Spaces:
Running
Running
File size: 27,302 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 |
"""
Set operations for arrays based on sorting.
Notes
-----
For floating point arrays, inaccurate results may appear due to usual round-off
and floating point comparison issues.
Speed could be gained in some operations by an implementation of
`numpy.sort`, that can provide directly the permutation vectors, thus avoiding
calls to `numpy.argsort`.
Original author: Robert Cimrman
"""
import functools
import numpy as np
from numpy.core import overrides
array_function_dispatch = functools.partial(
overrides.array_function_dispatch, module='numpy')
__all__ = [
'ediff1d', 'intersect1d', 'setxor1d', 'union1d', 'setdiff1d', 'unique',
'in1d', 'isin'
]
def _ediff1d_dispatcher(ary, to_end=None, to_begin=None):
return (ary, to_end, to_begin)
@array_function_dispatch(_ediff1d_dispatcher)
def ediff1d(ary, to_end=None, to_begin=None):
"""
The differences between consecutive elements of an array.
Parameters
----------
ary : array_like
If necessary, will be flattened before the differences are taken.
to_end : array_like, optional
Number(s) to append at the end of the returned differences.
to_begin : array_like, optional
Number(s) to prepend at the beginning of the returned differences.
Returns
-------
ediff1d : ndarray
The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``.
See Also
--------
diff, gradient
Notes
-----
When applied to masked arrays, this function drops the mask information
if the `to_begin` and/or `to_end` parameters are used.
Examples
--------
>>> x = np.array([1, 2, 4, 7, 0])
>>> np.ediff1d(x)
array([ 1, 2, 3, -7])
>>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))
array([-99, 1, 2, ..., -7, 88, 99])
The returned array is always 1D.
>>> y = [[1, 2, 4], [1, 6, 24]]
>>> np.ediff1d(y)
array([ 1, 2, -3, 5, 18])
"""
# force a 1d array
ary = np.asanyarray(ary).ravel()
# enforce that the dtype of `ary` is used for the output
dtype_req = ary.dtype
# fast track default case
if to_begin is None and to_end is None:
return ary[1:] - ary[:-1]
if to_begin is None:
l_begin = 0
else:
to_begin = np.asanyarray(to_begin)
if not np.can_cast(to_begin, dtype_req, casting="same_kind"):
raise TypeError("dtype of `to_begin` must be compatible "
"with input `ary` under the `same_kind` rule.")
to_begin = to_begin.ravel()
l_begin = len(to_begin)
if to_end is None:
l_end = 0
else:
to_end = np.asanyarray(to_end)
if not np.can_cast(to_end, dtype_req, casting="same_kind"):
raise TypeError("dtype of `to_end` must be compatible "
"with input `ary` under the `same_kind` rule.")
to_end = to_end.ravel()
l_end = len(to_end)
# do the calculation in place and copy to_begin and to_end
l_diff = max(len(ary) - 1, 0)
result = np.empty(l_diff + l_begin + l_end, dtype=ary.dtype)
result = ary.__array_wrap__(result)
if l_begin > 0:
result[:l_begin] = to_begin
if l_end > 0:
result[l_begin + l_diff:] = to_end
np.subtract(ary[1:], ary[:-1], result[l_begin:l_begin + l_diff])
return result
def _unpack_tuple(x):
""" Unpacks one-element tuples for use as return values """
if len(x) == 1:
return x[0]
else:
return x
def _unique_dispatcher(ar, return_index=None, return_inverse=None,
return_counts=None, axis=None):
return (ar,)
@array_function_dispatch(_unique_dispatcher)
def unique(ar, return_index=False, return_inverse=False,
return_counts=False, axis=None):
"""
Find the unique elements of an array.
Returns the sorted unique elements of an array. There are three optional
outputs in addition to the unique elements:
* the indices of the input array that give the unique values
* the indices of the unique array that reconstruct the input array
* the number of times each unique value comes up in the input array
Parameters
----------
ar : array_like
Input array. Unless `axis` is specified, this will be flattened if it
is not already 1-D.
return_index : bool, optional
If True, also return the indices of `ar` (along the specified axis,
if provided, or in the flattened array) that result in the unique array.
return_inverse : bool, optional
If True, also return the indices of the unique array (for the specified
axis, if provided) that can be used to reconstruct `ar`.
return_counts : bool, optional
If True, also return the number of times each unique item appears
in `ar`.
.. versionadded:: 1.9.0
axis : int or None, optional
The axis to operate on. If None, `ar` will be flattened. If an integer,
the subarrays indexed by the given axis will be flattened and treated
as the elements of a 1-D array with the dimension of the given axis,
see the notes for more details. Object arrays or structured arrays
that contain objects are not supported if the `axis` kwarg is used. The
default is None.
.. versionadded:: 1.13.0
Returns
-------
unique : ndarray
The sorted unique values.
unique_indices : ndarray, optional
The indices of the first occurrences of the unique values in the
original array. Only provided if `return_index` is True.
unique_inverse : ndarray, optional
The indices to reconstruct the original array from the
unique array. Only provided if `return_inverse` is True.
unique_counts : ndarray, optional
The number of times each of the unique values comes up in the
original array. Only provided if `return_counts` is True.
.. versionadded:: 1.9.0
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
repeat : Repeat elements of an array.
Notes
-----
When an axis is specified the subarrays indexed by the axis are sorted.
This is done by making the specified axis the first dimension of the array
(move the axis to the first dimension to keep the order of the other axes)
and then flattening the subarrays in C order. The flattened subarrays are
then viewed as a structured type with each element given a label, with the
effect that we end up with a 1-D array of structured types that can be
treated in the same way as any other 1-D array. The result is that the
flattened subarrays are sorted in lexicographic order starting with the
first element.
.. versionchanged: NumPy 1.21
If nan values are in the input array, a single nan is put
to the end of the sorted unique values.
Also for complex arrays all NaN values are considered equivalent
(no matter whether the NaN is in the real or imaginary part).
As the representant for the returned array the smallest one in the
lexicographical order is chosen - see np.sort for how the lexicographical
order is defined for complex arrays.
Examples
--------
>>> np.unique([1, 1, 2, 2, 3, 3])
array([1, 2, 3])
>>> a = np.array([[1, 1], [2, 3]])
>>> np.unique(a)
array([1, 2, 3])
Return the unique rows of a 2D array
>>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
>>> np.unique(a, axis=0)
array([[1, 0, 0], [2, 3, 4]])
Return the indices of the original array that give the unique values:
>>> a = np.array(['a', 'b', 'b', 'c', 'a'])
>>> u, indices = np.unique(a, return_index=True)
>>> u
array(['a', 'b', 'c'], dtype='<U1')
>>> indices
array([0, 1, 3])
>>> a[indices]
array(['a', 'b', 'c'], dtype='<U1')
Reconstruct the input array from the unique values and inverse:
>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
>>> u, indices = np.unique(a, return_inverse=True)
>>> u
array([1, 2, 3, 4, 6])
>>> indices
array([0, 1, 4, 3, 1, 2, 1])
>>> u[indices]
array([1, 2, 6, 4, 2, 3, 2])
Reconstruct the input values from the unique values and counts:
>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
>>> values, counts = np.unique(a, return_counts=True)
>>> values
array([1, 2, 3, 4, 6])
>>> counts
array([1, 3, 1, 1, 1])
>>> np.repeat(values, counts)
array([1, 2, 2, 2, 3, 4, 6]) # original order not preserved
"""
ar = np.asanyarray(ar)
if axis is None:
ret = _unique1d(ar, return_index, return_inverse, return_counts)
return _unpack_tuple(ret)
# axis was specified and not None
try:
ar = np.moveaxis(ar, axis, 0)
except np.AxisError:
# this removes the "axis1" or "axis2" prefix from the error message
raise np.AxisError(axis, ar.ndim) from None
# Must reshape to a contiguous 2D array for this to work...
orig_shape, orig_dtype = ar.shape, ar.dtype
ar = ar.reshape(orig_shape[0], np.prod(orig_shape[1:], dtype=np.intp))
ar = np.ascontiguousarray(ar)
dtype = [('f{i}'.format(i=i), ar.dtype) for i in range(ar.shape[1])]
# At this point, `ar` has shape `(n, m)`, and `dtype` is a structured
# data type with `m` fields where each field has the data type of `ar`.
# In the following, we create the array `consolidated`, which has
# shape `(n,)` with data type `dtype`.
try:
if ar.shape[1] > 0:
consolidated = ar.view(dtype)
else:
# If ar.shape[1] == 0, then dtype will be `np.dtype([])`, which is
# a data type with itemsize 0, and the call `ar.view(dtype)` will
# fail. Instead, we'll use `np.empty` to explicitly create the
# array with shape `(len(ar),)`. Because `dtype` in this case has
# itemsize 0, the total size of the result is still 0 bytes.
consolidated = np.empty(len(ar), dtype=dtype)
except TypeError as e:
# There's no good way to do this for object arrays, etc...
msg = 'The axis argument to unique is not supported for dtype {dt}'
raise TypeError(msg.format(dt=ar.dtype)) from e
def reshape_uniq(uniq):
n = len(uniq)
uniq = uniq.view(orig_dtype)
uniq = uniq.reshape(n, *orig_shape[1:])
uniq = np.moveaxis(uniq, 0, axis)
return uniq
output = _unique1d(consolidated, return_index,
return_inverse, return_counts)
output = (reshape_uniq(output[0]),) + output[1:]
return _unpack_tuple(output)
def _unique1d(ar, return_index=False, return_inverse=False,
return_counts=False):
"""
Find the unique elements of an array, ignoring shape.
"""
ar = np.asanyarray(ar).flatten()
optional_indices = return_index or return_inverse
if optional_indices:
perm = ar.argsort(kind='mergesort' if return_index else 'quicksort')
aux = ar[perm]
else:
ar.sort()
aux = ar
mask = np.empty(aux.shape, dtype=np.bool_)
mask[:1] = True
if aux.shape[0] > 0 and aux.dtype.kind in "cfmM" and np.isnan(aux[-1]):
if aux.dtype.kind == "c": # for complex all NaNs are considered equivalent
aux_firstnan = np.searchsorted(np.isnan(aux), True, side='left')
else:
aux_firstnan = np.searchsorted(aux, aux[-1], side='left')
if aux_firstnan > 0:
mask[1:aux_firstnan] = (
aux[1:aux_firstnan] != aux[:aux_firstnan - 1])
mask[aux_firstnan] = True
mask[aux_firstnan + 1:] = False
else:
mask[1:] = aux[1:] != aux[:-1]
ret = (aux[mask],)
if return_index:
ret += (perm[mask],)
if return_inverse:
imask = np.cumsum(mask) - 1
inv_idx = np.empty(mask.shape, dtype=np.intp)
inv_idx[perm] = imask
ret += (inv_idx,)
if return_counts:
idx = np.concatenate(np.nonzero(mask) + ([mask.size],))
ret += (np.diff(idx),)
return ret
def _intersect1d_dispatcher(
ar1, ar2, assume_unique=None, return_indices=None):
return (ar1, ar2)
@array_function_dispatch(_intersect1d_dispatcher)
def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
"""
Find the intersection of two arrays.
Return the sorted, unique values that are in both of the input arrays.
Parameters
----------
ar1, ar2 : array_like
Input arrays. Will be flattened if not already 1D.
assume_unique : bool
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. If True but ``ar1`` or ``ar2`` are not
unique, incorrect results and out-of-bounds indices could result.
Default is False.
return_indices : bool
If True, the indices which correspond to the intersection of the two
arrays are returned. The first instance of a value is used if there are
multiple. Default is False.
.. versionadded:: 1.15.0
Returns
-------
intersect1d : ndarray
Sorted 1D array of common and unique elements.
comm1 : ndarray
The indices of the first occurrences of the common values in `ar1`.
Only provided if `return_indices` is True.
comm2 : ndarray
The indices of the first occurrences of the common values in `ar2`.
Only provided if `return_indices` is True.
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
Examples
--------
>>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])
array([1, 3])
To intersect more than two arrays, use functools.reduce:
>>> from functools import reduce
>>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
array([3])
To return the indices of the values common to the input arrays
along with the intersected values:
>>> x = np.array([1, 1, 2, 3, 4])
>>> y = np.array([2, 1, 4, 6])
>>> xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True)
>>> x_ind, y_ind
(array([0, 2, 4]), array([1, 0, 2]))
>>> xy, x[x_ind], y[y_ind]
(array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4]))
"""
ar1 = np.asanyarray(ar1)
ar2 = np.asanyarray(ar2)
if not assume_unique:
if return_indices:
ar1, ind1 = unique(ar1, return_index=True)
ar2, ind2 = unique(ar2, return_index=True)
else:
ar1 = unique(ar1)
ar2 = unique(ar2)
else:
ar1 = ar1.ravel()
ar2 = ar2.ravel()
aux = np.concatenate((ar1, ar2))
if return_indices:
aux_sort_indices = np.argsort(aux, kind='mergesort')
aux = aux[aux_sort_indices]
else:
aux.sort()
mask = aux[1:] == aux[:-1]
int1d = aux[:-1][mask]
if return_indices:
ar1_indices = aux_sort_indices[:-1][mask]
ar2_indices = aux_sort_indices[1:][mask] - ar1.size
if not assume_unique:
ar1_indices = ind1[ar1_indices]
ar2_indices = ind2[ar2_indices]
return int1d, ar1_indices, ar2_indices
else:
return int1d
def _setxor1d_dispatcher(ar1, ar2, assume_unique=None):
return (ar1, ar2)
@array_function_dispatch(_setxor1d_dispatcher)
def setxor1d(ar1, ar2, assume_unique=False):
"""
Find the set exclusive-or of two arrays.
Return the sorted, unique values that are in only one (not both) of the
input arrays.
Parameters
----------
ar1, ar2 : array_like
Input arrays.
assume_unique : bool
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.
Returns
-------
setxor1d : ndarray
Sorted 1D array of unique values that are in only one of the input
arrays.
Examples
--------
>>> a = np.array([1, 2, 3, 2, 4])
>>> b = np.array([2, 3, 5, 7, 5])
>>> np.setxor1d(a,b)
array([1, 4, 5, 7])
"""
if not assume_unique:
ar1 = unique(ar1)
ar2 = unique(ar2)
aux = np.concatenate((ar1, ar2))
if aux.size == 0:
return aux
aux.sort()
flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
return aux[flag[1:] & flag[:-1]]
def _in1d_dispatcher(ar1, ar2, assume_unique=None, invert=None):
return (ar1, ar2)
@array_function_dispatch(_in1d_dispatcher)
def in1d(ar1, ar2, assume_unique=False, invert=False):
"""
Test whether each element of a 1-D array is also present in a second array.
Returns a boolean array the same length as `ar1` that is True
where an element of `ar1` is in `ar2` and False otherwise.
We recommend using :func:`isin` instead of `in1d` for new code.
Parameters
----------
ar1 : (M,) array_like
Input array.
ar2 : array_like
The values against which to test each value of `ar1`.
assume_unique : bool, optional
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.
invert : bool, optional
If True, the values in the returned array are inverted (that is,
False where an element of `ar1` is in `ar2` and True otherwise).
Default is False. ``np.in1d(a, b, invert=True)`` is equivalent
to (but is faster than) ``np.invert(in1d(a, b))``.
.. versionadded:: 1.8.0
Returns
-------
in1d : (M,) ndarray, bool
The values `ar1[in1d]` are in `ar2`.
See Also
--------
isin : Version of this function that preserves the
shape of ar1.
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
Notes
-----
`in1d` can be considered as an element-wise function version of the
python keyword `in`, for 1-D sequences. ``in1d(a, b)`` is roughly
equivalent to ``np.array([item in b for item in a])``.
However, this idea fails if `ar2` is a set, or similar (non-sequence)
container: As ``ar2`` is converted to an array, in those cases
``asarray(ar2)`` is an object array rather than the expected array of
contained values.
.. versionadded:: 1.4.0
Examples
--------
>>> test = np.array([0, 1, 2, 5, 0])
>>> states = [0, 2]
>>> mask = np.in1d(test, states)
>>> mask
array([ True, False, True, False, True])
>>> test[mask]
array([0, 2, 0])
>>> mask = np.in1d(test, states, invert=True)
>>> mask
array([False, True, False, True, False])
>>> test[mask]
array([1, 5])
"""
# Ravel both arrays, behavior for the first array could be different
ar1 = np.asarray(ar1).ravel()
ar2 = np.asarray(ar2).ravel()
# Ensure that iteration through object arrays yields size-1 arrays
if ar2.dtype == object:
ar2 = ar2.reshape(-1, 1)
# Check if one of the arrays may contain arbitrary objects
contains_object = ar1.dtype.hasobject or ar2.dtype.hasobject
# This code is run when
# a) the first condition is true, making the code significantly faster
# b) the second condition is true (i.e. `ar1` or `ar2` may contain
# arbitrary objects), since then sorting is not guaranteed to work
if len(ar2) < 10 * len(ar1) ** 0.145 or contains_object:
if invert:
mask = np.ones(len(ar1), dtype=bool)
for a in ar2:
mask &= (ar1 != a)
else:
mask = np.zeros(len(ar1), dtype=bool)
for a in ar2:
mask |= (ar1 == a)
return mask
# Otherwise use sorting
if not assume_unique:
ar1, rev_idx = np.unique(ar1, return_inverse=True)
ar2 = np.unique(ar2)
ar = np.concatenate((ar1, ar2))
# We need this to be a stable sort, so always use 'mergesort'
# here. The values from the first array should always come before
# the values from the second array.
order = ar.argsort(kind='mergesort')
sar = ar[order]
if invert:
bool_ar = (sar[1:] != sar[:-1])
else:
bool_ar = (sar[1:] == sar[:-1])
flag = np.concatenate((bool_ar, [invert]))
ret = np.empty(ar.shape, dtype=bool)
ret[order] = flag
if assume_unique:
return ret[:len(ar1)]
else:
return ret[rev_idx]
def _isin_dispatcher(element, test_elements, assume_unique=None, invert=None):
return (element, test_elements)
@array_function_dispatch(_isin_dispatcher)
def isin(element, test_elements, assume_unique=False, invert=False):
"""
Calculates `element in test_elements`, broadcasting over `element` only.
Returns a boolean array of the same shape as `element` that is True
where an element of `element` is in `test_elements` and False otherwise.
Parameters
----------
element : array_like
Input array.
test_elements : array_like
The values against which to test each value of `element`.
This argument is flattened if it is an array or array_like.
See notes for behavior with non-array-like parameters.
assume_unique : bool, optional
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.
invert : bool, optional
If True, the values in the returned array are inverted, as if
calculating `element not in test_elements`. Default is False.
``np.isin(a, b, invert=True)`` is equivalent to (but faster
than) ``np.invert(np.isin(a, b))``.
Returns
-------
isin : ndarray, bool
Has the same shape as `element`. The values `element[isin]`
are in `test_elements`.
See Also
--------
in1d : Flattened version of this function.
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
Notes
-----
`isin` is an element-wise function version of the python keyword `in`.
``isin(a, b)`` is roughly equivalent to
``np.array([item in b for item in a])`` if `a` and `b` are 1-D sequences.
`element` and `test_elements` are converted to arrays if they are not
already. If `test_elements` is a set (or other non-sequence collection)
it will be converted to an object array with one element, rather than an
array of the values contained in `test_elements`. This is a consequence
of the `array` constructor's way of handling non-sequence collections.
Converting the set to a list usually gives the desired behavior.
.. versionadded:: 1.13.0
Examples
--------
>>> element = 2*np.arange(4).reshape((2, 2))
>>> element
array([[0, 2],
[4, 6]])
>>> test_elements = [1, 2, 4, 8]
>>> mask = np.isin(element, test_elements)
>>> mask
array([[False, True],
[ True, False]])
>>> element[mask]
array([2, 4])
The indices of the matched values can be obtained with `nonzero`:
>>> np.nonzero(mask)
(array([0, 1]), array([1, 0]))
The test can also be inverted:
>>> mask = np.isin(element, test_elements, invert=True)
>>> mask
array([[ True, False],
[False, True]])
>>> element[mask]
array([0, 6])
Because of how `array` handles sets, the following does not
work as expected:
>>> test_set = {1, 2, 4, 8}
>>> np.isin(element, test_set)
array([[False, False],
[False, False]])
Casting the set to a list gives the expected result:
>>> np.isin(element, list(test_set))
array([[False, True],
[ True, False]])
"""
element = np.asarray(element)
return in1d(element, test_elements, assume_unique=assume_unique,
invert=invert).reshape(element.shape)
def _union1d_dispatcher(ar1, ar2):
return (ar1, ar2)
@array_function_dispatch(_union1d_dispatcher)
def union1d(ar1, ar2):
"""
Find the union of two arrays.
Return the unique, sorted array of values that are in either of the two
input arrays.
Parameters
----------
ar1, ar2 : array_like
Input arrays. They are flattened if they are not already 1D.
Returns
-------
union1d : ndarray
Unique, sorted union of the input arrays.
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
Examples
--------
>>> np.union1d([-1, 0, 1], [-2, 0, 2])
array([-2, -1, 0, 1, 2])
To find the union of more than two arrays, use functools.reduce:
>>> from functools import reduce
>>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
array([1, 2, 3, 4, 6])
"""
return unique(np.concatenate((ar1, ar2), axis=None))
def _setdiff1d_dispatcher(ar1, ar2, assume_unique=None):
return (ar1, ar2)
@array_function_dispatch(_setdiff1d_dispatcher)
def setdiff1d(ar1, ar2, assume_unique=False):
"""
Find the set difference of two arrays.
Return the unique values in `ar1` that are not in `ar2`.
Parameters
----------
ar1 : array_like
Input array.
ar2 : array_like
Input comparison array.
assume_unique : bool
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.
Returns
-------
setdiff1d : ndarray
1D array of values in `ar1` that are not in `ar2`. The result
is sorted when `assume_unique=False`, but otherwise only sorted
if the input is sorted.
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
Examples
--------
>>> a = np.array([1, 2, 3, 2, 4, 1])
>>> b = np.array([3, 4, 5, 6])
>>> np.setdiff1d(a, b)
array([1, 2])
"""
if assume_unique:
ar1 = np.asarray(ar1).ravel()
else:
ar1 = unique(ar1)
ar2 = unique(ar2)
return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)]
|