File size: 7,282 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""

A buffered iterator for big arrays.



This module solves the problem of iterating over a big file-based array

without having to read it into memory. The `Arrayterator` class wraps

an array object, and when iterated it will return sub-arrays with at most

a user-specified number of elements.



"""
from operator import mul
from functools import reduce

__all__ = ['Arrayterator']


class Arrayterator:
    """

    Buffered iterator for big arrays.



    `Arrayterator` creates a buffered iterator for reading big arrays in small

    contiguous blocks. The class is useful for objects stored in the

    file system. It allows iteration over the object *without* reading

    everything in memory; instead, small blocks are read and iterated over.



    `Arrayterator` can be used with any object that supports multidimensional

    slices. This includes NumPy arrays, but also variables from

    Scientific.IO.NetCDF or pynetcdf for example.



    Parameters

    ----------

    var : array_like

        The object to iterate over.

    buf_size : int, optional

        The buffer size. If `buf_size` is supplied, the maximum amount of

        data that will be read into memory is `buf_size` elements.

        Default is None, which will read as many element as possible

        into memory.



    Attributes

    ----------

    var

    buf_size

    start

    stop

    step

    shape

    flat



    See Also

    --------

    ndenumerate : Multidimensional array iterator.

    flatiter : Flat array iterator.

    memmap : Create a memory-map to an array stored in a binary file on disk.



    Notes

    -----

    The algorithm works by first finding a "running dimension", along which

    the blocks will be extracted. Given an array of dimensions

    ``(d1, d2, ..., dn)``, e.g. if `buf_size` is smaller than ``d1``, the

    first dimension will be used. If, on the other hand,

    ``d1 < buf_size < d1*d2`` the second dimension will be used, and so on.

    Blocks are extracted along this dimension, and when the last block is

    returned the process continues from the next dimension, until all

    elements have been read.



    Examples

    --------

    >>> a = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6)

    >>> a_itor = np.lib.Arrayterator(a, 2)

    >>> a_itor.shape

    (3, 4, 5, 6)



    Now we can iterate over ``a_itor``, and it will return arrays of size

    two. Since `buf_size` was smaller than any dimension, the first

    dimension will be iterated over first:



    >>> for subarr in a_itor:

    ...     if not subarr.all():

    ...         print(subarr, subarr.shape) # doctest: +SKIP

    >>> # [[[[0 1]]]] (1, 1, 1, 2)



    """

    def __init__(self, var, buf_size=None):
        self.var = var
        self.buf_size = buf_size

        self.start = [0 for dim in var.shape]
        self.stop = [dim for dim in var.shape]
        self.step = [1 for dim in var.shape]

    def __getattr__(self, attr):
        return getattr(self.var, attr)

    def __getitem__(self, index):
        """

        Return a new arrayterator.



        """
        # Fix index, handling ellipsis and incomplete slices.
        if not isinstance(index, tuple):
            index = (index,)
        fixed = []
        length, dims = len(index), self.ndim
        for slice_ in index:
            if slice_ is Ellipsis:
                fixed.extend([slice(None)] * (dims-length+1))
                length = len(fixed)
            elif isinstance(slice_, int):
                fixed.append(slice(slice_, slice_+1, 1))
            else:
                fixed.append(slice_)
        index = tuple(fixed)
        if len(index) < dims:
            index += (slice(None),) * (dims-len(index))

        # Return a new arrayterator object.
        out = self.__class__(self.var, self.buf_size)
        for i, (start, stop, step, slice_) in enumerate(
                zip(self.start, self.stop, self.step, index)):
            out.start[i] = start + (slice_.start or 0)
            out.step[i] = step * (slice_.step or 1)
            out.stop[i] = start + (slice_.stop or stop-start)
            out.stop[i] = min(stop, out.stop[i])
        return out

    def __array__(self):
        """

        Return corresponding data.



        """
        slice_ = tuple(slice(*t) for t in zip(
                self.start, self.stop, self.step))
        return self.var[slice_]

    @property
    def flat(self):
        """

        A 1-D flat iterator for Arrayterator objects.



        This iterator returns elements of the array to be iterated over in

        `Arrayterator` one by one. It is similar to `flatiter`.



        See Also

        --------

        Arrayterator

        flatiter



        Examples

        --------

        >>> a = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6)

        >>> a_itor = np.lib.Arrayterator(a, 2)



        >>> for subarr in a_itor.flat:

        ...     if not subarr:

        ...         print(subarr, type(subarr))

        ...

        0 <class 'numpy.int64'>



        """
        for block in self:
            yield from block.flat

    @property
    def shape(self):
        """

        The shape of the array to be iterated over.



        For an example, see `Arrayterator`.



        """
        return tuple(((stop-start-1)//step+1) for start, stop, step in
                zip(self.start, self.stop, self.step))

    def __iter__(self):
        # Skip arrays with degenerate dimensions
        if [dim for dim in self.shape if dim <= 0]:
            return

        start = self.start[:]
        stop = self.stop[:]
        step = self.step[:]
        ndims = self.var.ndim

        while True:
            count = self.buf_size or reduce(mul, self.shape)

            # iterate over each dimension, looking for the
            # running dimension (ie, the dimension along which
            # the blocks will be built from)
            rundim = 0
            for i in range(ndims-1, -1, -1):
                # if count is zero we ran out of elements to read
                # along higher dimensions, so we read only a single position
                if count == 0:
                    stop[i] = start[i]+1
                elif count <= self.shape[i]:
                    # limit along this dimension
                    stop[i] = start[i] + count*step[i]
                    rundim = i
                else:
                    # read everything along this dimension
                    stop[i] = self.stop[i]
                stop[i] = min(self.stop[i], stop[i])
                count = count//self.shape[i]

            # yield a block
            slice_ = tuple(slice(*t) for t in zip(start, stop, step))
            yield self.var[slice_]

            # Update start position, taking care of overflow to
            # other dimensions
            start[rundim] = stop[rundim]  # start where we stopped
            for i in range(ndims-1, 0, -1):
                if start[i] >= self.stop[i]:
                    start[i] = self.start[i]
                    start[i-1] += self.step[i-1]
            if start[0] >= self.stop[0]:
                return