File size: 7,228 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
"""Mixin classes for custom array types that don't inherit from ndarray."""
from numpy.core import umath as um


__all__ = ['NDArrayOperatorsMixin']


def _disables_array_ufunc(obj):
    """True when __array_ufunc__ is set to None."""
    try:
        return obj.__array_ufunc__ is None
    except AttributeError:
        return False


def _binary_method(ufunc, name):
    """Implement a forward binary method with a ufunc, e.g., __add__."""
    def func(self, other):
        if _disables_array_ufunc(other):
            return NotImplemented
        return ufunc(self, other)
    func.__name__ = '__{}__'.format(name)
    return func


def _reflected_binary_method(ufunc, name):
    """Implement a reflected binary method with a ufunc, e.g., __radd__."""
    def func(self, other):
        if _disables_array_ufunc(other):
            return NotImplemented
        return ufunc(other, self)
    func.__name__ = '__r{}__'.format(name)
    return func


def _inplace_binary_method(ufunc, name):
    """Implement an in-place binary method with a ufunc, e.g., __iadd__."""
    def func(self, other):
        return ufunc(self, other, out=(self,))
    func.__name__ = '__i{}__'.format(name)
    return func


def _numeric_methods(ufunc, name):
    """Implement forward, reflected and inplace binary methods with a ufunc."""
    return (_binary_method(ufunc, name),
            _reflected_binary_method(ufunc, name),
            _inplace_binary_method(ufunc, name))


def _unary_method(ufunc, name):
    """Implement a unary special method with a ufunc."""
    def func(self):
        return ufunc(self)
    func.__name__ = '__{}__'.format(name)
    return func


class NDArrayOperatorsMixin:
    """Mixin defining all operator special methods using __array_ufunc__.



    This class implements the special methods for almost all of Python's

    builtin operators defined in the `operator` module, including comparisons

    (``==``, ``>``, etc.) and arithmetic (``+``, ``*``, ``-``, etc.), by

    deferring to the ``__array_ufunc__`` method, which subclasses must

    implement.



    It is useful for writing classes that do not inherit from `numpy.ndarray`,

    but that should support arithmetic and numpy universal functions like

    arrays as described in `A Mechanism for Overriding Ufuncs

    <https://numpy.org/neps/nep-0013-ufunc-overrides.html>`_.



    As an trivial example, consider this implementation of an ``ArrayLike``

    class that simply wraps a NumPy array and ensures that the result of any

    arithmetic operation is also an ``ArrayLike`` object::



        class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin):

            def __init__(self, value):

                self.value = np.asarray(value)



            # One might also consider adding the built-in list type to this

            # list, to support operations like np.add(array_like, list)

            _HANDLED_TYPES = (np.ndarray, numbers.Number)



            def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):

                out = kwargs.get('out', ())

                for x in inputs + out:

                    # Only support operations with instances of _HANDLED_TYPES.

                    # Use ArrayLike instead of type(self) for isinstance to

                    # allow subclasses that don't override __array_ufunc__ to

                    # handle ArrayLike objects.

                    if not isinstance(x, self._HANDLED_TYPES + (ArrayLike,)):

                        return NotImplemented



                # Defer to the implementation of the ufunc on unwrapped values.

                inputs = tuple(x.value if isinstance(x, ArrayLike) else x

                               for x in inputs)

                if out:

                    kwargs['out'] = tuple(

                        x.value if isinstance(x, ArrayLike) else x

                        for x in out)

                result = getattr(ufunc, method)(*inputs, **kwargs)



                if type(result) is tuple:

                    # multiple return values

                    return tuple(type(self)(x) for x in result)

                elif method == 'at':

                    # no return value

                    return None

                else:

                    # one return value

                    return type(self)(result)



            def __repr__(self):

                return '%s(%r)' % (type(self).__name__, self.value)



    In interactions between ``ArrayLike`` objects and numbers or numpy arrays,

    the result is always another ``ArrayLike``:



        >>> x = ArrayLike([1, 2, 3])

        >>> x - 1

        ArrayLike(array([0, 1, 2]))

        >>> 1 - x

        ArrayLike(array([ 0, -1, -2]))

        >>> np.arange(3) - x

        ArrayLike(array([-1, -1, -1]))

        >>> x - np.arange(3)

        ArrayLike(array([1, 1, 1]))



    Note that unlike ``numpy.ndarray``, ``ArrayLike`` does not allow operations

    with arbitrary, unrecognized types. This ensures that interactions with

    ArrayLike preserve a well-defined casting hierarchy.



    .. versionadded:: 1.13

    """
    # Like np.ndarray, this mixin class implements "Option 1" from the ufunc
    # overrides NEP.

    # comparisons don't have reflected and in-place versions
    __lt__ = _binary_method(um.less, 'lt')
    __le__ = _binary_method(um.less_equal, 'le')
    __eq__ = _binary_method(um.equal, 'eq')
    __ne__ = _binary_method(um.not_equal, 'ne')
    __gt__ = _binary_method(um.greater, 'gt')
    __ge__ = _binary_method(um.greater_equal, 'ge')

    # numeric methods
    __add__, __radd__, __iadd__ = _numeric_methods(um.add, 'add')
    __sub__, __rsub__, __isub__ = _numeric_methods(um.subtract, 'sub')
    __mul__, __rmul__, __imul__ = _numeric_methods(um.multiply, 'mul')
    __matmul__, __rmatmul__, __imatmul__ = _numeric_methods(
        um.matmul, 'matmul')
    # Python 3 does not use __div__, __rdiv__, or __idiv__
    __truediv__, __rtruediv__, __itruediv__ = _numeric_methods(
        um.true_divide, 'truediv')
    __floordiv__, __rfloordiv__, __ifloordiv__ = _numeric_methods(
        um.floor_divide, 'floordiv')
    __mod__, __rmod__, __imod__ = _numeric_methods(um.remainder, 'mod')
    __divmod__ = _binary_method(um.divmod, 'divmod')
    __rdivmod__ = _reflected_binary_method(um.divmod, 'divmod')
    # __idivmod__ does not exist
    # TODO: handle the optional third argument for __pow__?
    __pow__, __rpow__, __ipow__ = _numeric_methods(um.power, 'pow')
    __lshift__, __rlshift__, __ilshift__ = _numeric_methods(
        um.left_shift, 'lshift')
    __rshift__, __rrshift__, __irshift__ = _numeric_methods(
        um.right_shift, 'rshift')
    __and__, __rand__, __iand__ = _numeric_methods(um.bitwise_and, 'and')
    __xor__, __rxor__, __ixor__ = _numeric_methods(um.bitwise_xor, 'xor')
    __or__, __ror__, __ior__ = _numeric_methods(um.bitwise_or, 'or')

    # unary methods
    __neg__ = _unary_method(um.negative, 'neg')
    __pos__ = _unary_method(um.positive, 'pos')
    __abs__ = _unary_method(um.absolute, 'abs')
    __invert__ = _unary_method(um.invert, 'invert')