File size: 8,361 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""Implementation of __array_function__ overrides from NEP-18."""
import collections
import functools
import os
import textwrap

from numpy.core._multiarray_umath import (
    add_docstring, implement_array_function, _get_implementing_args)
from numpy.compat._inspect import getargspec


ARRAY_FUNCTION_ENABLED = bool(
    int(os.environ.get('NUMPY_EXPERIMENTAL_ARRAY_FUNCTION', 1)))

array_function_like_doc = (
    """like : array_like

        Reference object to allow the creation of arrays which are not

        NumPy arrays. If an array-like passed in as ``like`` supports

        the ``__array_function__`` protocol, the result will be defined

        by it. In this case, it ensures the creation of an array object

        compatible with that passed in via this argument."""
)

def set_array_function_like_doc(public_api):
    if public_api.__doc__ is not None:
        public_api.__doc__ = public_api.__doc__.replace(
            "${ARRAY_FUNCTION_LIKE}",
            array_function_like_doc,
        )
    return public_api


add_docstring(
    implement_array_function,
    """

    Implement a function with checks for __array_function__ overrides.



    All arguments are required, and can only be passed by position.



    Parameters

    ----------

    implementation : function

        Function that implements the operation on NumPy array without

        overrides when called like ``implementation(*args, **kwargs)``.

    public_api : function

        Function exposed by NumPy's public API originally called like

        ``public_api(*args, **kwargs)`` on which arguments are now being

        checked.

    relevant_args : iterable

        Iterable of arguments to check for __array_function__ methods.

    args : tuple

        Arbitrary positional arguments originally passed into ``public_api``.

    kwargs : dict

        Arbitrary keyword arguments originally passed into ``public_api``.



    Returns

    -------

    Result from calling ``implementation()`` or an ``__array_function__``

    method, as appropriate.



    Raises

    ------

    TypeError : if no implementation is found.

    """)


# exposed for testing purposes; used internally by implement_array_function
add_docstring(
    _get_implementing_args,
    """

    Collect arguments on which to call __array_function__.



    Parameters

    ----------

    relevant_args : iterable of array-like

        Iterable of possibly array-like arguments to check for

        __array_function__ methods.



    Returns

    -------

    Sequence of arguments with __array_function__ methods, in the order in

    which they should be called.

    """)


ArgSpec = collections.namedtuple('ArgSpec', 'args varargs keywords defaults')


def verify_matching_signatures(implementation, dispatcher):
    """Verify that a dispatcher function has the right signature."""
    implementation_spec = ArgSpec(*getargspec(implementation))
    dispatcher_spec = ArgSpec(*getargspec(dispatcher))

    if (implementation_spec.args != dispatcher_spec.args or
            implementation_spec.varargs != dispatcher_spec.varargs or
            implementation_spec.keywords != dispatcher_spec.keywords or
            (bool(implementation_spec.defaults) !=
             bool(dispatcher_spec.defaults)) or
            (implementation_spec.defaults is not None and
             len(implementation_spec.defaults) !=
             len(dispatcher_spec.defaults))):
        raise RuntimeError('implementation and dispatcher for %s have '
                           'different function signatures' % implementation)

    if implementation_spec.defaults is not None:
        if dispatcher_spec.defaults != (None,) * len(dispatcher_spec.defaults):
            raise RuntimeError('dispatcher functions can only use None for '
                               'default argument values')


def set_module(module):
    """Decorator for overriding __module__ on a function or class.



    Example usage::



        @set_module('numpy')

        def example():

            pass



        assert example.__module__ == 'numpy'

    """
    def decorator(func):
        if module is not None:
            func.__module__ = module
        return func
    return decorator



# Call textwrap.dedent here instead of in the function so as to avoid
# calling dedent multiple times on the same text
_wrapped_func_source = textwrap.dedent("""

    @functools.wraps(implementation)

    def {name}(*args, **kwargs):

        relevant_args = dispatcher(*args, **kwargs)

        return implement_array_function(

            implementation, {name}, relevant_args, args, kwargs)

    """)


def array_function_dispatch(dispatcher, module=None, verify=True,

                            docs_from_dispatcher=False):
    """Decorator for adding dispatch with the __array_function__ protocol.



    See NEP-18 for example usage.



    Parameters

    ----------

    dispatcher : callable

        Function that when called like ``dispatcher(*args, **kwargs)`` with

        arguments from the NumPy function call returns an iterable of

        array-like arguments to check for ``__array_function__``.

    module : str, optional

        __module__ attribute to set on new function, e.g., ``module='numpy'``.

        By default, module is copied from the decorated function.

    verify : bool, optional

        If True, verify the that the signature of the dispatcher and decorated

        function signatures match exactly: all required and optional arguments

        should appear in order with the same names, but the default values for

        all optional arguments should be ``None``. Only disable verification

        if the dispatcher's signature needs to deviate for some particular

        reason, e.g., because the function has a signature like

        ``func(*args, **kwargs)``.

    docs_from_dispatcher : bool, optional

        If True, copy docs from the dispatcher function onto the dispatched

        function, rather than from the implementation. This is useful for

        functions defined in C, which otherwise don't have docstrings.



    Returns

    -------

    Function suitable for decorating the implementation of a NumPy function.

    """

    if not ARRAY_FUNCTION_ENABLED:
        def decorator(implementation):
            if docs_from_dispatcher:
                add_docstring(implementation, dispatcher.__doc__)
            if module is not None:
                implementation.__module__ = module
            return implementation
        return decorator

    def decorator(implementation):
        if verify:
            verify_matching_signatures(implementation, dispatcher)

        if docs_from_dispatcher:
            add_docstring(implementation, dispatcher.__doc__)

        # Equivalently, we could define this function directly instead of using
        # exec. This version has the advantage of giving the helper function a
        # more interpettable name. Otherwise, the original function does not
        # show up at all in many cases, e.g., if it's written in C or if the
        # dispatcher gets an invalid keyword argument.
        source = _wrapped_func_source.format(name=implementation.__name__)

        source_object = compile(
            source, filename='<__array_function__ internals>', mode='exec')
        scope = {
            'implementation': implementation,
            'dispatcher': dispatcher,
            'functools': functools,
            'implement_array_function': implement_array_function,
        }
        exec(source_object, scope)

        public_api = scope[implementation.__name__]

        if module is not None:
            public_api.__module__ = module

        public_api._implementation = implementation

        return public_api

    return decorator


def array_function_from_dispatcher(

        implementation, module=None, verify=True, docs_from_dispatcher=True):
    """Like array_function_dispatcher, but with function arguments flipped."""

    def decorator(dispatcher):
        return array_function_dispatch(
            dispatcher, module, verify=verify,
            docs_from_dispatcher=docs_from_dispatcher)(implementation)
    return decorator