Spaces:
Running
Running
File size: 53,938 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 |
"""
===================================================================
HermiteE Series, "Probabilists" (:mod:`numpy.polynomial.hermite_e`)
===================================================================
This module provides a number of objects (mostly functions) useful for
dealing with Hermite_e series, including a `HermiteE` class that
encapsulates the usual arithmetic operations. (General information
on how this module represents and works with such polynomials is in the
docstring for its "parent" sub-package, `numpy.polynomial`).
Classes
-------
.. autosummary::
:toctree: generated/
HermiteE
Constants
---------
.. autosummary::
:toctree: generated/
hermedomain
hermezero
hermeone
hermex
Arithmetic
----------
.. autosummary::
:toctree: generated/
hermeadd
hermesub
hermemulx
hermemul
hermediv
hermepow
hermeval
hermeval2d
hermeval3d
hermegrid2d
hermegrid3d
Calculus
--------
.. autosummary::
:toctree: generated/
hermeder
hermeint
Misc Functions
--------------
.. autosummary::
:toctree: generated/
hermefromroots
hermeroots
hermevander
hermevander2d
hermevander3d
hermegauss
hermeweight
hermecompanion
hermefit
hermetrim
hermeline
herme2poly
poly2herme
See also
--------
`numpy.polynomial`
"""
import numpy as np
import numpy.linalg as la
from numpy.core.multiarray import normalize_axis_index
from . import polyutils as pu
from ._polybase import ABCPolyBase
__all__ = [
'hermezero', 'hermeone', 'hermex', 'hermedomain', 'hermeline',
'hermeadd', 'hermesub', 'hermemulx', 'hermemul', 'hermediv',
'hermepow', 'hermeval', 'hermeder', 'hermeint', 'herme2poly',
'poly2herme', 'hermefromroots', 'hermevander', 'hermefit', 'hermetrim',
'hermeroots', 'HermiteE', 'hermeval2d', 'hermeval3d', 'hermegrid2d',
'hermegrid3d', 'hermevander2d', 'hermevander3d', 'hermecompanion',
'hermegauss', 'hermeweight']
hermetrim = pu.trimcoef
def poly2herme(pol):
"""
poly2herme(pol)
Convert a polynomial to a Hermite series.
Convert an array representing the coefficients of a polynomial (relative
to the "standard" basis) ordered from lowest degree to highest, to an
array of the coefficients of the equivalent Hermite series, ordered
from lowest to highest degree.
Parameters
----------
pol : array_like
1-D array containing the polynomial coefficients
Returns
-------
c : ndarray
1-D array containing the coefficients of the equivalent Hermite
series.
See Also
--------
herme2poly
Notes
-----
The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.
Examples
--------
>>> from numpy.polynomial.hermite_e import poly2herme
>>> poly2herme(np.arange(4))
array([ 2., 10., 2., 3.])
"""
[pol] = pu.as_series([pol])
deg = len(pol) - 1
res = 0
for i in range(deg, -1, -1):
res = hermeadd(hermemulx(res), pol[i])
return res
def herme2poly(c):
"""
Convert a Hermite series to a polynomial.
Convert an array representing the coefficients of a Hermite series,
ordered from lowest degree to highest, to an array of the coefficients
of the equivalent polynomial (relative to the "standard" basis) ordered
from lowest to highest degree.
Parameters
----------
c : array_like
1-D array containing the Hermite series coefficients, ordered
from lowest order term to highest.
Returns
-------
pol : ndarray
1-D array containing the coefficients of the equivalent polynomial
(relative to the "standard" basis) ordered from lowest order term
to highest.
See Also
--------
poly2herme
Notes
-----
The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.
Examples
--------
>>> from numpy.polynomial.hermite_e import herme2poly
>>> herme2poly([ 2., 10., 2., 3.])
array([0., 1., 2., 3.])
"""
from .polynomial import polyadd, polysub, polymulx
[c] = pu.as_series([c])
n = len(c)
if n == 1:
return c
if n == 2:
return c
else:
c0 = c[-2]
c1 = c[-1]
# i is the current degree of c1
for i in range(n - 1, 1, -1):
tmp = c0
c0 = polysub(c[i - 2], c1*(i - 1))
c1 = polyadd(tmp, polymulx(c1))
return polyadd(c0, polymulx(c1))
#
# These are constant arrays are of integer type so as to be compatible
# with the widest range of other types, such as Decimal.
#
# Hermite
hermedomain = np.array([-1, 1])
# Hermite coefficients representing zero.
hermezero = np.array([0])
# Hermite coefficients representing one.
hermeone = np.array([1])
# Hermite coefficients representing the identity x.
hermex = np.array([0, 1])
def hermeline(off, scl):
"""
Hermite series whose graph is a straight line.
Parameters
----------
off, scl : scalars
The specified line is given by ``off + scl*x``.
Returns
-------
y : ndarray
This module's representation of the Hermite series for
``off + scl*x``.
See Also
--------
numpy.polynomial.polynomial.polyline
numpy.polynomial.chebyshev.chebline
numpy.polynomial.legendre.legline
numpy.polynomial.laguerre.lagline
numpy.polynomial.hermite.hermline
Examples
--------
>>> from numpy.polynomial.hermite_e import hermeline
>>> from numpy.polynomial.hermite_e import hermeline, hermeval
>>> hermeval(0,hermeline(3, 2))
3.0
>>> hermeval(1,hermeline(3, 2))
5.0
"""
if scl != 0:
return np.array([off, scl])
else:
return np.array([off])
def hermefromroots(roots):
"""
Generate a HermiteE series with given roots.
The function returns the coefficients of the polynomial
.. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
in HermiteE form, where the `r_n` are the roots specified in `roots`.
If a zero has multiplicity n, then it must appear in `roots` n times.
For instance, if 2 is a root of multiplicity three and 3 is a root of
multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The
roots can appear in any order.
If the returned coefficients are `c`, then
.. math:: p(x) = c_0 + c_1 * He_1(x) + ... + c_n * He_n(x)
The coefficient of the last term is not generally 1 for monic
polynomials in HermiteE form.
Parameters
----------
roots : array_like
Sequence containing the roots.
Returns
-------
out : ndarray
1-D array of coefficients. If all roots are real then `out` is a
real array, if some of the roots are complex, then `out` is complex
even if all the coefficients in the result are real (see Examples
below).
See Also
--------
numpy.polynomial.polynomial.polyfromroots
numpy.polynomial.legendre.legfromroots
numpy.polynomial.laguerre.lagfromroots
numpy.polynomial.hermite.hermfromroots
numpy.polynomial.chebyshev.chebfromroots
Examples
--------
>>> from numpy.polynomial.hermite_e import hermefromroots, hermeval
>>> coef = hermefromroots((-1, 0, 1))
>>> hermeval((-1, 0, 1), coef)
array([0., 0., 0.])
>>> coef = hermefromroots((-1j, 1j))
>>> hermeval((-1j, 1j), coef)
array([0.+0.j, 0.+0.j])
"""
return pu._fromroots(hermeline, hermemul, roots)
def hermeadd(c1, c2):
"""
Add one Hermite series to another.
Returns the sum of two Hermite series `c1` + `c2`. The arguments
are sequences of coefficients ordered from lowest order term to
highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
Parameters
----------
c1, c2 : array_like
1-D arrays of Hermite series coefficients ordered from low to
high.
Returns
-------
out : ndarray
Array representing the Hermite series of their sum.
See Also
--------
hermesub, hermemulx, hermemul, hermediv, hermepow
Notes
-----
Unlike multiplication, division, etc., the sum of two Hermite series
is a Hermite series (without having to "reproject" the result onto
the basis set) so addition, just like that of "standard" polynomials,
is simply "component-wise."
Examples
--------
>>> from numpy.polynomial.hermite_e import hermeadd
>>> hermeadd([1, 2, 3], [1, 2, 3, 4])
array([2., 4., 6., 4.])
"""
return pu._add(c1, c2)
def hermesub(c1, c2):
"""
Subtract one Hermite series from another.
Returns the difference of two Hermite series `c1` - `c2`. The
sequences of coefficients are from lowest order term to highest, i.e.,
[1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
Parameters
----------
c1, c2 : array_like
1-D arrays of Hermite series coefficients ordered from low to
high.
Returns
-------
out : ndarray
Of Hermite series coefficients representing their difference.
See Also
--------
hermeadd, hermemulx, hermemul, hermediv, hermepow
Notes
-----
Unlike multiplication, division, etc., the difference of two Hermite
series is a Hermite series (without having to "reproject" the result
onto the basis set) so subtraction, just like that of "standard"
polynomials, is simply "component-wise."
Examples
--------
>>> from numpy.polynomial.hermite_e import hermesub
>>> hermesub([1, 2, 3, 4], [1, 2, 3])
array([0., 0., 0., 4.])
"""
return pu._sub(c1, c2)
def hermemulx(c):
"""Multiply a Hermite series by x.
Multiply the Hermite series `c` by x, where x is the independent
variable.
Parameters
----------
c : array_like
1-D array of Hermite series coefficients ordered from low to
high.
Returns
-------
out : ndarray
Array representing the result of the multiplication.
Notes
-----
The multiplication uses the recursion relationship for Hermite
polynomials in the form
.. math::
xP_i(x) = (P_{i + 1}(x) + iP_{i - 1}(x)))
Examples
--------
>>> from numpy.polynomial.hermite_e import hermemulx
>>> hermemulx([1, 2, 3])
array([2., 7., 2., 3.])
"""
# c is a trimmed copy
[c] = pu.as_series([c])
# The zero series needs special treatment
if len(c) == 1 and c[0] == 0:
return c
prd = np.empty(len(c) + 1, dtype=c.dtype)
prd[0] = c[0]*0
prd[1] = c[0]
for i in range(1, len(c)):
prd[i + 1] = c[i]
prd[i - 1] += c[i]*i
return prd
def hermemul(c1, c2):
"""
Multiply one Hermite series by another.
Returns the product of two Hermite series `c1` * `c2`. The arguments
are sequences of coefficients, from lowest order "term" to highest,
e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
Parameters
----------
c1, c2 : array_like
1-D arrays of Hermite series coefficients ordered from low to
high.
Returns
-------
out : ndarray
Of Hermite series coefficients representing their product.
See Also
--------
hermeadd, hermesub, hermemulx, hermediv, hermepow
Notes
-----
In general, the (polynomial) product of two C-series results in terms
that are not in the Hermite polynomial basis set. Thus, to express
the product as a Hermite series, it is necessary to "reproject" the
product onto said basis set, which may produce "unintuitive" (but
correct) results; see Examples section below.
Examples
--------
>>> from numpy.polynomial.hermite_e import hermemul
>>> hermemul([1, 2, 3], [0, 1, 2])
array([14., 15., 28., 7., 6.])
"""
# s1, s2 are trimmed copies
[c1, c2] = pu.as_series([c1, c2])
if len(c1) > len(c2):
c = c2
xs = c1
else:
c = c1
xs = c2
if len(c) == 1:
c0 = c[0]*xs
c1 = 0
elif len(c) == 2:
c0 = c[0]*xs
c1 = c[1]*xs
else:
nd = len(c)
c0 = c[-2]*xs
c1 = c[-1]*xs
for i in range(3, len(c) + 1):
tmp = c0
nd = nd - 1
c0 = hermesub(c[-i]*xs, c1*(nd - 1))
c1 = hermeadd(tmp, hermemulx(c1))
return hermeadd(c0, hermemulx(c1))
def hermediv(c1, c2):
"""
Divide one Hermite series by another.
Returns the quotient-with-remainder of two Hermite series
`c1` / `c2`. The arguments are sequences of coefficients from lowest
order "term" to highest, e.g., [1,2,3] represents the series
``P_0 + 2*P_1 + 3*P_2``.
Parameters
----------
c1, c2 : array_like
1-D arrays of Hermite series coefficients ordered from low to
high.
Returns
-------
[quo, rem] : ndarrays
Of Hermite series coefficients representing the quotient and
remainder.
See Also
--------
hermeadd, hermesub, hermemulx, hermemul, hermepow
Notes
-----
In general, the (polynomial) division of one Hermite series by another
results in quotient and remainder terms that are not in the Hermite
polynomial basis set. Thus, to express these results as a Hermite
series, it is necessary to "reproject" the results onto the Hermite
basis set, which may produce "unintuitive" (but correct) results; see
Examples section below.
Examples
--------
>>> from numpy.polynomial.hermite_e import hermediv
>>> hermediv([ 14., 15., 28., 7., 6.], [0, 1, 2])
(array([1., 2., 3.]), array([0.]))
>>> hermediv([ 15., 17., 28., 7., 6.], [0, 1, 2])
(array([1., 2., 3.]), array([1., 2.]))
"""
return pu._div(hermemul, c1, c2)
def hermepow(c, pow, maxpower=16):
"""Raise a Hermite series to a power.
Returns the Hermite series `c` raised to the power `pow`. The
argument `c` is a sequence of coefficients ordered from low to high.
i.e., [1,2,3] is the series ``P_0 + 2*P_1 + 3*P_2.``
Parameters
----------
c : array_like
1-D array of Hermite series coefficients ordered from low to
high.
pow : integer
Power to which the series will be raised
maxpower : integer, optional
Maximum power allowed. This is mainly to limit growth of the series
to unmanageable size. Default is 16
Returns
-------
coef : ndarray
Hermite series of power.
See Also
--------
hermeadd, hermesub, hermemulx, hermemul, hermediv
Examples
--------
>>> from numpy.polynomial.hermite_e import hermepow
>>> hermepow([1, 2, 3], 2)
array([23., 28., 46., 12., 9.])
"""
return pu._pow(hermemul, c, pow, maxpower)
def hermeder(c, m=1, scl=1, axis=0):
"""
Differentiate a Hermite_e series.
Returns the series coefficients `c` differentiated `m` times along
`axis`. At each iteration the result is multiplied by `scl` (the
scaling factor is for use in a linear change of variable). The argument
`c` is an array of coefficients from low to high degree along each
axis, e.g., [1,2,3] represents the series ``1*He_0 + 2*He_1 + 3*He_2``
while [[1,2],[1,2]] represents ``1*He_0(x)*He_0(y) + 1*He_1(x)*He_0(y)
+ 2*He_0(x)*He_1(y) + 2*He_1(x)*He_1(y)`` if axis=0 is ``x`` and axis=1
is ``y``.
Parameters
----------
c : array_like
Array of Hermite_e series coefficients. If `c` is multidimensional
the different axis correspond to different variables with the
degree in each axis given by the corresponding index.
m : int, optional
Number of derivatives taken, must be non-negative. (Default: 1)
scl : scalar, optional
Each differentiation is multiplied by `scl`. The end result is
multiplication by ``scl**m``. This is for use in a linear change of
variable. (Default: 1)
axis : int, optional
Axis over which the derivative is taken. (Default: 0).
.. versionadded:: 1.7.0
Returns
-------
der : ndarray
Hermite series of the derivative.
See Also
--------
hermeint
Notes
-----
In general, the result of differentiating a Hermite series does not
resemble the same operation on a power series. Thus the result of this
function may be "unintuitive," albeit correct; see Examples section
below.
Examples
--------
>>> from numpy.polynomial.hermite_e import hermeder
>>> hermeder([ 1., 1., 1., 1.])
array([1., 2., 3.])
>>> hermeder([-0.25, 1., 1./2., 1./3., 1./4 ], m=2)
array([1., 2., 3.])
"""
c = np.array(c, ndmin=1, copy=True)
if c.dtype.char in '?bBhHiIlLqQpP':
c = c.astype(np.double)
cnt = pu._deprecate_as_int(m, "the order of derivation")
iaxis = pu._deprecate_as_int(axis, "the axis")
if cnt < 0:
raise ValueError("The order of derivation must be non-negative")
iaxis = normalize_axis_index(iaxis, c.ndim)
if cnt == 0:
return c
c = np.moveaxis(c, iaxis, 0)
n = len(c)
if cnt >= n:
return c[:1]*0
else:
for i in range(cnt):
n = n - 1
c *= scl
der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
for j in range(n, 0, -1):
der[j - 1] = j*c[j]
c = der
c = np.moveaxis(c, 0, iaxis)
return c
def hermeint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
"""
Integrate a Hermite_e series.
Returns the Hermite_e series coefficients `c` integrated `m` times from
`lbnd` along `axis`. At each iteration the resulting series is
**multiplied** by `scl` and an integration constant, `k`, is added.
The scaling factor is for use in a linear change of variable. ("Buyer
beware": note that, depending on what one is doing, one may want `scl`
to be the reciprocal of what one might expect; for more information,
see the Notes section below.) The argument `c` is an array of
coefficients from low to high degree along each axis, e.g., [1,2,3]
represents the series ``H_0 + 2*H_1 + 3*H_2`` while [[1,2],[1,2]]
represents ``1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + 2*H_0(x)*H_1(y) +
2*H_1(x)*H_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.
Parameters
----------
c : array_like
Array of Hermite_e series coefficients. If c is multidimensional
the different axis correspond to different variables with the
degree in each axis given by the corresponding index.
m : int, optional
Order of integration, must be positive. (Default: 1)
k : {[], list, scalar}, optional
Integration constant(s). The value of the first integral at
``lbnd`` is the first value in the list, the value of the second
integral at ``lbnd`` is the second value, etc. If ``k == []`` (the
default), all constants are set to zero. If ``m == 1``, a single
scalar can be given instead of a list.
lbnd : scalar, optional
The lower bound of the integral. (Default: 0)
scl : scalar, optional
Following each integration the result is *multiplied* by `scl`
before the integration constant is added. (Default: 1)
axis : int, optional
Axis over which the integral is taken. (Default: 0).
.. versionadded:: 1.7.0
Returns
-------
S : ndarray
Hermite_e series coefficients of the integral.
Raises
------
ValueError
If ``m < 0``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
``np.ndim(scl) != 0``.
See Also
--------
hermeder
Notes
-----
Note that the result of each integration is *multiplied* by `scl`.
Why is this important to note? Say one is making a linear change of
variable :math:`u = ax + b` in an integral relative to `x`. Then
:math:`dx = du/a`, so one will need to set `scl` equal to
:math:`1/a` - perhaps not what one would have first thought.
Also note that, in general, the result of integrating a C-series needs
to be "reprojected" onto the C-series basis set. Thus, typically,
the result of this function is "unintuitive," albeit correct; see
Examples section below.
Examples
--------
>>> from numpy.polynomial.hermite_e import hermeint
>>> hermeint([1, 2, 3]) # integrate once, value 0 at 0.
array([1., 1., 1., 1.])
>>> hermeint([1, 2, 3], m=2) # integrate twice, value & deriv 0 at 0
array([-0.25 , 1. , 0.5 , 0.33333333, 0.25 ]) # may vary
>>> hermeint([1, 2, 3], k=1) # integrate once, value 1 at 0.
array([2., 1., 1., 1.])
>>> hermeint([1, 2, 3], lbnd=-1) # integrate once, value 0 at -1
array([-1., 1., 1., 1.])
>>> hermeint([1, 2, 3], m=2, k=[1, 2], lbnd=-1)
array([ 1.83333333, 0. , 0.5 , 0.33333333, 0.25 ]) # may vary
"""
c = np.array(c, ndmin=1, copy=True)
if c.dtype.char in '?bBhHiIlLqQpP':
c = c.astype(np.double)
if not np.iterable(k):
k = [k]
cnt = pu._deprecate_as_int(m, "the order of integration")
iaxis = pu._deprecate_as_int(axis, "the axis")
if cnt < 0:
raise ValueError("The order of integration must be non-negative")
if len(k) > cnt:
raise ValueError("Too many integration constants")
if np.ndim(lbnd) != 0:
raise ValueError("lbnd must be a scalar.")
if np.ndim(scl) != 0:
raise ValueError("scl must be a scalar.")
iaxis = normalize_axis_index(iaxis, c.ndim)
if cnt == 0:
return c
c = np.moveaxis(c, iaxis, 0)
k = list(k) + [0]*(cnt - len(k))
for i in range(cnt):
n = len(c)
c *= scl
if n == 1 and np.all(c[0] == 0):
c[0] += k[i]
else:
tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
tmp[0] = c[0]*0
tmp[1] = c[0]
for j in range(1, n):
tmp[j + 1] = c[j]/(j + 1)
tmp[0] += k[i] - hermeval(lbnd, tmp)
c = tmp
c = np.moveaxis(c, 0, iaxis)
return c
def hermeval(x, c, tensor=True):
"""
Evaluate an HermiteE series at points x.
If `c` is of length `n + 1`, this function returns the value:
.. math:: p(x) = c_0 * He_0(x) + c_1 * He_1(x) + ... + c_n * He_n(x)
The parameter `x` is converted to an array only if it is a tuple or a
list, otherwise it is treated as a scalar. In either case, either `x`
or its elements must support multiplication and addition both with
themselves and with the elements of `c`.
If `c` is a 1-D array, then `p(x)` will have the same shape as `x`. If
`c` is multidimensional, then the shape of the result depends on the
value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
scalars have shape (,).
Trailing zeros in the coefficients will be used in the evaluation, so
they should be avoided if efficiency is a concern.
Parameters
----------
x : array_like, compatible object
If `x` is a list or tuple, it is converted to an ndarray, otherwise
it is left unchanged and treated as a scalar. In either case, `x`
or its elements must support addition and multiplication with
with themselves and with the elements of `c`.
c : array_like
Array of coefficients ordered so that the coefficients for terms of
degree n are contained in c[n]. If `c` is multidimensional the
remaining indices enumerate multiple polynomials. In the two
dimensional case the coefficients may be thought of as stored in
the columns of `c`.
tensor : boolean, optional
If True, the shape of the coefficient array is extended with ones
on the right, one for each dimension of `x`. Scalars have dimension 0
for this action. The result is that every column of coefficients in
`c` is evaluated for every element of `x`. If False, `x` is broadcast
over the columns of `c` for the evaluation. This keyword is useful
when `c` is multidimensional. The default value is True.
.. versionadded:: 1.7.0
Returns
-------
values : ndarray, algebra_like
The shape of the return value is described above.
See Also
--------
hermeval2d, hermegrid2d, hermeval3d, hermegrid3d
Notes
-----
The evaluation uses Clenshaw recursion, aka synthetic division.
Examples
--------
>>> from numpy.polynomial.hermite_e import hermeval
>>> coef = [1,2,3]
>>> hermeval(1, coef)
3.0
>>> hermeval([[1,2],[3,4]], coef)
array([[ 3., 14.],
[31., 54.]])
"""
c = np.array(c, ndmin=1, copy=False)
if c.dtype.char in '?bBhHiIlLqQpP':
c = c.astype(np.double)
if isinstance(x, (tuple, list)):
x = np.asarray(x)
if isinstance(x, np.ndarray) and tensor:
c = c.reshape(c.shape + (1,)*x.ndim)
if len(c) == 1:
c0 = c[0]
c1 = 0
elif len(c) == 2:
c0 = c[0]
c1 = c[1]
else:
nd = len(c)
c0 = c[-2]
c1 = c[-1]
for i in range(3, len(c) + 1):
tmp = c0
nd = nd - 1
c0 = c[-i] - c1*(nd - 1)
c1 = tmp + c1*x
return c0 + c1*x
def hermeval2d(x, y, c):
"""
Evaluate a 2-D HermiteE series at points (x, y).
This function returns the values:
.. math:: p(x,y) = \\sum_{i,j} c_{i,j} * He_i(x) * He_j(y)
The parameters `x` and `y` are converted to arrays only if they are
tuples or a lists, otherwise they are treated as a scalars and they
must have the same shape after conversion. In either case, either `x`
and `y` or their elements must support multiplication and addition both
with themselves and with the elements of `c`.
If `c` is a 1-D array a one is implicitly appended to its shape to make
it 2-D. The shape of the result will be c.shape[2:] + x.shape.
Parameters
----------
x, y : array_like, compatible objects
The two dimensional series is evaluated at the points `(x, y)`,
where `x` and `y` must have the same shape. If `x` or `y` is a list
or tuple, it is first converted to an ndarray, otherwise it is left
unchanged and if it isn't an ndarray it is treated as a scalar.
c : array_like
Array of coefficients ordered so that the coefficient of the term
of multi-degree i,j is contained in ``c[i,j]``. If `c` has
dimension greater than two the remaining indices enumerate multiple
sets of coefficients.
Returns
-------
values : ndarray, compatible object
The values of the two dimensional polynomial at points formed with
pairs of corresponding values from `x` and `y`.
See Also
--------
hermeval, hermegrid2d, hermeval3d, hermegrid3d
Notes
-----
.. versionadded:: 1.7.0
"""
return pu._valnd(hermeval, c, x, y)
def hermegrid2d(x, y, c):
"""
Evaluate a 2-D HermiteE series on the Cartesian product of x and y.
This function returns the values:
.. math:: p(a,b) = \\sum_{i,j} c_{i,j} * H_i(a) * H_j(b)
where the points `(a, b)` consist of all pairs formed by taking
`a` from `x` and `b` from `y`. The resulting points form a grid with
`x` in the first dimension and `y` in the second.
The parameters `x` and `y` are converted to arrays only if they are
tuples or a lists, otherwise they are treated as a scalars. In either
case, either `x` and `y` or their elements must support multiplication
and addition both with themselves and with the elements of `c`.
If `c` has fewer than two dimensions, ones are implicitly appended to
its shape to make it 2-D. The shape of the result will be c.shape[2:] +
x.shape.
Parameters
----------
x, y : array_like, compatible objects
The two dimensional series is evaluated at the points in the
Cartesian product of `x` and `y`. If `x` or `y` is a list or
tuple, it is first converted to an ndarray, otherwise it is left
unchanged and, if it isn't an ndarray, it is treated as a scalar.
c : array_like
Array of coefficients ordered so that the coefficients for terms of
degree i,j are contained in ``c[i,j]``. If `c` has dimension
greater than two the remaining indices enumerate multiple sets of
coefficients.
Returns
-------
values : ndarray, compatible object
The values of the two dimensional polynomial at points in the Cartesian
product of `x` and `y`.
See Also
--------
hermeval, hermeval2d, hermeval3d, hermegrid3d
Notes
-----
.. versionadded:: 1.7.0
"""
return pu._gridnd(hermeval, c, x, y)
def hermeval3d(x, y, z, c):
"""
Evaluate a 3-D Hermite_e series at points (x, y, z).
This function returns the values:
.. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * He_i(x) * He_j(y) * He_k(z)
The parameters `x`, `y`, and `z` are converted to arrays only if
they are tuples or a lists, otherwise they are treated as a scalars and
they must have the same shape after conversion. In either case, either
`x`, `y`, and `z` or their elements must support multiplication and
addition both with themselves and with the elements of `c`.
If `c` has fewer than 3 dimensions, ones are implicitly appended to its
shape to make it 3-D. The shape of the result will be c.shape[3:] +
x.shape.
Parameters
----------
x, y, z : array_like, compatible object
The three dimensional series is evaluated at the points
`(x, y, z)`, where `x`, `y`, and `z` must have the same shape. If
any of `x`, `y`, or `z` is a list or tuple, it is first converted
to an ndarray, otherwise it is left unchanged and if it isn't an
ndarray it is treated as a scalar.
c : array_like
Array of coefficients ordered so that the coefficient of the term of
multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
greater than 3 the remaining indices enumerate multiple sets of
coefficients.
Returns
-------
values : ndarray, compatible object
The values of the multidimensional polynomial on points formed with
triples of corresponding values from `x`, `y`, and `z`.
See Also
--------
hermeval, hermeval2d, hermegrid2d, hermegrid3d
Notes
-----
.. versionadded:: 1.7.0
"""
return pu._valnd(hermeval, c, x, y, z)
def hermegrid3d(x, y, z, c):
"""
Evaluate a 3-D HermiteE series on the Cartesian product of x, y, and z.
This function returns the values:
.. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * He_i(a) * He_j(b) * He_k(c)
where the points `(a, b, c)` consist of all triples formed by taking
`a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
a grid with `x` in the first dimension, `y` in the second, and `z` in
the third.
The parameters `x`, `y`, and `z` are converted to arrays only if they
are tuples or a lists, otherwise they are treated as a scalars. In
either case, either `x`, `y`, and `z` or their elements must support
multiplication and addition both with themselves and with the elements
of `c`.
If `c` has fewer than three dimensions, ones are implicitly appended to
its shape to make it 3-D. The shape of the result will be c.shape[3:] +
x.shape + y.shape + z.shape.
Parameters
----------
x, y, z : array_like, compatible objects
The three dimensional series is evaluated at the points in the
Cartesian product of `x`, `y`, and `z`. If `x`,`y`, or `z` is a
list or tuple, it is first converted to an ndarray, otherwise it is
left unchanged and, if it isn't an ndarray, it is treated as a
scalar.
c : array_like
Array of coefficients ordered so that the coefficients for terms of
degree i,j are contained in ``c[i,j]``. If `c` has dimension
greater than two the remaining indices enumerate multiple sets of
coefficients.
Returns
-------
values : ndarray, compatible object
The values of the two dimensional polynomial at points in the Cartesian
product of `x` and `y`.
See Also
--------
hermeval, hermeval2d, hermegrid2d, hermeval3d
Notes
-----
.. versionadded:: 1.7.0
"""
return pu._gridnd(hermeval, c, x, y, z)
def hermevander(x, deg):
"""Pseudo-Vandermonde matrix of given degree.
Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
`x`. The pseudo-Vandermonde matrix is defined by
.. math:: V[..., i] = He_i(x),
where `0 <= i <= deg`. The leading indices of `V` index the elements of
`x` and the last index is the degree of the HermiteE polynomial.
If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
array ``V = hermevander(x, n)``, then ``np.dot(V, c)`` and
``hermeval(x, c)`` are the same up to roundoff. This equivalence is
useful both for least squares fitting and for the evaluation of a large
number of HermiteE series of the same degree and sample points.
Parameters
----------
x : array_like
Array of points. The dtype is converted to float64 or complex128
depending on whether any of the elements are complex. If `x` is
scalar it is converted to a 1-D array.
deg : int
Degree of the resulting matrix.
Returns
-------
vander : ndarray
The pseudo-Vandermonde matrix. The shape of the returned matrix is
``x.shape + (deg + 1,)``, where The last index is the degree of the
corresponding HermiteE polynomial. The dtype will be the same as
the converted `x`.
Examples
--------
>>> from numpy.polynomial.hermite_e import hermevander
>>> x = np.array([-1, 0, 1])
>>> hermevander(x, 3)
array([[ 1., -1., 0., 2.],
[ 1., 0., -1., -0.],
[ 1., 1., 0., -2.]])
"""
ideg = pu._deprecate_as_int(deg, "deg")
if ideg < 0:
raise ValueError("deg must be non-negative")
x = np.array(x, copy=False, ndmin=1) + 0.0
dims = (ideg + 1,) + x.shape
dtyp = x.dtype
v = np.empty(dims, dtype=dtyp)
v[0] = x*0 + 1
if ideg > 0:
v[1] = x
for i in range(2, ideg + 1):
v[i] = (v[i-1]*x - v[i-2]*(i - 1))
return np.moveaxis(v, 0, -1)
def hermevander2d(x, y, deg):
"""Pseudo-Vandermonde matrix of given degrees.
Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
points `(x, y)`. The pseudo-Vandermonde matrix is defined by
.. math:: V[..., (deg[1] + 1)*i + j] = He_i(x) * He_j(y),
where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
`V` index the points `(x, y)` and the last index encodes the degrees of
the HermiteE polynomials.
If ``V = hermevander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
correspond to the elements of a 2-D coefficient array `c` of shape
(xdeg + 1, ydeg + 1) in the order
.. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
and ``np.dot(V, c.flat)`` and ``hermeval2d(x, y, c)`` will be the same
up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of 2-D HermiteE
series of the same degrees and sample points.
Parameters
----------
x, y : array_like
Arrays of point coordinates, all of the same shape. The dtypes
will be converted to either float64 or complex128 depending on
whether any of the elements are complex. Scalars are converted to
1-D arrays.
deg : list of ints
List of maximum degrees of the form [x_deg, y_deg].
Returns
-------
vander2d : ndarray
The shape of the returned matrix is ``x.shape + (order,)``, where
:math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same
as the converted `x` and `y`.
See Also
--------
hermevander, hermevander3d, hermeval2d, hermeval3d
Notes
-----
.. versionadded:: 1.7.0
"""
return pu._vander_nd_flat((hermevander, hermevander), (x, y), deg)
def hermevander3d(x, y, z, deg):
"""Pseudo-Vandermonde matrix of given degrees.
Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
then Hehe pseudo-Vandermonde matrix is defined by
.. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = He_i(x)*He_j(y)*He_k(z),
where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`. The leading
indices of `V` index the points `(x, y, z)` and the last index encodes
the degrees of the HermiteE polynomials.
If ``V = hermevander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
of `V` correspond to the elements of a 3-D coefficient array `c` of
shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
.. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
and ``np.dot(V, c.flat)`` and ``hermeval3d(x, y, z, c)`` will be the
same up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of 3-D HermiteE
series of the same degrees and sample points.
Parameters
----------
x, y, z : array_like
Arrays of point coordinates, all of the same shape. The dtypes will
be converted to either float64 or complex128 depending on whether
any of the elements are complex. Scalars are converted to 1-D
arrays.
deg : list of ints
List of maximum degrees of the form [x_deg, y_deg, z_deg].
Returns
-------
vander3d : ndarray
The shape of the returned matrix is ``x.shape + (order,)``, where
:math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will
be the same as the converted `x`, `y`, and `z`.
See Also
--------
hermevander, hermevander3d, hermeval2d, hermeval3d
Notes
-----
.. versionadded:: 1.7.0
"""
return pu._vander_nd_flat((hermevander, hermevander, hermevander), (x, y, z), deg)
def hermefit(x, y, deg, rcond=None, full=False, w=None):
"""
Least squares fit of Hermite series to data.
Return the coefficients of a HermiteE series of degree `deg` that is
the least squares fit to the data values `y` given at points `x`. If
`y` is 1-D the returned coefficients will also be 1-D. If `y` is 2-D
multiple fits are done, one for each column of `y`, and the resulting
coefficients are stored in the corresponding columns of a 2-D return.
The fitted polynomial(s) are in the form
.. math:: p(x) = c_0 + c_1 * He_1(x) + ... + c_n * He_n(x),
where `n` is `deg`.
Parameters
----------
x : array_like, shape (M,)
x-coordinates of the M sample points ``(x[i], y[i])``.
y : array_like, shape (M,) or (M, K)
y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.
deg : int or 1-D array_like
Degree(s) of the fitting polynomials. If `deg` is a single integer
all terms up to and including the `deg`'th term are included in the
fit. For NumPy versions >= 1.11.0 a list of integers specifying the
degrees of the terms to include may be used instead.
rcond : float, optional
Relative condition number of the fit. Singular values smaller than
this relative to the largest singular value will be ignored. The
default value is len(x)*eps, where eps is the relative precision of
the float type, about 2e-16 in most cases.
full : bool, optional
Switch determining nature of return value. When it is False (the
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.
w : array_like, shape (`M`,), optional
Weights. If not None, the contribution of each point
``(x[i],y[i])`` to the fit is weighted by ``w[i]``. Ideally the
weights are chosen so that the errors of the products ``w[i]*y[i]``
all have the same variance. The default value is None.
Returns
-------
coef : ndarray, shape (M,) or (M, K)
Hermite coefficients ordered from low to high. If `y` was 2-D,
the coefficients for the data in column k of `y` are in column
`k`.
[residuals, rank, singular_values, rcond] : list
These values are only returned if `full` = True
resid -- sum of squared residuals of the least squares fit
rank -- the numerical rank of the scaled Vandermonde matrix
sv -- singular values of the scaled Vandermonde matrix
rcond -- value of `rcond`.
For more details, see `numpy.linalg.lstsq`.
Warns
-----
RankWarning
The rank of the coefficient matrix in the least-squares fit is
deficient. The warning is only raised if `full` = False. The
warnings can be turned off by
>>> import warnings
>>> warnings.simplefilter('ignore', np.RankWarning)
See Also
--------
numpy.polynomial.chebyshev.chebfit
numpy.polynomial.legendre.legfit
numpy.polynomial.polynomial.polyfit
numpy.polynomial.hermite.hermfit
numpy.polynomial.laguerre.lagfit
hermeval : Evaluates a Hermite series.
hermevander : pseudo Vandermonde matrix of Hermite series.
hermeweight : HermiteE weight function.
numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
scipy.interpolate.UnivariateSpline : Computes spline fits.
Notes
-----
The solution is the coefficients of the HermiteE series `p` that
minimizes the sum of the weighted squared errors
.. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
where the :math:`w_j` are the weights. This problem is solved by
setting up the (typically) overdetermined matrix equation
.. math:: V(x) * c = w * y,
where `V` is the pseudo Vandermonde matrix of `x`, the elements of `c`
are the coefficients to be solved for, and the elements of `y` are the
observed values. This equation is then solved using the singular value
decomposition of `V`.
If some of the singular values of `V` are so small that they are
neglected, then a `RankWarning` will be issued. This means that the
coefficient values may be poorly determined. Using a lower order fit
will usually get rid of the warning. The `rcond` parameter can also be
set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.
Fits using HermiteE series are probably most useful when the data can
be approximated by ``sqrt(w(x)) * p(x)``, where `w(x)` is the HermiteE
weight. In that case the weight ``sqrt(w(x[i]))`` should be used
together with data values ``y[i]/sqrt(w(x[i]))``. The weight function is
available as `hermeweight`.
References
----------
.. [1] Wikipedia, "Curve fitting",
https://en.wikipedia.org/wiki/Curve_fitting
Examples
--------
>>> from numpy.polynomial.hermite_e import hermefit, hermeval
>>> x = np.linspace(-10, 10)
>>> np.random.seed(123)
>>> err = np.random.randn(len(x))/10
>>> y = hermeval(x, [1, 2, 3]) + err
>>> hermefit(x, y, 2)
array([ 1.01690445, 1.99951418, 2.99948696]) # may vary
"""
return pu._fit(hermevander, x, y, deg, rcond, full, w)
def hermecompanion(c):
"""
Return the scaled companion matrix of c.
The basis polynomials are scaled so that the companion matrix is
symmetric when `c` is an HermiteE basis polynomial. This provides
better eigenvalue estimates than the unscaled case and for basis
polynomials the eigenvalues are guaranteed to be real if
`numpy.linalg.eigvalsh` is used to obtain them.
Parameters
----------
c : array_like
1-D array of HermiteE series coefficients ordered from low to high
degree.
Returns
-------
mat : ndarray
Scaled companion matrix of dimensions (deg, deg).
Notes
-----
.. versionadded:: 1.7.0
"""
# c is a trimmed copy
[c] = pu.as_series([c])
if len(c) < 2:
raise ValueError('Series must have maximum degree of at least 1.')
if len(c) == 2:
return np.array([[-c[0]/c[1]]])
n = len(c) - 1
mat = np.zeros((n, n), dtype=c.dtype)
scl = np.hstack((1., 1./np.sqrt(np.arange(n - 1, 0, -1))))
scl = np.multiply.accumulate(scl)[::-1]
top = mat.reshape(-1)[1::n+1]
bot = mat.reshape(-1)[n::n+1]
top[...] = np.sqrt(np.arange(1, n))
bot[...] = top
mat[:, -1] -= scl*c[:-1]/c[-1]
return mat
def hermeroots(c):
"""
Compute the roots of a HermiteE series.
Return the roots (a.k.a. "zeros") of the polynomial
.. math:: p(x) = \\sum_i c[i] * He_i(x).
Parameters
----------
c : 1-D array_like
1-D array of coefficients.
Returns
-------
out : ndarray
Array of the roots of the series. If all the roots are real,
then `out` is also real, otherwise it is complex.
See Also
--------
numpy.polynomial.polynomial.polyroots
numpy.polynomial.legendre.legroots
numpy.polynomial.laguerre.lagroots
numpy.polynomial.hermite.hermroots
numpy.polynomial.chebyshev.chebroots
Notes
-----
The root estimates are obtained as the eigenvalues of the companion
matrix, Roots far from the origin of the complex plane may have large
errors due to the numerical instability of the series for such
values. Roots with multiplicity greater than 1 will also show larger
errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can
be improved by a few iterations of Newton's method.
The HermiteE series basis polynomials aren't powers of `x` so the
results of this function may seem unintuitive.
Examples
--------
>>> from numpy.polynomial.hermite_e import hermeroots, hermefromroots
>>> coef = hermefromroots([-1, 0, 1])
>>> coef
array([0., 2., 0., 1.])
>>> hermeroots(coef)
array([-1., 0., 1.]) # may vary
"""
# c is a trimmed copy
[c] = pu.as_series([c])
if len(c) <= 1:
return np.array([], dtype=c.dtype)
if len(c) == 2:
return np.array([-c[0]/c[1]])
# rotated companion matrix reduces error
m = hermecompanion(c)[::-1,::-1]
r = la.eigvals(m)
r.sort()
return r
def _normed_hermite_e_n(x, n):
"""
Evaluate a normalized HermiteE polynomial.
Compute the value of the normalized HermiteE polynomial of degree ``n``
at the points ``x``.
Parameters
----------
x : ndarray of double.
Points at which to evaluate the function
n : int
Degree of the normalized HermiteE function to be evaluated.
Returns
-------
values : ndarray
The shape of the return value is described above.
Notes
-----
.. versionadded:: 1.10.0
This function is needed for finding the Gauss points and integration
weights for high degrees. The values of the standard HermiteE functions
overflow when n >= 207.
"""
if n == 0:
return np.full(x.shape, 1/np.sqrt(np.sqrt(2*np.pi)))
c0 = 0.
c1 = 1./np.sqrt(np.sqrt(2*np.pi))
nd = float(n)
for i in range(n - 1):
tmp = c0
c0 = -c1*np.sqrt((nd - 1.)/nd)
c1 = tmp + c1*x*np.sqrt(1./nd)
nd = nd - 1.0
return c0 + c1*x
def hermegauss(deg):
"""
Gauss-HermiteE quadrature.
Computes the sample points and weights for Gauss-HermiteE quadrature.
These sample points and weights will correctly integrate polynomials of
degree :math:`2*deg - 1` or less over the interval :math:`[-\\inf, \\inf]`
with the weight function :math:`f(x) = \\exp(-x^2/2)`.
Parameters
----------
deg : int
Number of sample points and weights. It must be >= 1.
Returns
-------
x : ndarray
1-D ndarray containing the sample points.
y : ndarray
1-D ndarray containing the weights.
Notes
-----
.. versionadded:: 1.7.0
The results have only been tested up to degree 100, higher degrees may
be problematic. The weights are determined by using the fact that
.. math:: w_k = c / (He'_n(x_k) * He_{n-1}(x_k))
where :math:`c` is a constant independent of :math:`k` and :math:`x_k`
is the k'th root of :math:`He_n`, and then scaling the results to get
the right value when integrating 1.
"""
ideg = pu._deprecate_as_int(deg, "deg")
if ideg <= 0:
raise ValueError("deg must be a positive integer")
# first approximation of roots. We use the fact that the companion
# matrix is symmetric in this case in order to obtain better zeros.
c = np.array([0]*deg + [1])
m = hermecompanion(c)
x = la.eigvalsh(m)
# improve roots by one application of Newton
dy = _normed_hermite_e_n(x, ideg)
df = _normed_hermite_e_n(x, ideg - 1) * np.sqrt(ideg)
x -= dy/df
# compute the weights. We scale the factor to avoid possible numerical
# overflow.
fm = _normed_hermite_e_n(x, ideg - 1)
fm /= np.abs(fm).max()
w = 1/(fm * fm)
# for Hermite_e we can also symmetrize
w = (w + w[::-1])/2
x = (x - x[::-1])/2
# scale w to get the right value
w *= np.sqrt(2*np.pi) / w.sum()
return x, w
def hermeweight(x):
"""Weight function of the Hermite_e polynomials.
The weight function is :math:`\\exp(-x^2/2)` and the interval of
integration is :math:`[-\\inf, \\inf]`. the HermiteE polynomials are
orthogonal, but not normalized, with respect to this weight function.
Parameters
----------
x : array_like
Values at which the weight function will be computed.
Returns
-------
w : ndarray
The weight function at `x`.
Notes
-----
.. versionadded:: 1.7.0
"""
w = np.exp(-.5*x**2)
return w
#
# HermiteE series class
#
class HermiteE(ABCPolyBase):
"""An HermiteE series class.
The HermiteE class provides the standard Python numerical methods
'+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
attributes and methods listed in the `ABCPolyBase` documentation.
Parameters
----------
coef : array_like
HermiteE coefficients in order of increasing degree, i.e,
``(1, 2, 3)`` gives ``1*He_0(x) + 2*He_1(X) + 3*He_2(x)``.
domain : (2,) array_like, optional
Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
to the interval ``[window[0], window[1]]`` by shifting and scaling.
The default value is [-1, 1].
window : (2,) array_like, optional
Window, see `domain` for its use. The default value is [-1, 1].
.. versionadded:: 1.6.0
"""
# Virtual Functions
_add = staticmethod(hermeadd)
_sub = staticmethod(hermesub)
_mul = staticmethod(hermemul)
_div = staticmethod(hermediv)
_pow = staticmethod(hermepow)
_val = staticmethod(hermeval)
_int = staticmethod(hermeint)
_der = staticmethod(hermeder)
_fit = staticmethod(hermefit)
_line = staticmethod(hermeline)
_roots = staticmethod(hermeroots)
_fromroots = staticmethod(hermefromroots)
# Virtual properties
domain = np.array(hermedomain)
window = np.array(hermedomain)
basis_name = 'He'
|