 2, ..., 7, 8, 9])



    Small results can be suppressed:



    >>> eps = np.finfo(float).eps

    >>> x = np.arange(4.)

    >>> x**2 - (x + eps)**2

    array([-4.9304e-32, -4.4409e-16,  0.0000e+00,  0.0000e+00])

    >>> np.set_printoptions(suppress=True)

    >>> x**2 - (x + eps)**2

    array([-0., -0.,  0.,  0.])



    A custom formatter can be used to display array elements as desired:



    >>> np.set_printoptions(formatter={'all':lambda x: 'int: '+str(-x)})

    >>> x = np.arange(3)

    >>> x

    array([int: 0, int: -1, int: -2])

    >>> np.set_printoptions()  # formatter gets reset

    >>> x

    array([0, 1, 2])



    To put back the default options, you can use:



    >>> np.set_printoptions(edgeitems=3, infstr='inf',

    ... linewidth=75, nanstr='nan', precision=8,

    ... suppress=False, threshold=1000, formatter=None)



    Also to temporarily override options, use `printoptions` as a context manager:



    >>> with np.printoptions(precision=2, suppress=True, threshold=5):

    ...     np.linspace(0, 10, 10)

    array([ 0.  ,  1.11,  2.22, ...,  7.78,  8.89, 10.  ])



    """
    opt = _make_options_dict(precision, threshold, edgeitems, linewidth,
                             suppress, nanstr, infstr, sign, formatter,
                             floatmode, legacy)
    # formatter is always reset
    opt['formatter'] = formatter
    _format_options.update(opt)

    # set the C variable for legacy mode
    if _format_options['legacy'] == '1.13':
        set_legacy_print_mode(113)
        # reset the sign option in legacy mode to avoid confusion
        _format_options['sign'] = '-'
    elif _format_options['legacy'] is False:
        set_legacy_print_mode(0)


@set_module('numpy')
def get_printoptions():
    """

    Return the current print options.



    Returns

    -------

    print_opts : dict

        Dictionary of current print options with keys



          - precision : int

          - threshold : int

          - edgeitems : int

          - linewidth : int

          - suppress : bool

          - nanstr : str

          - infstr : str

          - formatter : dict of callables

          - sign : str



        For a full description of these options, see `set_printoptions`.



    See Also

    --------

    set_printoptions, printoptions, set_string_function



    """
    return _format_options.copy()


@set_module('numpy')
@contextlib.contextmanager
def printoptions(*args, **kwargs):
    """Context manager for setting print options.



    Set print options for the scope of the `with` block, and restore the old

    options at the end. See `set_printoptions` for the full description of

    available options.



    Examples

    --------



    >>> from numpy.testing import assert_equal

    >>> with np.printoptions(precision=2):

    ...     np.array([2.0]) / 3

    array([0.67])



    The `as`-clause of the `with`-statement gives the current print options:



    >>> with np.printoptions(precision=2) as opts:

    ...      assert_equal(opts, np.get_printoptions())



    See Also

    --------

    set_printoptions, get_printoptions



    """
    opts = np.get_printoptions()
    try:
        np.set_printoptions(*args, **kwargs)
        yield np.get_printoptions()
    finally:
        np.set_printoptions(**opts)


def _leading_trailing(a, edgeitems, index=()):
    """

    Keep only the N-D corners (leading and trailing edges) of an array.



    Should be passed a base-class ndarray, since it makes no guarantees about

    preserving subclasses.

    """
    axis = len(index)
    if axis == a.ndim:
        return a[index]

    if a.shape[axis] > 2*edgeitems:
        return concatenate((
            _leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]),
            _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:])
        ), axis=axis)
    else:
        return _leading_trailing(a, edgeitems, index + np.index_exp[:])


def _object_format(o):
    """ Object arrays containing lists should be printed unambiguously """
    if type(o) is list:
        fmt = 'list({!r})'
    else:
        fmt = '{!r}'
    return fmt.format(o)

def repr_format(x):
    return repr(x)

def str_format(x):
    return str(x)

def _get_formatdict(data, *, precision, floatmode, suppress, sign, legacy,

                    formatter, **kwargs):
    # note: extra arguments in kwargs are ignored

    # wrapped in lambdas to avoid taking a code path with the wrong type of data
    formatdict = {
        'bool': lambda: BoolFormat(data),
        'int': lambda: IntegerFormat(data),
        'float': lambda: FloatingFormat(
            data, precision, floatmode, suppress, sign, legacy=legacy),
        'longfloat': lambda: FloatingFormat(
            data, precision, floatmode, suppress, sign, legacy=legacy),
        'complexfloat': lambda: ComplexFloatingFormat(
            data, precision, floatmode, suppress, sign, legacy=legacy),
        'longcomplexfloat': lambda: ComplexFloatingFormat(
            data, precision, floatmode, suppress, sign, legacy=legacy),
        'datetime': lambda: DatetimeFormat(data, legacy=legacy),
        'timedelta': lambda: TimedeltaFormat(data),
        'object': lambda: _object_format,
        'void': lambda: str_format,
        'numpystr': lambda: repr_format}

    # we need to wrap values in `formatter` in a lambda, so that the interface
    # is the same as the above values.
    def indirect(x):
        return lambda: x

    if formatter is not None:
        fkeys = [k for k in formatter.keys() if formatter[k] is not None]
        if 'all' in fkeys:
            for key in formatdict.keys():
                formatdict[key] = indirect(formatter['all'])
        if 'int_kind' in fkeys:
            for key in ['int']:
                formatdict[key] = indirect(formatter['int_kind'])
        if 'float_kind' in fkeys:
            for key in ['float', 'longfloat']:
                formatdict[key] = indirect(formatter['float_kind'])
        if 'complex_kind' in fkeys:
            for key in ['complexfloat', 'longcomplexfloat']:
                formatdict[key] = indirect(formatter['complex_kind'])
        if 'str_kind' in fkeys:
            formatdict['numpystr'] = indirect(formatter['str_kind'])
        for key in formatdict.keys():
            if key in fkeys:
                formatdict[key] = indirect(formatter[key])

    return formatdict

def _get_format_function(data, **options):
    """

    find the right formatting function for the dtype_

    """
    dtype_ = data.dtype
    dtypeobj = dtype_.type
    formatdict = _get_formatdict(data, **options)
    if issubclass(dtypeobj, _nt.bool_):
        return formatdict['bool']()
    elif issubclass(dtypeobj, _nt.integer):
        if issubclass(dtypeobj, _nt.timedelta64):
            return formatdict['timedelta']()
        else:
            return formatdict['int']()
    elif issubclass(dtypeobj, _nt.floating):
        if issubclass(dtypeobj, _nt.longfloat):
            return formatdict['longfloat']()
        else:
            return formatdict['float']()
    elif issubclass(dtypeobj, _nt.complexfloating):
        if issubclass(dtypeobj, _nt.clongfloat):
            return formatdict['longcomplexfloat']()
        else:
            return formatdict['complexfloat']()
    elif issubclass(dtypeobj, (_nt.unicode_, _nt.string_)):
        return formatdict['numpystr']()
    elif issubclass(dtypeobj, _nt.datetime64):
        return formatdict['datetime']()
    elif issubclass(dtypeobj, _nt.object_):
        return formatdict['object']()
    elif issubclass(dtypeobj, _nt.void):
        if dtype_.names is not None:
            return StructuredVoidFormat.from_data(data, **options)
        else:
            return formatdict['void']()
    else:
        return formatdict['numpystr']()


def _recursive_guard(fillvalue='...'):
    """

    Like the python 3.2 reprlib.recursive_repr, but forwards *args and **kwargs



    Decorates a function such that if it calls itself with the same first

    argument, it returns `fillvalue` instead of recursing.



    Largely copied from reprlib.recursive_repr

    """

    def decorating_function(f):
        repr_running = set()

        @functools.wraps(f)
        def wrapper(self, *args, **kwargs):
            key = id(self), get_ident()
            if key in repr_running:
                return fillvalue
            repr_running.add(key)
            try:
                return f(self, *args, **kwargs)
            finally:
                repr_running.discard(key)

        return wrapper

    return decorating_function


# gracefully handle recursive calls, when object arrays contain themselves
@_recursive_guard()
def _array2string(a, options, separator=' ', prefix=""):
    # The formatter __init__s in _get_format_function cannot deal with
    # subclasses yet, and we also need to avoid recursion issues in
    # _formatArray with subclasses which return 0d arrays in place of scalars
    data = asarray(a)
    if a.shape == ():
        a = data

    if a.size > options['threshold']:
        summary_insert = "..."
        data = _leading_trailing(data, options['edgeitems'])
    else:
        summary_insert = ""

    # find the right formatting function for the array
    format_function = _get_format_function(data, **options)

    # skip over "["
    next_line_prefix = " "
    # skip over array(
    next_line_prefix += " "*len(prefix)

    lst = _formatArray(a, format_function, options['linewidth'],
                       next_line_prefix, separator, options['edgeitems'],
                       summary_insert, options['legacy'])
    return lst


def _array2string_dispatcher(

        a, max_line_width=None, precision=None,

        suppress_small=None, separator=None, prefix=None,

        style=None, formatter=None, threshold=None,

        edgeitems=None, sign=None, floatmode=None, suffix=None,

        *, legacy=None):
    return (a,)


@array_function_dispatch(_array2string_dispatcher, module='numpy')
def array2string(a, max_line_width=None, precision=None,

                 suppress_small=None, separator=' ', prefix="",

                 style=np._NoValue, formatter=None, threshold=None,

                 edgeitems=None, sign=None, floatmode=None, suffix="",

                 *, legacy=None):
    """

    Return a string representation of an array.



    Parameters

    ----------

    a : ndarray

        Input array.

    max_line_width : int, optional

        Inserts newlines if text is longer than `max_line_width`.

        Defaults to ``numpy.get_printoptions()['linewidth']``.

    precision : int or None, optional

        Floating point precision.

        Defaults to ``numpy.get_printoptions()['precision']``.

    suppress_small : bool, optional

        Represent numbers "very close" to zero as zero; default is False.

        Very close is defined by precision: if the precision is 8, e.g.,

        numbers smaller (in absolute value) than 5e-9 are represented as

        zero.

        Defaults to ``numpy.get_printoptions()['suppress']``.

    separator : str, optional

        Inserted between elements.

    prefix : str, optional

    suffix : str, optional

        The length of the prefix and suffix strings are used to respectively

        align and wrap the output. An array is typically printed as::



          prefix + array2string(a) + suffix



        The output is left-padded by the length of the prefix string, and

        wrapping is forced at the column ``max_line_width - len(suffix)``.

        It should be noted that the content of prefix and suffix strings are

        not included in the output.

    style : _NoValue, optional

        Has no effect, do not use.



        .. deprecated:: 1.14.0

    formatter : dict of callables, optional

        If not None, the keys should indicate the type(s) that the respective

        formatting function applies to.  Callables should return a string.

        Types that are not specified (by their corresponding keys) are handled

        by the default formatters.  Individual types for which a formatter

        can be set are:



        - 'bool'

        - 'int'

        - 'timedelta' : a `numpy.timedelta64`

        - 'datetime' : a `numpy.datetime64`

        - 'float'

        - 'longfloat' : 128-bit floats

        - 'complexfloat'

        - 'longcomplexfloat' : composed of two 128-bit floats

        - 'void' : type `numpy.void`

        - 'numpystr' : types `numpy.string_` and `numpy.unicode_`



        Other keys that can be used to set a group of types at once are:



        - 'all' : sets all types

        - 'int_kind' : sets 'int'

        - 'float_kind' : sets 'float' and 'longfloat'

        - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'

        - 'str_kind' : sets 'numpystr'

    threshold : int, optional

        Total number of array elements which trigger summarization

        rather than full repr.

        Defaults to ``numpy.get_printoptions()['threshold']``.

    edgeitems : int, optional

        Number of array items in summary at beginning and end of

        each dimension.

        Defaults to ``numpy.get_printoptions()['edgeitems']``.

    sign : string, either '-', '+', or ' ', optional

        Controls printing of the sign of floating-point types. If '+', always

        print the sign of positive values. If ' ', always prints a space

        (whitespace character) in the sign position of positive values.  If

        '-', omit the sign character of positive values.

        Defaults to ``numpy.get_printoptions()['sign']``.

    floatmode : str, optional

        Controls the interpretation of the `precision` option for

        floating-point types.

        Defaults to ``numpy.get_printoptions()['floatmode']``.

        Can take the following values:



        - 'fixed': Always print exactly `precision` fractional digits,

          even if this would print more or fewer digits than

          necessary to specify the value uniquely.

        - 'unique': Print the minimum number of fractional digits necessary

          to represent each value uniquely. Different elements may

          have a different number of digits.  The value of the

          `precision` option is ignored.

        - 'maxprec': Print at most `precision` fractional digits, but if

          an element can be uniquely represented with fewer digits

          only print it with that many.

        - 'maxprec_equal': Print at most `precision` fractional digits,

          but if every element in the array can be uniquely

          represented with an equal number of fewer digits, use that

          many digits for all elements.

    legacy : string or `False`, optional

        If set to the string `'1.13'` enables 1.13 legacy printing mode. This

        approximates numpy 1.13 print output by including a space in the sign

        position of floats and different behavior for 0d arrays. If set to

        `False`, disables legacy mode. Unrecognized strings will be ignored

        with a warning for forward compatibility.



        .. versionadded:: 1.14.0



    Returns

    -------

    array_str : str

        String representation of the array.



    Raises

    ------

    TypeError

        if a callable in `formatter` does not return a string.



    See Also

    --------

    array_str, array_repr, set_printoptions, get_printoptions



    Notes

    -----

    If a formatter is specified for a certain type, the `precision` keyword is

    ignored for that type.



    This is a very flexible function; `array_repr` and `array_str` are using

    `array2string` internally so keywords with the same name should work

    identically in all three functions.



    Examples

    --------

    >>> x = np.array([1e-16,1,2,3])

    >>> np.array2string(x, precision=2, separator=',',

    ...                       suppress_small=True)

    '[0.,1.,2.,3.]'



    >>> x  = np.arange(3.)

    >>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x})

    '[0.00 1.00 2.00]'



    >>> x  = np.arange(3)

    >>> np.array2string(x, formatter={'int':lambda x: hex(x)})

    '[0x0 0x1 0x2]'



    """

    overrides = _make_options_dict(precision, threshold, edgeitems,
                                   max_line_width, suppress_small, None, None,
                                   sign, formatter, floatmode, legacy)
    options = _format_options.copy()
    options.update(overrides)

    if options['legacy'] == '1.13':
        if style is np._NoValue:
            style = repr

        if a.shape == () and a.dtype.names is None:
            return style(a.item())
    elif style is not np._NoValue:
        # Deprecation 11-9-2017  v1.14
        warnings.warn("'style' argument is deprecated and no longer functional"
                      " except in 1.13 'legacy' mode",
                      DeprecationWarning, stacklevel=3)

    if options['legacy'] != '1.13':
        options['linewidth'] -= len(suffix)

    # treat as a null array if any of shape elements == 0
    if a.size == 0:
        return "[]"

    return _array2string(a, options, separator, prefix)


def _extendLine(s, line, word, line_width, next_line_prefix, legacy):
    needs_wrap = len(line) + len(word) > line_width
    if legacy != '1.13':
        # don't wrap lines if it won't help
        if len(line) <= len(next_line_prefix):
            needs_wrap = False

    if needs_wrap:
        s += line.rstrip() + "\n"
        line = next_line_prefix
    line += word
    return s, line


def _extendLine_pretty(s, line, word, line_width, next_line_prefix, legacy):
    """

    Extends line with nicely formatted (possibly multi-line) string ``word``.

    """
    words = word.splitlines()
    if len(words) == 1 or legacy == '1.13':
        return _extendLine(s, line, word, line_width, next_line_prefix, legacy)

    max_word_length = max(len(word) for word in words)
    if (len(line) + max_word_length > line_width and
            len(line) > len(next_line_prefix)):
        s += line.rstrip() + '\n'
        line = next_line_prefix + words[0]
        indent = next_line_prefix
    else:
        indent = len(line)*' '
        line += words[0]

    for word in words[1::]:
        s += line.rstrip() + '\n'
        line = indent + word

    suffix_length = max_word_length - len(words[-1])
    line += suffix_length*' '

    return s, line

def _formatArray(a, format_function, line_width, next_line_prefix,

                 separator, edge_items, summary_insert, legacy):
    """formatArray is designed for two modes of operation:



    1. Full output



    2. Summarized output



    """
    def recurser(index, hanging_indent, curr_width):
        """

        By using this local function, we don't need to recurse with all the

        arguments. Since this function is not created recursively, the cost is

        not significant

        """
        axis = len(index)
        axes_left = a.ndim - axis

        if axes_left == 0:
            return format_function(a[index])

        # when recursing, add a space to align with the [ added, and reduce the
        # length of the line by 1
        next_hanging_indent = hanging_indent + ' '
        if legacy == '1.13':
            next_width = curr_width
        else:
            next_width = curr_width - len(']')

        a_len = a.shape[axis]
        show_summary = summary_insert and 2*edge_items < a_len
        if show_summary:
            leading_items = edge_items
            trailing_items = edge_items
        else:
            leading_items = 0
            trailing_items = a_len

        # stringify the array with the hanging indent on the first line too
        s = ''

        # last axis (rows) - wrap elements if they would not fit on one line
        if axes_left == 1:
            # the length up until the beginning of the separator / bracket
            if legacy == '1.13':
                elem_width = curr_width - len(separator.rstrip())
            else:
                elem_width = curr_width - max(len(separator.rstrip()), len(']'))

            line = hanging_indent
            for i in range(leading_items):
                word = recurser(index + (i,), next_hanging_indent, next_width)
                s, line = _extendLine_pretty(
                    s, line, word, elem_width, hanging_indent, legacy)
                line += separator

            if show_summary:
                s, line = _extendLine(
                    s, line, summary_insert, elem_width, hanging_indent, legacy)
                if legacy == '1.13':
                    line += ", "
                else:
                    line += separator

            for i in range(trailing_items, 1, -1):
                word = recurser(index + (-i,), next_hanging_indent, next_width)
                s, line = _extendLine_pretty(
                    s, line, word, elem_width, hanging_indent, legacy)
                line += separator

            if legacy == '1.13':
                # width of the separator is not considered on 1.13
                elem_width = curr_width
            word = recurser(index + (-1,), next_hanging_indent, next_width)
            s, line = _extendLine_pretty(
                s, line, word, elem_width, hanging_indent, legacy)

            s += line

        # other axes - insert newlines between rows
        else:
            s = ''
            line_sep = separator.rstrip() + '\n'*(axes_left - 1)

            for i in range(leading_items):
                nested = recurser(index + (i,), next_hanging_indent, next_width)
                s += hanging_indent + nested + line_sep

            if show_summary:
                if legacy == '1.13':
                    # trailing space, fixed nbr of newlines, and fixed separator
                    s += hanging_indent + summary_insert + ", \n"
                else:
                    s += hanging_indent + summary_insert + line_sep

            for i in range(trailing_items, 1, -1):
                nested = recurser(index + (-i,), next_hanging_indent,
                                  next_width)
                s += hanging_indent + nested + line_sep

            nested = recurser(index + (-1,), next_hanging_indent, next_width)
            s += hanging_indent + nested

        # remove the hanging indent, and wrap in []
        s = '[' + s[len(hanging_indent):] + ']'
        return s

    try:
        # invoke the recursive part with an initial index and prefix
        return recurser(index=(),
                        hanging_indent=next_line_prefix,
                        curr_width=line_width)
    finally:
        # recursive closures have a cyclic reference to themselves, which
        # requires gc to collect (gh-10620). To avoid this problem, for
        # performance and PyPy friendliness, we break the cycle:
        recurser = None

def _none_or_positive_arg(x, name):
    if x is None:
        return -1
    if x < 0:
        raise ValueError("{} must be >= 0".format(name))
    return x

class FloatingFormat:
    """ Formatter for subtypes of np.floating """
    def __init__(self, data, precision, floatmode, suppress_small, sign=False,

                 *, legacy=None):
        # for backcompatibility, accept bools
        if isinstance(sign, bool):
            sign = '+' if sign else '-'

        self._legacy = legacy
        if self._legacy == '1.13':
            # when not 0d, legacy does not support '-'
            if data.shape != () and sign == '-':
                sign = ' '

        self.floatmode = floatmode
        if floatmode == 'unique':
            self.precision = None
        else:
            self.precision = precision

        self.precision = _none_or_positive_arg(self.precision, 'precision')

        self.suppress_small = suppress_small
        self.sign = sign
        self.exp_format = False
        self.large_exponent = False

        self.fillFormat(data)

    def fillFormat(self, data):
        # only the finite values are used to compute the number of digits
        finite_vals = data[isfinite(data)]

        # choose exponential mode based on the non-zero finite values:
        abs_non_zero = absolute(finite_vals[finite_vals != 0])
        if len(abs_non_zero) != 0:
            max_val = np.max(abs_non_zero)
            min_val = np.min(abs_non_zero)
            with errstate(over='ignore'):  # division can overflow
                if max_val >= 1.e8 or (not self.suppress_small and
                        (min_val < 0.0001 or max_val/min_val > 1000.)):
                    self.exp_format = True

        # do a first pass of printing all the numbers, to determine sizes
        if len(finite_vals) == 0:
            self.pad_left = 0
            self.pad_right = 0
            self.trim = '.'
            self.exp_size = -1
            self.unique = True
            self.min_digits = None
        elif self.exp_format:
            trim, unique = '.', True
            if self.floatmode == 'fixed' or self._legacy == '1.13':
                trim, unique = 'k', False
            strs = (dragon4_scientific(x, precision=self.precision,
                               unique=unique, trim=trim, sign=self.sign == '+')
                    for x in finite_vals)
            frac_strs, _, exp_strs = zip(*(s.partition('e') for s in strs))
            int_part, frac_part = zip(*(s.split('.') for s in frac_strs))
            self.exp_size = max(len(s) for s in exp_strs) - 1

            self.trim = 'k'
            self.precision = max(len(s) for s in frac_part)
            self.min_digits = self.precision
            self.unique = unique

            # for back-compat with np 1.13, use 2 spaces & sign and full prec
            if self._legacy == '1.13':
                self.pad_left = 3
            else:
                # this should be only 1 or 2. Can be calculated from sign.
                self.pad_left = max(len(s) for s in int_part)
            # pad_right is only needed for nan length calculation
            self.pad_right = self.exp_size + 2 + self.precision
        else:
            trim, unique = '.', True
            if self.floatmode == 'fixed':
                trim, unique = 'k', False
            strs = (dragon4_positional(x, precision=self.precision,
                                       fractional=True,
                                       unique=unique, trim=trim,
                                       sign=self.sign == '+')
                    for x in finite_vals)
            int_part, frac_part = zip(*(s.split('.') for s in strs))
            if self._legacy == '1.13':
                self.pad_left = 1 + max(len(s.lstrip('-+')) for s in int_part)
            else:
                self.pad_left = max(len(s) for s in int_part)
            self.pad_right = max(len(s) for s in frac_part)
            self.exp_size = -1
            self.unique = unique

            if self.floatmode in ['fixed', 'maxprec_equal']:
                self.precision = self.min_digits = self.pad_right
                self.trim = 'k'
            else:
                self.trim = '.'
                self.min_digits = 0

        if self._legacy != '1.13':
            # account for sign = ' ' by adding one to pad_left
            if self.sign == ' ' and not any(np.signbit(finite_vals)):
                self.pad_left += 1

        # if there are non-finite values, may need to increase pad_left
        if data.size != finite_vals.size:
            neginf = self.sign != '-' or any(data[isinf(data)] < 0)
            nanlen = len(_format_options['nanstr'])
            inflen = len(_format_options['infstr']) + neginf
            offset = self.pad_right + 1  # +1 for decimal pt
            self.pad_left = max(self.pad_left, nanlen - offset, inflen - offset)

    def __call__(self, x):
        if not np.isfinite(x):
            with errstate(invalid='ignore'):
                if np.isnan(x):
                    sign = '+' if self.sign == '+' else ''
                    ret = sign + _format_options['nanstr']
                else:  # isinf
                    sign = '-' if x < 0 else '+' if self.sign == '+' else ''
                    ret = sign + _format_options['infstr']
                return ' '*(self.pad_left + self.pad_right + 1 - len(ret)) + ret

        if self.exp_format:
            return dragon4_scientific(x,
                                      precision=self.precision,
                                      min_digits=self.min_digits,
                                      unique=self.unique,
                                      trim=self.trim,
                                      sign=self.sign == '+',
                                      pad_left=self.pad_left,
                                      exp_digits=self.exp_size)
        else:
            return dragon4_positional(x,
                                      precision=self.precision,
                                      min_digits=self.min_digits,
                                      unique=self.unique,
                                      fractional=True,
                                      trim=self.trim,
                                      sign=self.sign == '+',
                                      pad_left=self.pad_left,
                                      pad_right=self.pad_right)


@set_module('numpy')
def format_float_scientific(x, precision=None, unique=True, trim='k',

                            sign=False, pad_left=None, exp_digits=None,

                            min_digits=None):
    """

    Format a floating-point scalar as a decimal string in scientific notation.



    Provides control over rounding, trimming and padding. Uses and assumes

    IEEE unbiased rounding. Uses the "Dragon4" algorithm.



    Parameters

    ----------

    x : python float or numpy floating scalar

        Value to format.

    precision : non-negative integer or None, optional

        Maximum number of digits to print. May be None if `unique` is

        `True`, but must be an integer if unique is `False`.

    unique : boolean, optional

        If `True`, use a digit-generation strategy which gives the shortest

        representation which uniquely identifies the floating-point number from

        other values of the same type, by judicious rounding. If `precision`

        is given fewer digits than necessary can be printed. If `min_digits`

        is given more can be printed, in which cases the last digit is rounded

        with unbiased rounding.

        If `False`, digits are generated as if printing an infinite-precision

        value and stopping after `precision` digits, rounding the remaining

        value with unbiased rounding

    trim : one of 'k', '.', '0', '-', optional

        Controls post-processing trimming of trailing digits, as follows:



        * 'k' : keep trailing zeros, keep decimal point (no trimming)

        * '.' : trim all trailing zeros, leave decimal point

        * '0' : trim all but the zero before the decimal point. Insert the

          zero if it is missing.

        * '-' : trim trailing zeros and any trailing decimal point

    sign : boolean, optional

        Whether to show the sign for positive values.

    pad_left : non-negative integer, optional

        Pad the left side of the string with whitespace until at least that

        many characters are to the left of the decimal point.

    exp_digits : non-negative integer, optional

        Pad the exponent with zeros until it contains at least this many digits.

        If omitted, the exponent will be at least 2 digits.

    min_digits : non-negative integer or None, optional

        Minimum number of digits to print. This only has an effect for

        `unique=True`. In that case more digits than necessary to uniquely

        identify the value may be printed and rounded unbiased.



        -- versionadded:: 1.21.0

        

    Returns

    -------

    rep : string

        The string representation of the floating point value



    See Also

    --------

    format_float_positional



    Examples

    --------

    >>> np.format_float_scientific(np.float32(np.pi))

    '3.1415927e+00'

    >>> s = np.float32(1.23e24)

    >>> np.format_float_scientific(s, unique=False, precision=15)

    '1.230000071797338e+24'

    >>> np.format_float_scientific(s, exp_digits=4)

    '1.23e+0024'

    """
    precision = _none_or_positive_arg(precision, 'precision')
    pad_left = _none_or_positive_arg(pad_left, 'pad_left')
    exp_digits = _none_or_positive_arg(exp_digits, 'exp_digits')
    min_digits = _none_or_positive_arg(min_digits, 'min_digits')
    if min_digits > 0 and precision > 0 and min_digits > precision:
        raise ValueError("min_digits must be less than or equal to precision")
    return dragon4_scientific(x, precision=precision, unique=unique,
                              trim=trim, sign=sign, pad_left=pad_left,
                              exp_digits=exp_digits, min_digits=min_digits)


@set_module('numpy')
def format_float_positional(x, precision=None, unique=True,

                            fractional=True, trim='k', sign=False,

                            pad_left=None, pad_right=None, min_digits=None):
    """

    Format a floating-point scalar as a decimal string in positional notation.



    Provides control over rounding, trimming and padding. Uses and assumes

    IEEE unbiased rounding. Uses the "Dragon4" algorithm.



    Parameters

    ----------

    x : python float or numpy floating scalar

        Value to format.

    precision : non-negative integer or None, optional

        Maximum number of digits to print. May be None if `unique` is

        `True`, but must be an integer if unique is `False`.

    unique : boolean, optional

        If `True`, use a digit-generation strategy which gives the shortest

        representation which uniquely identifies the floating-point number from

        other values of the same type, by judicious rounding. If `precision`

        is given fewer digits than necessary can be printed, or if `min_digits`

        is given more can be printed, in which cases the last digit is rounded

        with unbiased rounding.

        If `False`, digits are generated as if printing an infinite-precision

        value and stopping after `precision` digits, rounding the remaining

        value with unbiased rounding

    fractional : boolean, optional

        If `True`, the cutoffs of `precision` and `min_digits` refer to the

        total number of digits after the decimal point, including leading

        zeros.

        If `False`, `precision` and `min_digits` refer to the total number of

        significant digits, before or after the decimal point, ignoring leading

        zeros.

    trim : one of 'k', '.', '0', '-', optional

        Controls post-processing trimming of trailing digits, as follows:



        * 'k' : keep trailing zeros, keep decimal point (no trimming)

        * '.' : trim all trailing zeros, leave decimal point

        * '0' : trim all but the zero before the decimal point. Insert the

          zero if it is missing.

        * '-' : trim trailing zeros and any trailing decimal point

    sign : boolean, optional

        Whether to show the sign for positive values.

    pad_left : non-negative integer, optional

        Pad the left side of the string with whitespace until at least that

        many characters are to the left of the decimal point.

    pad_right : non-negative integer, optional

        Pad the right side of the string with whitespace until at least that

        many characters are to the right of the decimal point.

    min_digits : non-negative integer or None, optional

        Minimum number of digits to print. Only has an effect if `unique=True`

        in which case additional digits past those necessary to uniquely

        identify the value may be printed, rounding the last additional digit.

        

        -- versionadded:: 1.21.0



    Returns

    -------

    rep : string

        The string representation of the floating point value



    See Also

    --------

    format_float_scientific



    Examples

    --------

    >>> np.format_float_positional(np.float32(np.pi))

    '3.1415927'

    >>> np.format_float_positional(np.float16(np.pi))

    '3.14'

    >>> np.format_float_positional(np.float16(0.3))

    '0.3'

    >>> np.format_float_positional(np.float16(0.3), unique=False, precision=10)

    '0.3000488281'

    """
    precision = _none_or_positive_arg(precision, 'precision')
    pad_left = _none_or_positive_arg(pad_left, 'pad_left')
    pad_right = _none_or_positive_arg(pad_right, 'pad_right')
    min_digits = _none_or_positive_arg(min_digits, 'min_digits')
    if not fractional and precision == 0:
        raise ValueError("precision must be greater than 0 if "
                         "fractional=False")
    if min_digits > 0 and precision > 0 and min_digits > precision:
        raise ValueError("min_digits must be less than or equal to precision")
    return dragon4_positional(x, precision=precision, unique=unique,
                              fractional=fractional, trim=trim,
                              sign=sign, pad_left=pad_left,
                              pad_right=pad_right, min_digits=min_digits)


class IntegerFormat:
    def __init__(self, data):
        if data.size > 0:
            max_str_len = max(len(str(np.max(data))),
                              len(str(np.min(data))))
        else:
            max_str_len = 0
        self.format = '%{}d'.format(max_str_len)

    def __call__(self, x):
        return self.format % x


class BoolFormat:
    def __init__(self, data, **kwargs):
        # add an extra space so " True" and "False" have the same length and
        # array elements align nicely when printed, except in 0d arrays
        self.truestr = ' True' if data.shape != () else 'True'

    def __call__(self, x):
        return self.truestr if x else "False"


class ComplexFloatingFormat:
    """ Formatter for subtypes of np.complexfloating """
    def __init__(self, x, precision, floatmode, suppress_small,

                 sign=False, *, legacy=None):
        # for backcompatibility, accept bools
        if isinstance(sign, bool):
            sign = '+' if sign else '-'

        floatmode_real = floatmode_imag = floatmode
        if legacy == '1.13':
            floatmode_real = 'maxprec_equal'
            floatmode_imag = 'maxprec'

        self.real_format = FloatingFormat(
            x.real, precision, floatmode_real, suppress_small,
            sign=sign, legacy=legacy
        )
        self.imag_format = FloatingFormat(
            x.imag, precision, floatmode_imag, suppress_small,
            sign='+', legacy=legacy
        )

    def __call__(self, x):
        r = self.real_format(x.real)
        i = self.imag_format(x.imag)

        # add the 'j' before the terminal whitespace in i
        sp = len(i.rstrip())
        i = i[:sp] + 'j' + i[sp:]

        return r + i


class _TimelikeFormat:
    def __init__(self, data):
        non_nat = data[~isnat(data)]
        if len(non_nat) > 0:
            # Max str length of non-NaT elements
            max_str_len = max(len(self._format_non_nat(np.max(non_nat))),
                              len(self._format_non_nat(np.min(non_nat))))
        else:
            max_str_len = 0
        if len(non_nat) < data.size:
            # data contains a NaT
            max_str_len = max(max_str_len, 5)
        self._format = '%{}s'.format(max_str_len)
        self._nat = "'NaT'".rjust(max_str_len)

    def _format_non_nat(self, x):
        # override in subclass
        raise NotImplementedError

    def __call__(self, x):
        if isnat(x):
            return self._nat
        else:
            return self._format % self._format_non_nat(x)


class DatetimeFormat(_TimelikeFormat):
    def __init__(self, x, unit=None, timezone=None, casting='same_kind',

                 legacy=False):
        # Get the unit from the dtype
        if unit is None:
            if x.dtype.kind == 'M':
                unit = datetime_data(x.dtype)[0]
            else:
                unit = 's'

        if timezone is None:
            timezone = 'naive'
        self.timezone = timezone
        self.unit = unit
        self.casting = casting
        self.legacy = legacy

        # must be called after the above are configured
        super().__init__(x)

    def __call__(self, x):
        if self.legacy == '1.13':
            return self._format_non_nat(x)
        return super().__call__(x)

    def _format_non_nat(self, x):
        return "'%s'" % datetime_as_string(x,
                                    unit=self.unit,
                                    timezone=self.timezone,
                                    casting=self.casting)


class TimedeltaFormat(_TimelikeFormat):
    def _format_non_nat(self, x):
        return str(x.astype('i8'))


class SubArrayFormat:
    def __init__(self, format_function):
        self.format_function = format_function

    def __call__(self, arr):
        if arr.ndim <= 1:
            return "[" + ", ".join(self.format_function(a) for a in arr) + "]"
        return "[" + ", ".join(self.__call__(a) for a in arr) + "]"


class StructuredVoidFormat:
    """

    Formatter for structured np.void objects.



    This does not work on structured alias types like np.dtype(('i4', 'i2,i2')),

    as alias scalars lose their field information, and the implementation

    relies upon np.void.__getitem__.

    """
    def __init__(self, format_functions):
        self.format_functions = format_functions

    @classmethod
    def from_data(cls, data, **options):
        """

        This is a second way to initialize StructuredVoidFormat, using the raw data

        as input. Added to avoid changing the signature of __init__.

        """
        format_functions = []
        for field_name in data.dtype.names:
            format_function = _get_format_function(data[field_name], **options)
            if data.dtype[field_name].shape != ():
                format_function = SubArrayFormat(format_function)
            format_functions.append(format_function)
        return cls(format_functions)

    def __call__(self, x):
        str_fields = [
            format_function(field)
            for field, format_function in zip(x, self.format_functions)
        ]
        if len(str_fields) == 1:
            return "({},)".format(str_fields[0])
        else:
            return "({})".format(", ".join(str_fields))


def _void_scalar_repr(x):
    """

    Implements the repr for structured-void scalars. It is called from the

    scalartypes.c.src code, and is placed here because it uses the elementwise

    formatters defined above.

    """
    return StructuredVoidFormat.from_data(array(x), **_format_options)(x)


_typelessdata = [int_, float_, complex_, bool_]
if issubclass(intc, int):
    _typelessdata.append(intc)
if issubclass(longlong, int):
    _typelessdata.append(longlong)


def dtype_is_implied(dtype):
    """

    Determine if the given dtype is implied by the representation of its values.



    Parameters

    ----------

    dtype : dtype

        Data type



    Returns

    -------

    implied : bool

        True if the dtype is implied by the representation of its values.



    Examples

    --------

    >>> np.core.arrayprint.dtype_is_implied(int)

    True

    >>> np.array([1, 2, 3], int)

    array([1, 2, 3])

    >>> np.core.arrayprint.dtype_is_implied(np.int8)

    False

    >>> np.array([1, 2, 3], np.int8)

    array([1, 2, 3], dtype=int8)

    """
    dtype = np.dtype(dtype)
    if _format_options['legacy'] == '1.13' and dtype.type == bool_:
        return False

    # not just void types can be structured, and names are not part of the repr
    if dtype.names is not None:
        return False

    return dtype.type in _typelessdata


def dtype_short_repr(dtype):
    """

    Convert a dtype to a short form which evaluates to the same dtype.



    The intent is roughly that the following holds



    >>> from numpy import *

    >>> dt = np.int64([1, 2]).dtype

    >>> assert eval(dtype_short_repr(dt)) == dt

    """
    if dtype.names is not None:
        # structured dtypes give a list or tuple repr
        return str(dtype)
    elif issubclass(dtype.type, flexible):
        # handle these separately so they don't give garbage like str256
        return "'%s'" % str(dtype)

    typename = dtype.name
    # quote typenames which can't be represented as python variable names
    if typename and not (typename[0].isalpha() and typename.isalnum()):
        typename = repr(typename)

    return typename


def _array_repr_implementation(

        arr, max_line_width=None, precision=None, suppress_small=None,

        array2string=array2string):
    """Internal version of array_repr() that allows overriding array2string."""
    if max_line_width is None:
        max_line_width = _format_options['linewidth']

    if type(arr) is not ndarray:
        class_name = type(arr).__name__
    else:
        class_name = "array"

    skipdtype = dtype_is_implied(arr.dtype) and arr.size > 0

    prefix = class_name + "("
    suffix = ")" if skipdtype else ","

    if (_format_options['legacy'] == '1.13' and
            arr.shape == () and not arr.dtype.names):
        lst = repr(arr.item())
    elif arr.size > 0 or arr.shape == (0,):
        lst = array2string(arr, max_line_width, precision, suppress_small,
                           ', ', prefix, suffix=suffix)
    else:  # show zero-length shape unless it is (0,)
        lst = "[], shape=%s" % (repr(arr.shape),)

    arr_str = prefix + lst + suffix

    if skipdtype:
        return arr_str

    dtype_str = "dtype={})".format(dtype_short_repr(arr.dtype))

    # compute whether we should put dtype on a new line: Do so if adding the
    # dtype would extend the last line past max_line_width.
    # Note: This line gives the correct result even when rfind returns -1.
    last_line_len = len(arr_str) - (arr_str.rfind('\n') + 1)
    spacer = " "
    if _format_options['legacy'] == '1.13':
        if issubclass(arr.dtype.type, flexible):
            spacer = '\n' + ' '*len(class_name + "(")
    elif last_line_len + len(dtype_str) + 1 > max_line_width:
        spacer = '\n' + ' '*len(class_name + "(")

    return arr_str + spacer + dtype_str


def _array_repr_dispatcher(

        arr, max_line_width=None, precision=None, suppress_small=None):
    return (arr,)


@array_function_dispatch(_array_repr_dispatcher, module='numpy')
def array_repr(arr, max_line_width=None, precision=None, suppress_small=None):
    """

    Return the string representation of an array.



    Parameters

    ----------

    arr : ndarray

        Input array.

    max_line_width : int, optional

        Inserts newlines if text is longer than `max_line_width`.

        Defaults to ``numpy.get_printoptions()['linewidth']``.

    precision : int, optional

        Floating point precision.

        Defaults to ``numpy.get_printoptions()['precision']``.

    suppress_small : bool, optional

        Represent numbers "very close" to zero as zero; default is False.

        Very close is defined by precision: if the precision is 8, e.g.,

        numbers smaller (in absolute value) than 5e-9 are represented as

        zero.

        Defaults to ``numpy.get_printoptions()['suppress']``.



    Returns

    -------

    string : str

      The string representation of an array.



    See Also

    --------

    array_str, array2string, set_printoptions



    Examples

    --------

    >>> np.array_repr(np.array([1,2]))

    'array([1, 2])'

    >>> np.array_repr(np.ma.array([0.]))

    'MaskedArray([0.])'

    >>> np.array_repr(np.array([], np.int32))

    'array([], dtype=int32)'



    >>> x = np.array([1e-6, 4e-7, 2, 3])

    >>> np.array_repr(x, precision=6, suppress_small=True)

    'array([0.000001,  0.      ,  2.      ,  3.      ])'



    """
    return _array_repr_implementation(
        arr, max_line_width, precision, suppress_small)


@_recursive_guard()
def _guarded_repr_or_str(v):
    if isinstance(v, bytes):
        return repr(v)
    return str(v)


def _array_str_implementation(

        a, max_line_width=None, precision=None, suppress_small=None,

        array2string=array2string):
    """Internal version of array_str() that allows overriding array2string."""
    if (_format_options['legacy'] == '1.13' and
            a.shape == () and not a.dtype.names):
        return str(a.item())

    # the str of 0d arrays is a special case: It should appear like a scalar,
    # so floats are not truncated by `precision`, and strings are not wrapped
    # in quotes. So we return the str of the scalar value.
    if a.shape == ():
        # obtain a scalar and call str on it, avoiding problems for subclasses
        # for which indexing with () returns a 0d instead of a scalar by using
        # ndarray's getindex. Also guard against recursive 0d object arrays.
        return _guarded_repr_or_str(np.ndarray.__getitem__(a, ()))

    return array2string(a, max_line_width, precision, suppress_small, ' ', "")


def _array_str_dispatcher(

        a, max_line_width=None, precision=None, suppress_small=None):
    return (a,)


@array_function_dispatch(_array_str_dispatcher, module='numpy')
def array_str(a, max_line_width=None, precision=None, suppress_small=None):
    """

    Return a string representation of the data in an array.



    The data in the array is returned as a single string.  This function is

    similar to `array_repr`, the difference being that `array_repr` also

    returns information on the kind of array and its data type.



    Parameters

    ----------

    a : ndarray

        Input array.

    max_line_width : int, optional

        Inserts newlines if text is longer than `max_line_width`.

        Defaults to ``numpy.get_printoptions()['linewidth']``.

    precision : int, optional

        Floating point precision.

        Defaults to ``numpy.get_printoptions()['precision']``.

    suppress_small : bool, optional

        Represent numbers "very close" to zero as zero; default is False.

        Very close is defined by precision: if the precision is 8, e.g.,

        numbers smaller (in absolute value) than 5e-9 are represented as

        zero.

        Defaults to ``numpy.get_printoptions()['suppress']``.



    See Also

    --------

    array2string, array_repr, set_printoptions



    Examples

    --------

    >>> np.array_str(np.arange(3))

    '[0 1 2]'



    """
    return _array_str_implementation(
        a, max_line_width, precision, suppress_small)


# needed if __array_function__ is disabled
_array2string_impl = getattr(array2string, '__wrapped__', array2string)
_default_array_str = functools.partial(_array_str_implementation,
                                       array2string=_array2string_impl)
_default_array_repr = functools.partial(_array_repr_implementation,
                                        array2string=_array2string_impl)


def set_string_function(f, repr=True):
    """

    Set a Python function to be used when pretty printing arrays.



    Parameters

    ----------

    f : function or None

        Function to be used to pretty print arrays. The function should expect

        a single array argument and return a string of the representation of

        the array. If None, the function is reset to the default NumPy function

        to print arrays.

    repr : bool, optional

        If True (default), the function for pretty printing (``__repr__``)

        is set, if False the function that returns the default string

        representation (``__str__``) is set.



    See Also

    --------

    set_printoptions, get_printoptions



    Examples

    --------

    >>> def pprint(arr):

    ...     return 'HA! - What are you going to do now?'

    ...

    >>> np.set_string_function(pprint)

    >>> a = np.arange(10)

    >>> a

    HA! - What are you going to do now?

    >>> _ = a

    >>> # [0 1 2 3 4 5 6 7 8 9]



    We can reset the function to the default:



    >>> np.set_string_function(None)

    >>> a

    array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])



    `repr` affects either pretty printing or normal string representation.

    Note that ``__repr__`` is still affected by setting ``__str__``

    because the width of each array element in the returned string becomes

    equal to the length of the result of ``__str__()``.



    >>> x = np.arange(4)

    >>> np.set_string_function(lambda x:'random', repr=False)

    >>> x.__str__()

    'random'

    >>> x.__repr__()

    'array([0, 1, 2, 3])'



    """
    if f is None:
        if repr:
            return multiarray.set_string_function(_default_array_repr, 1)
        else:
            return multiarray.set_string_function(_default_array_str, 0)
    else:
        return multiarray.set_string_function(f, repr)