File size: 52,822 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
"""

==================================================

Legendre Series (:mod:`numpy.polynomial.legendre`)

==================================================



This module provides a number of objects (mostly functions) useful for

dealing with Legendre series, including a `Legendre` class that

encapsulates the usual arithmetic operations.  (General information

on how this module represents and works with such polynomials is in the

docstring for its "parent" sub-package, `numpy.polynomial`).



Classes

-------

.. autosummary::

   :toctree: generated/



    Legendre



Constants

---------



.. autosummary::

   :toctree: generated/



   legdomain

   legzero

   legone

   legx



Arithmetic

----------



.. autosummary::

   :toctree: generated/



   legadd

   legsub

   legmulx

   legmul

   legdiv

   legpow

   legval

   legval2d

   legval3d

   leggrid2d

   leggrid3d



Calculus

--------



.. autosummary::

   :toctree: generated/



   legder

   legint



Misc Functions

--------------



.. autosummary::

   :toctree: generated/



   legfromroots

   legroots

   legvander

   legvander2d

   legvander3d

   leggauss

   legweight

   legcompanion

   legfit

   legtrim

   legline

   leg2poly

   poly2leg



See also

--------

numpy.polynomial



"""
import numpy as np
import numpy.linalg as la
from numpy.core.multiarray import normalize_axis_index

from . import polyutils as pu
from ._polybase import ABCPolyBase

__all__ = [
    'legzero', 'legone', 'legx', 'legdomain', 'legline', 'legadd',
    'legsub', 'legmulx', 'legmul', 'legdiv', 'legpow', 'legval', 'legder',
    'legint', 'leg2poly', 'poly2leg', 'legfromroots', 'legvander',
    'legfit', 'legtrim', 'legroots', 'Legendre', 'legval2d', 'legval3d',
    'leggrid2d', 'leggrid3d', 'legvander2d', 'legvander3d', 'legcompanion',
    'leggauss', 'legweight']

legtrim = pu.trimcoef


def poly2leg(pol):
    """

    Convert a polynomial to a Legendre series.



    Convert an array representing the coefficients of a polynomial (relative

    to the "standard" basis) ordered from lowest degree to highest, to an

    array of the coefficients of the equivalent Legendre series, ordered

    from lowest to highest degree.



    Parameters

    ----------

    pol : array_like

        1-D array containing the polynomial coefficients



    Returns

    -------

    c : ndarray

        1-D array containing the coefficients of the equivalent Legendre

        series.



    See Also

    --------

    leg2poly



    Notes

    -----

    The easy way to do conversions between polynomial basis sets

    is to use the convert method of a class instance.



    Examples

    --------

    >>> from numpy import polynomial as P

    >>> p = P.Polynomial(np.arange(4))

    >>> p

    Polynomial([0.,  1.,  2.,  3.], domain=[-1,  1], window=[-1,  1])

    >>> c = P.Legendre(P.legendre.poly2leg(p.coef))

    >>> c

    Legendre([ 1.  ,  3.25,  1.  ,  0.75], domain=[-1,  1], window=[-1,  1]) # may vary



    """
    [pol] = pu.as_series([pol])
    deg = len(pol) - 1
    res = 0
    for i in range(deg, -1, -1):
        res = legadd(legmulx(res), pol[i])
    return res


def leg2poly(c):
    """

    Convert a Legendre series to a polynomial.



    Convert an array representing the coefficients of a Legendre series,

    ordered from lowest degree to highest, to an array of the coefficients

    of the equivalent polynomial (relative to the "standard" basis) ordered

    from lowest to highest degree.



    Parameters

    ----------

    c : array_like

        1-D array containing the Legendre series coefficients, ordered

        from lowest order term to highest.



    Returns

    -------

    pol : ndarray

        1-D array containing the coefficients of the equivalent polynomial

        (relative to the "standard" basis) ordered from lowest order term

        to highest.



    See Also

    --------

    poly2leg



    Notes

    -----

    The easy way to do conversions between polynomial basis sets

    is to use the convert method of a class instance.



    Examples

    --------

    >>> from numpy import polynomial as P

    >>> c = P.Legendre(range(4))

    >>> c

    Legendre([0., 1., 2., 3.], domain=[-1,  1], window=[-1,  1])

    >>> p = c.convert(kind=P.Polynomial)

    >>> p

    Polynomial([-1. , -3.5,  3. ,  7.5], domain=[-1.,  1.], window=[-1.,  1.])

    >>> P.leg2poly(range(4))

    array([-1. , -3.5,  3. ,  7.5])





    """
    from .polynomial import polyadd, polysub, polymulx

    [c] = pu.as_series([c])
    n = len(c)
    if n < 3:
        return c
    else:
        c0 = c[-2]
        c1 = c[-1]
        # i is the current degree of c1
        for i in range(n - 1, 1, -1):
            tmp = c0
            c0 = polysub(c[i - 2], (c1*(i - 1))/i)
            c1 = polyadd(tmp, (polymulx(c1)*(2*i - 1))/i)
        return polyadd(c0, polymulx(c1))

#
# These are constant arrays are of integer type so as to be compatible
# with the widest range of other types, such as Decimal.
#

# Legendre
legdomain = np.array([-1, 1])

# Legendre coefficients representing zero.
legzero = np.array([0])

# Legendre coefficients representing one.
legone = np.array([1])

# Legendre coefficients representing the identity x.
legx = np.array([0, 1])


def legline(off, scl):
    """

    Legendre series whose graph is a straight line.







    Parameters

    ----------

    off, scl : scalars

        The specified line is given by ``off + scl*x``.



    Returns

    -------

    y : ndarray

        This module's representation of the Legendre series for

        ``off + scl*x``.



    See Also

    --------

    numpy.polynomial.polynomial.polyline

    numpy.polynomial.chebyshev.chebline

    numpy.polynomial.laguerre.lagline

    numpy.polynomial.hermite.hermline

    numpy.polynomial.hermite_e.hermeline



    Examples

    --------

    >>> import numpy.polynomial.legendre as L

    >>> L.legline(3,2)

    array([3, 2])

    >>> L.legval(-3, L.legline(3,2)) # should be -3

    -3.0



    """
    if scl != 0:
        return np.array([off, scl])
    else:
        return np.array([off])


def legfromroots(roots):
    """

    Generate a Legendre series with given roots.



    The function returns the coefficients of the polynomial



    .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),



    in Legendre form, where the `r_n` are the roots specified in `roots`.

    If a zero has multiplicity n, then it must appear in `roots` n times.

    For instance, if 2 is a root of multiplicity three and 3 is a root of

    multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The

    roots can appear in any order.



    If the returned coefficients are `c`, then



    .. math:: p(x) = c_0 + c_1 * L_1(x) + ... +  c_n * L_n(x)



    The coefficient of the last term is not generally 1 for monic

    polynomials in Legendre form.



    Parameters

    ----------

    roots : array_like

        Sequence containing the roots.



    Returns

    -------

    out : ndarray

        1-D array of coefficients.  If all roots are real then `out` is a

        real array, if some of the roots are complex, then `out` is complex

        even if all the coefficients in the result are real (see Examples

        below).



    See Also

    --------

    numpy.polynomial.polynomial.polyfromroots

    numpy.polynomial.chebyshev.chebfromroots

    numpy.polynomial.laguerre.lagfromroots

    numpy.polynomial.hermite.hermfromroots

    numpy.polynomial.hermite_e.hermefromroots



    Examples

    --------

    >>> import numpy.polynomial.legendre as L

    >>> L.legfromroots((-1,0,1)) # x^3 - x relative to the standard basis

    array([ 0. , -0.4,  0. ,  0.4])

    >>> j = complex(0,1)

    >>> L.legfromroots((-j,j)) # x^2 + 1 relative to the standard basis

    array([ 1.33333333+0.j,  0.00000000+0.j,  0.66666667+0.j]) # may vary



    """
    return pu._fromroots(legline, legmul, roots)


def legadd(c1, c2):
    """

    Add one Legendre series to another.



    Returns the sum of two Legendre series `c1` + `c2`.  The arguments

    are sequences of coefficients ordered from lowest order term to

    highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.



    Parameters

    ----------

    c1, c2 : array_like

        1-D arrays of Legendre series coefficients ordered from low to

        high.



    Returns

    -------

    out : ndarray

        Array representing the Legendre series of their sum.



    See Also

    --------

    legsub, legmulx, legmul, legdiv, legpow



    Notes

    -----

    Unlike multiplication, division, etc., the sum of two Legendre series

    is a Legendre series (without having to "reproject" the result onto

    the basis set) so addition, just like that of "standard" polynomials,

    is simply "component-wise."



    Examples

    --------

    >>> from numpy.polynomial import legendre as L

    >>> c1 = (1,2,3)

    >>> c2 = (3,2,1)

    >>> L.legadd(c1,c2)

    array([4.,  4.,  4.])



    """
    return pu._add(c1, c2)


def legsub(c1, c2):
    """

    Subtract one Legendre series from another.



    Returns the difference of two Legendre series `c1` - `c2`.  The

    sequences of coefficients are from lowest order term to highest, i.e.,

    [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.



    Parameters

    ----------

    c1, c2 : array_like

        1-D arrays of Legendre series coefficients ordered from low to

        high.



    Returns

    -------

    out : ndarray

        Of Legendre series coefficients representing their difference.



    See Also

    --------

    legadd, legmulx, legmul, legdiv, legpow



    Notes

    -----

    Unlike multiplication, division, etc., the difference of two Legendre

    series is a Legendre series (without having to "reproject" the result

    onto the basis set) so subtraction, just like that of "standard"

    polynomials, is simply "component-wise."



    Examples

    --------

    >>> from numpy.polynomial import legendre as L

    >>> c1 = (1,2,3)

    >>> c2 = (3,2,1)

    >>> L.legsub(c1,c2)

    array([-2.,  0.,  2.])

    >>> L.legsub(c2,c1) # -C.legsub(c1,c2)

    array([ 2.,  0., -2.])



    """
    return pu._sub(c1, c2)


def legmulx(c):
    """Multiply a Legendre series by x.



    Multiply the Legendre series `c` by x, where x is the independent

    variable.





    Parameters

    ----------

    c : array_like

        1-D array of Legendre series coefficients ordered from low to

        high.



    Returns

    -------

    out : ndarray

        Array representing the result of the multiplication.



    See Also

    --------

    legadd, legmul, legmul, legdiv, legpow



    Notes

    -----

    The multiplication uses the recursion relationship for Legendre

    polynomials in the form



    .. math::



      xP_i(x) = ((i + 1)*P_{i + 1}(x) + i*P_{i - 1}(x))/(2i + 1)



    Examples

    --------

    >>> from numpy.polynomial import legendre as L

    >>> L.legmulx([1,2,3])

    array([ 0.66666667, 2.2, 1.33333333, 1.8]) # may vary



    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    # The zero series needs special treatment
    if len(c) == 1 and c[0] == 0:
        return c

    prd = np.empty(len(c) + 1, dtype=c.dtype)
    prd[0] = c[0]*0
    prd[1] = c[0]
    for i in range(1, len(c)):
        j = i + 1
        k = i - 1
        s = i + j
        prd[j] = (c[i]*j)/s
        prd[k] += (c[i]*i)/s
    return prd


def legmul(c1, c2):
    """

    Multiply one Legendre series by another.



    Returns the product of two Legendre series `c1` * `c2`.  The arguments

    are sequences of coefficients, from lowest order "term" to highest,

    e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.



    Parameters

    ----------

    c1, c2 : array_like

        1-D arrays of Legendre series coefficients ordered from low to

        high.



    Returns

    -------

    out : ndarray

        Of Legendre series coefficients representing their product.



    See Also

    --------

    legadd, legsub, legmulx, legdiv, legpow



    Notes

    -----

    In general, the (polynomial) product of two C-series results in terms

    that are not in the Legendre polynomial basis set.  Thus, to express

    the product as a Legendre series, it is necessary to "reproject" the

    product onto said basis set, which may produce "unintuitive" (but

    correct) results; see Examples section below.



    Examples

    --------

    >>> from numpy.polynomial import legendre as L

    >>> c1 = (1,2,3)

    >>> c2 = (3,2)

    >>> L.legmul(c1,c2) # multiplication requires "reprojection"

    array([  4.33333333,  10.4       ,  11.66666667,   3.6       ]) # may vary



    """
    # s1, s2 are trimmed copies
    [c1, c2] = pu.as_series([c1, c2])

    if len(c1) > len(c2):
        c = c2
        xs = c1
    else:
        c = c1
        xs = c2

    if len(c) == 1:
        c0 = c[0]*xs
        c1 = 0
    elif len(c) == 2:
        c0 = c[0]*xs
        c1 = c[1]*xs
    else:
        nd = len(c)
        c0 = c[-2]*xs
        c1 = c[-1]*xs
        for i in range(3, len(c) + 1):
            tmp = c0
            nd = nd - 1
            c0 = legsub(c[-i]*xs, (c1*(nd - 1))/nd)
            c1 = legadd(tmp, (legmulx(c1)*(2*nd - 1))/nd)
    return legadd(c0, legmulx(c1))


def legdiv(c1, c2):
    """

    Divide one Legendre series by another.



    Returns the quotient-with-remainder of two Legendre series

    `c1` / `c2`.  The arguments are sequences of coefficients from lowest

    order "term" to highest, e.g., [1,2,3] represents the series

    ``P_0 + 2*P_1 + 3*P_2``.



    Parameters

    ----------

    c1, c2 : array_like

        1-D arrays of Legendre series coefficients ordered from low to

        high.



    Returns

    -------

    quo, rem : ndarrays

        Of Legendre series coefficients representing the quotient and

        remainder.



    See Also

    --------

    legadd, legsub, legmulx, legmul, legpow



    Notes

    -----

    In general, the (polynomial) division of one Legendre series by another

    results in quotient and remainder terms that are not in the Legendre

    polynomial basis set.  Thus, to express these results as a Legendre

    series, it is necessary to "reproject" the results onto the Legendre

    basis set, which may produce "unintuitive" (but correct) results; see

    Examples section below.



    Examples

    --------

    >>> from numpy.polynomial import legendre as L

    >>> c1 = (1,2,3)

    >>> c2 = (3,2,1)

    >>> L.legdiv(c1,c2) # quotient "intuitive," remainder not

    (array([3.]), array([-8., -4.]))

    >>> c2 = (0,1,2,3)

    >>> L.legdiv(c2,c1) # neither "intuitive"

    (array([-0.07407407,  1.66666667]), array([-1.03703704, -2.51851852])) # may vary



    """
    return pu._div(legmul, c1, c2)


def legpow(c, pow, maxpower=16):
    """Raise a Legendre series to a power.



    Returns the Legendre series `c` raised to the power `pow`. The

    argument `c` is a sequence of coefficients ordered from low to high.

    i.e., [1,2,3] is the series  ``P_0 + 2*P_1 + 3*P_2.``



    Parameters

    ----------

    c : array_like

        1-D array of Legendre series coefficients ordered from low to

        high.

    pow : integer

        Power to which the series will be raised

    maxpower : integer, optional

        Maximum power allowed. This is mainly to limit growth of the series

        to unmanageable size. Default is 16



    Returns

    -------

    coef : ndarray

        Legendre series of power.



    See Also

    --------

    legadd, legsub, legmulx, legmul, legdiv



    """
    return pu._pow(legmul, c, pow, maxpower)


def legder(c, m=1, scl=1, axis=0):
    """

    Differentiate a Legendre series.



    Returns the Legendre series coefficients `c` differentiated `m` times

    along `axis`.  At each iteration the result is multiplied by `scl` (the

    scaling factor is for use in a linear change of variable). The argument

    `c` is an array of coefficients from low to high degree along each

    axis, e.g., [1,2,3] represents the series ``1*L_0 + 2*L_1 + 3*L_2``

    while [[1,2],[1,2]] represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) +

    2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is

    ``y``.



    Parameters

    ----------

    c : array_like

        Array of Legendre series coefficients. If c is multidimensional the

        different axis correspond to different variables with the degree in

        each axis given by the corresponding index.

    m : int, optional

        Number of derivatives taken, must be non-negative. (Default: 1)

    scl : scalar, optional

        Each differentiation is multiplied by `scl`.  The end result is

        multiplication by ``scl**m``.  This is for use in a linear change of

        variable. (Default: 1)

    axis : int, optional

        Axis over which the derivative is taken. (Default: 0).



        .. versionadded:: 1.7.0



    Returns

    -------

    der : ndarray

        Legendre series of the derivative.



    See Also

    --------

    legint



    Notes

    -----

    In general, the result of differentiating a Legendre series does not

    resemble the same operation on a power series. Thus the result of this

    function may be "unintuitive," albeit correct; see Examples section

    below.



    Examples

    --------

    >>> from numpy.polynomial import legendre as L

    >>> c = (1,2,3,4)

    >>> L.legder(c)

    array([  6.,   9.,  20.])

    >>> L.legder(c, 3)

    array([60.])

    >>> L.legder(c, scl=-1)

    array([ -6.,  -9., -20.])

    >>> L.legder(c, 2,-1)

    array([  9.,  60.])



    """
    c = np.array(c, ndmin=1, copy=True)
    if c.dtype.char in '?bBhHiIlLqQpP':
        c = c.astype(np.double)
    cnt = pu._deprecate_as_int(m, "the order of derivation")
    iaxis = pu._deprecate_as_int(axis, "the axis")
    if cnt < 0:
        raise ValueError("The order of derivation must be non-negative")
    iaxis = normalize_axis_index(iaxis, c.ndim)

    if cnt == 0:
        return c

    c = np.moveaxis(c, iaxis, 0)
    n = len(c)
    if cnt >= n:
        c = c[:1]*0
    else:
        for i in range(cnt):
            n = n - 1
            c *= scl
            der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
            for j in range(n, 2, -1):
                der[j - 1] = (2*j - 1)*c[j]
                c[j - 2] += c[j]
            if n > 1:
                der[1] = 3*c[2]
            der[0] = c[1]
            c = der
    c = np.moveaxis(c, 0, iaxis)
    return c


def legint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
    """

    Integrate a Legendre series.



    Returns the Legendre series coefficients `c` integrated `m` times from

    `lbnd` along `axis`. At each iteration the resulting series is

    **multiplied** by `scl` and an integration constant, `k`, is added.

    The scaling factor is for use in a linear change of variable.  ("Buyer

    beware": note that, depending on what one is doing, one may want `scl`

    to be the reciprocal of what one might expect; for more information,

    see the Notes section below.)  The argument `c` is an array of

    coefficients from low to high degree along each axis, e.g., [1,2,3]

    represents the series ``L_0 + 2*L_1 + 3*L_2`` while [[1,2],[1,2]]

    represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) +

    2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.



    Parameters

    ----------

    c : array_like

        Array of Legendre series coefficients. If c is multidimensional the

        different axis correspond to different variables with the degree in

        each axis given by the corresponding index.

    m : int, optional

        Order of integration, must be positive. (Default: 1)

    k : {[], list, scalar}, optional

        Integration constant(s).  The value of the first integral at

        ``lbnd`` is the first value in the list, the value of the second

        integral at ``lbnd`` is the second value, etc.  If ``k == []`` (the

        default), all constants are set to zero.  If ``m == 1``, a single

        scalar can be given instead of a list.

    lbnd : scalar, optional

        The lower bound of the integral. (Default: 0)

    scl : scalar, optional

        Following each integration the result is *multiplied* by `scl`

        before the integration constant is added. (Default: 1)

    axis : int, optional

        Axis over which the integral is taken. (Default: 0).



        .. versionadded:: 1.7.0



    Returns

    -------

    S : ndarray

        Legendre series coefficient array of the integral.



    Raises

    ------

    ValueError

        If ``m < 0``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or

        ``np.ndim(scl) != 0``.



    See Also

    --------

    legder



    Notes

    -----

    Note that the result of each integration is *multiplied* by `scl`.

    Why is this important to note?  Say one is making a linear change of

    variable :math:`u = ax + b` in an integral relative to `x`.  Then

    :math:`dx = du/a`, so one will need to set `scl` equal to

    :math:`1/a` - perhaps not what one would have first thought.



    Also note that, in general, the result of integrating a C-series needs

    to be "reprojected" onto the C-series basis set.  Thus, typically,

    the result of this function is "unintuitive," albeit correct; see

    Examples section below.



    Examples

    --------

    >>> from numpy.polynomial import legendre as L

    >>> c = (1,2,3)

    >>> L.legint(c)

    array([ 0.33333333,  0.4       ,  0.66666667,  0.6       ]) # may vary

    >>> L.legint(c, 3)

    array([  1.66666667e-02,  -1.78571429e-02,   4.76190476e-02, # may vary

             -1.73472348e-18,   1.90476190e-02,   9.52380952e-03])

    >>> L.legint(c, k=3)

     array([ 3.33333333,  0.4       ,  0.66666667,  0.6       ]) # may vary

    >>> L.legint(c, lbnd=-2)

    array([ 7.33333333,  0.4       ,  0.66666667,  0.6       ]) # may vary

    >>> L.legint(c, scl=2)

    array([ 0.66666667,  0.8       ,  1.33333333,  1.2       ]) # may vary



    """
    c = np.array(c, ndmin=1, copy=True)
    if c.dtype.char in '?bBhHiIlLqQpP':
        c = c.astype(np.double)
    if not np.iterable(k):
        k = [k]
    cnt = pu._deprecate_as_int(m, "the order of integration")
    iaxis = pu._deprecate_as_int(axis, "the axis")
    if cnt < 0:
        raise ValueError("The order of integration must be non-negative")
    if len(k) > cnt:
        raise ValueError("Too many integration constants")
    if np.ndim(lbnd) != 0:
        raise ValueError("lbnd must be a scalar.")
    if np.ndim(scl) != 0:
        raise ValueError("scl must be a scalar.")
    iaxis = normalize_axis_index(iaxis, c.ndim)

    if cnt == 0:
        return c

    c = np.moveaxis(c, iaxis, 0)
    k = list(k) + [0]*(cnt - len(k))
    for i in range(cnt):
        n = len(c)
        c *= scl
        if n == 1 and np.all(c[0] == 0):
            c[0] += k[i]
        else:
            tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
            tmp[0] = c[0]*0
            tmp[1] = c[0]
            if n > 1:
                tmp[2] = c[1]/3
            for j in range(2, n):
                t = c[j]/(2*j + 1)
                tmp[j + 1] = t
                tmp[j - 1] -= t
            tmp[0] += k[i] - legval(lbnd, tmp)
            c = tmp
    c = np.moveaxis(c, 0, iaxis)
    return c


def legval(x, c, tensor=True):
    """

    Evaluate a Legendre series at points x.



    If `c` is of length `n + 1`, this function returns the value:



    .. math:: p(x) = c_0 * L_0(x) + c_1 * L_1(x) + ... + c_n * L_n(x)



    The parameter `x` is converted to an array only if it is a tuple or a

    list, otherwise it is treated as a scalar. In either case, either `x`

    or its elements must support multiplication and addition both with

    themselves and with the elements of `c`.



    If `c` is a 1-D array, then `p(x)` will have the same shape as `x`.  If

    `c` is multidimensional, then the shape of the result depends on the

    value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +

    x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that

    scalars have shape (,).



    Trailing zeros in the coefficients will be used in the evaluation, so

    they should be avoided if efficiency is a concern.



    Parameters

    ----------

    x : array_like, compatible object

        If `x` is a list or tuple, it is converted to an ndarray, otherwise

        it is left unchanged and treated as a scalar. In either case, `x`

        or its elements must support addition and multiplication with

        with themselves and with the elements of `c`.

    c : array_like

        Array of coefficients ordered so that the coefficients for terms of

        degree n are contained in c[n]. If `c` is multidimensional the

        remaining indices enumerate multiple polynomials. In the two

        dimensional case the coefficients may be thought of as stored in

        the columns of `c`.

    tensor : boolean, optional

        If True, the shape of the coefficient array is extended with ones

        on the right, one for each dimension of `x`. Scalars have dimension 0

        for this action. The result is that every column of coefficients in

        `c` is evaluated for every element of `x`. If False, `x` is broadcast

        over the columns of `c` for the evaluation.  This keyword is useful

        when `c` is multidimensional. The default value is True.



        .. versionadded:: 1.7.0



    Returns

    -------

    values : ndarray, algebra_like

        The shape of the return value is described above.



    See Also

    --------

    legval2d, leggrid2d, legval3d, leggrid3d



    Notes

    -----

    The evaluation uses Clenshaw recursion, aka synthetic division.



    """
    c = np.array(c, ndmin=1, copy=False)
    if c.dtype.char in '?bBhHiIlLqQpP':
        c = c.astype(np.double)
    if isinstance(x, (tuple, list)):
        x = np.asarray(x)
    if isinstance(x, np.ndarray) and tensor:
        c = c.reshape(c.shape + (1,)*x.ndim)

    if len(c) == 1:
        c0 = c[0]
        c1 = 0
    elif len(c) == 2:
        c0 = c[0]
        c1 = c[1]
    else:
        nd = len(c)
        c0 = c[-2]
        c1 = c[-1]
        for i in range(3, len(c) + 1):
            tmp = c0
            nd = nd - 1
            c0 = c[-i] - (c1*(nd - 1))/nd
            c1 = tmp + (c1*x*(2*nd - 1))/nd
    return c0 + c1*x


def legval2d(x, y, c):
    """

    Evaluate a 2-D Legendre series at points (x, y).



    This function returns the values:



    .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * L_i(x) * L_j(y)



    The parameters `x` and `y` are converted to arrays only if they are

    tuples or a lists, otherwise they are treated as a scalars and they

    must have the same shape after conversion. In either case, either `x`

    and `y` or their elements must support multiplication and addition both

    with themselves and with the elements of `c`.



    If `c` is a 1-D array a one is implicitly appended to its shape to make

    it 2-D. The shape of the result will be c.shape[2:] + x.shape.



    Parameters

    ----------

    x, y : array_like, compatible objects

        The two dimensional series is evaluated at the points `(x, y)`,

        where `x` and `y` must have the same shape. If `x` or `y` is a list

        or tuple, it is first converted to an ndarray, otherwise it is left

        unchanged and if it isn't an ndarray it is treated as a scalar.

    c : array_like

        Array of coefficients ordered so that the coefficient of the term

        of multi-degree i,j is contained in ``c[i,j]``. If `c` has

        dimension greater than two the remaining indices enumerate multiple

        sets of coefficients.



    Returns

    -------

    values : ndarray, compatible object

        The values of the two dimensional Legendre series at points formed

        from pairs of corresponding values from `x` and `y`.



    See Also

    --------

    legval, leggrid2d, legval3d, leggrid3d



    Notes

    -----



    .. versionadded:: 1.7.0



    """
    return pu._valnd(legval, c, x, y)


def leggrid2d(x, y, c):
    """

    Evaluate a 2-D Legendre series on the Cartesian product of x and y.



    This function returns the values:



    .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * L_i(a) * L_j(b)



    where the points `(a, b)` consist of all pairs formed by taking

    `a` from `x` and `b` from `y`. The resulting points form a grid with

    `x` in the first dimension and `y` in the second.



    The parameters `x` and `y` are converted to arrays only if they are

    tuples or a lists, otherwise they are treated as a scalars. In either

    case, either `x` and `y` or their elements must support multiplication

    and addition both with themselves and with the elements of `c`.



    If `c` has fewer than two dimensions, ones are implicitly appended to

    its shape to make it 2-D. The shape of the result will be c.shape[2:] +

    x.shape + y.shape.



    Parameters

    ----------

    x, y : array_like, compatible objects

        The two dimensional series is evaluated at the points in the

        Cartesian product of `x` and `y`.  If `x` or `y` is a list or

        tuple, it is first converted to an ndarray, otherwise it is left

        unchanged and, if it isn't an ndarray, it is treated as a scalar.

    c : array_like

        Array of coefficients ordered so that the coefficient of the term of

        multi-degree i,j is contained in `c[i,j]`. If `c` has dimension

        greater than two the remaining indices enumerate multiple sets of

        coefficients.



    Returns

    -------

    values : ndarray, compatible object

        The values of the two dimensional Chebyshev series at points in the

        Cartesian product of `x` and `y`.



    See Also

    --------

    legval, legval2d, legval3d, leggrid3d



    Notes

    -----



    .. versionadded:: 1.7.0



    """
    return pu._gridnd(legval, c, x, y)


def legval3d(x, y, z, c):
    """

    Evaluate a 3-D Legendre series at points (x, y, z).



    This function returns the values:



    .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * L_i(x) * L_j(y) * L_k(z)



    The parameters `x`, `y`, and `z` are converted to arrays only if

    they are tuples or a lists, otherwise they are treated as a scalars and

    they must have the same shape after conversion. In either case, either

    `x`, `y`, and `z` or their elements must support multiplication and

    addition both with themselves and with the elements of `c`.



    If `c` has fewer than 3 dimensions, ones are implicitly appended to its

    shape to make it 3-D. The shape of the result will be c.shape[3:] +

    x.shape.



    Parameters

    ----------

    x, y, z : array_like, compatible object

        The three dimensional series is evaluated at the points

        `(x, y, z)`, where `x`, `y`, and `z` must have the same shape.  If

        any of `x`, `y`, or `z` is a list or tuple, it is first converted

        to an ndarray, otherwise it is left unchanged and if it isn't an

        ndarray it is  treated as a scalar.

    c : array_like

        Array of coefficients ordered so that the coefficient of the term of

        multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension

        greater than 3 the remaining indices enumerate multiple sets of

        coefficients.



    Returns

    -------

    values : ndarray, compatible object

        The values of the multidimensional polynomial on points formed with

        triples of corresponding values from `x`, `y`, and `z`.



    See Also

    --------

    legval, legval2d, leggrid2d, leggrid3d



    Notes

    -----



    .. versionadded:: 1.7.0



    """
    return pu._valnd(legval, c, x, y, z)


def leggrid3d(x, y, z, c):
    """

    Evaluate a 3-D Legendre series on the Cartesian product of x, y, and z.



    This function returns the values:



    .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * L_i(a) * L_j(b) * L_k(c)



    where the points `(a, b, c)` consist of all triples formed by taking

    `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form

    a grid with `x` in the first dimension, `y` in the second, and `z` in

    the third.



    The parameters `x`, `y`, and `z` are converted to arrays only if they

    are tuples or a lists, otherwise they are treated as a scalars. In

    either case, either `x`, `y`, and `z` or their elements must support

    multiplication and addition both with themselves and with the elements

    of `c`.



    If `c` has fewer than three dimensions, ones are implicitly appended to

    its shape to make it 3-D. The shape of the result will be c.shape[3:] +

    x.shape + y.shape + z.shape.



    Parameters

    ----------

    x, y, z : array_like, compatible objects

        The three dimensional series is evaluated at the points in the

        Cartesian product of `x`, `y`, and `z`.  If `x`,`y`, or `z` is a

        list or tuple, it is first converted to an ndarray, otherwise it is

        left unchanged and, if it isn't an ndarray, it is treated as a

        scalar.

    c : array_like

        Array of coefficients ordered so that the coefficients for terms of

        degree i,j are contained in ``c[i,j]``. If `c` has dimension

        greater than two the remaining indices enumerate multiple sets of

        coefficients.



    Returns

    -------

    values : ndarray, compatible object

        The values of the two dimensional polynomial at points in the Cartesian

        product of `x` and `y`.



    See Also

    --------

    legval, legval2d, leggrid2d, legval3d



    Notes

    -----



    .. versionadded:: 1.7.0



    """
    return pu._gridnd(legval, c, x, y, z)


def legvander(x, deg):
    """Pseudo-Vandermonde matrix of given degree.



    Returns the pseudo-Vandermonde matrix of degree `deg` and sample points

    `x`. The pseudo-Vandermonde matrix is defined by



    .. math:: V[..., i] = L_i(x)



    where `0 <= i <= deg`. The leading indices of `V` index the elements of

    `x` and the last index is the degree of the Legendre polynomial.



    If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the

    array ``V = legvander(x, n)``, then ``np.dot(V, c)`` and

    ``legval(x, c)`` are the same up to roundoff. This equivalence is

    useful both for least squares fitting and for the evaluation of a large

    number of Legendre series of the same degree and sample points.



    Parameters

    ----------

    x : array_like

        Array of points. The dtype is converted to float64 or complex128

        depending on whether any of the elements are complex. If `x` is

        scalar it is converted to a 1-D array.

    deg : int

        Degree of the resulting matrix.



    Returns

    -------

    vander : ndarray

        The pseudo-Vandermonde matrix. The shape of the returned matrix is

        ``x.shape + (deg + 1,)``, where The last index is the degree of the

        corresponding Legendre polynomial.  The dtype will be the same as

        the converted `x`.



    """
    ideg = pu._deprecate_as_int(deg, "deg")
    if ideg < 0:
        raise ValueError("deg must be non-negative")

    x = np.array(x, copy=False, ndmin=1) + 0.0
    dims = (ideg + 1,) + x.shape
    dtyp = x.dtype
    v = np.empty(dims, dtype=dtyp)
    # Use forward recursion to generate the entries. This is not as accurate
    # as reverse recursion in this application but it is more efficient.
    v[0] = x*0 + 1
    if ideg > 0:
        v[1] = x
        for i in range(2, ideg + 1):
            v[i] = (v[i-1]*x*(2*i - 1) - v[i-2]*(i - 1))/i
    return np.moveaxis(v, 0, -1)


def legvander2d(x, y, deg):
    """Pseudo-Vandermonde matrix of given degrees.



    Returns the pseudo-Vandermonde matrix of degrees `deg` and sample

    points `(x, y)`. The pseudo-Vandermonde matrix is defined by



    .. math:: V[..., (deg[1] + 1)*i + j] = L_i(x) * L_j(y),



    where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of

    `V` index the points `(x, y)` and the last index encodes the degrees of

    the Legendre polynomials.



    If ``V = legvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`

    correspond to the elements of a 2-D coefficient array `c` of shape

    (xdeg + 1, ydeg + 1) in the order



    .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...



    and ``np.dot(V, c.flat)`` and ``legval2d(x, y, c)`` will be the same

    up to roundoff. This equivalence is useful both for least squares

    fitting and for the evaluation of a large number of 2-D Legendre

    series of the same degrees and sample points.



    Parameters

    ----------

    x, y : array_like

        Arrays of point coordinates, all of the same shape. The dtypes

        will be converted to either float64 or complex128 depending on

        whether any of the elements are complex. Scalars are converted to

        1-D arrays.

    deg : list of ints

        List of maximum degrees of the form [x_deg, y_deg].



    Returns

    -------

    vander2d : ndarray

        The shape of the returned matrix is ``x.shape + (order,)``, where

        :math:`order = (deg[0]+1)*(deg[1]+1)`.  The dtype will be the same

        as the converted `x` and `y`.



    See Also

    --------

    legvander, legvander3d, legval2d, legval3d



    Notes

    -----



    .. versionadded:: 1.7.0



    """
    return pu._vander_nd_flat((legvander, legvander), (x, y), deg)


def legvander3d(x, y, z, deg):
    """Pseudo-Vandermonde matrix of given degrees.



    Returns the pseudo-Vandermonde matrix of degrees `deg` and sample

    points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,

    then The pseudo-Vandermonde matrix is defined by



    .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = L_i(x)*L_j(y)*L_k(z),



    where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`.  The leading

    indices of `V` index the points `(x, y, z)` and the last index encodes

    the degrees of the Legendre polynomials.



    If ``V = legvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns

    of `V` correspond to the elements of a 3-D coefficient array `c` of

    shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order



    .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...



    and ``np.dot(V, c.flat)`` and ``legval3d(x, y, z, c)`` will be the

    same up to roundoff. This equivalence is useful both for least squares

    fitting and for the evaluation of a large number of 3-D Legendre

    series of the same degrees and sample points.



    Parameters

    ----------

    x, y, z : array_like

        Arrays of point coordinates, all of the same shape. The dtypes will

        be converted to either float64 or complex128 depending on whether

        any of the elements are complex. Scalars are converted to 1-D

        arrays.

    deg : list of ints

        List of maximum degrees of the form [x_deg, y_deg, z_deg].



    Returns

    -------

    vander3d : ndarray

        The shape of the returned matrix is ``x.shape + (order,)``, where

        :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`.  The dtype will

        be the same as the converted `x`, `y`, and `z`.



    See Also

    --------

    legvander, legvander3d, legval2d, legval3d



    Notes

    -----



    .. versionadded:: 1.7.0



    """
    return pu._vander_nd_flat((legvander, legvander, legvander), (x, y, z), deg)


def legfit(x, y, deg, rcond=None, full=False, w=None):
    """

    Least squares fit of Legendre series to data.



    Return the coefficients of a Legendre series of degree `deg` that is the

    least squares fit to the data values `y` given at points `x`. If `y` is

    1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple

    fits are done, one for each column of `y`, and the resulting

    coefficients are stored in the corresponding columns of a 2-D return.

    The fitted polynomial(s) are in the form



    .. math::  p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x),



    where `n` is `deg`.



    Parameters

    ----------

    x : array_like, shape (M,)

        x-coordinates of the M sample points ``(x[i], y[i])``.

    y : array_like, shape (M,) or (M, K)

        y-coordinates of the sample points. Several data sets of sample

        points sharing the same x-coordinates can be fitted at once by

        passing in a 2D-array that contains one dataset per column.

    deg : int or 1-D array_like

        Degree(s) of the fitting polynomials. If `deg` is a single integer

        all terms up to and including the `deg`'th term are included in the

        fit. For NumPy versions >= 1.11.0 a list of integers specifying the

        degrees of the terms to include may be used instead.

    rcond : float, optional

        Relative condition number of the fit. Singular values smaller than

        this relative to the largest singular value will be ignored. The

        default value is len(x)*eps, where eps is the relative precision of

        the float type, about 2e-16 in most cases.

    full : bool, optional

        Switch determining nature of return value. When it is False (the

        default) just the coefficients are returned, when True diagnostic

        information from the singular value decomposition is also returned.

    w : array_like, shape (`M`,), optional

        Weights. If not None, the contribution of each point

        ``(x[i],y[i])`` to the fit is weighted by ``w[i]``. Ideally the

        weights are chosen so that the errors of the products ``w[i]*y[i]``

        all have the same variance.  The default value is None.



        .. versionadded:: 1.5.0



    Returns

    -------

    coef : ndarray, shape (M,) or (M, K)

        Legendre coefficients ordered from low to high. If `y` was

        2-D, the coefficients for the data in column k of `y` are in

        column `k`. If `deg` is specified as a list, coefficients for

        terms not included in the fit are set equal to zero in the

        returned `coef`.



    [residuals, rank, singular_values, rcond] : list

        These values are only returned if `full` = True



        resid -- sum of squared residuals of the least squares fit

        rank -- the numerical rank of the scaled Vandermonde matrix

        sv -- singular values of the scaled Vandermonde matrix

        rcond -- value of `rcond`.



        For more details, see `numpy.linalg.lstsq`.



    Warns

    -----

    RankWarning

        The rank of the coefficient matrix in the least-squares fit is

        deficient. The warning is only raised if `full` = False.  The

        warnings can be turned off by



        >>> import warnings

        >>> warnings.simplefilter('ignore', np.RankWarning)



    See Also

    --------

    numpy.polynomial.polynomial.polyfit

    numpy.polynomial.chebyshev.chebfit

    numpy.polynomial.laguerre.lagfit

    numpy.polynomial.hermite.hermfit

    numpy.polynomial.hermite_e.hermefit

    legval : Evaluates a Legendre series.

    legvander : Vandermonde matrix of Legendre series.

    legweight : Legendre weight function (= 1).

    numpy.linalg.lstsq : Computes a least-squares fit from the matrix.

    scipy.interpolate.UnivariateSpline : Computes spline fits.



    Notes

    -----

    The solution is the coefficients of the Legendre series `p` that

    minimizes the sum of the weighted squared errors



    .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,



    where :math:`w_j` are the weights. This problem is solved by setting up

    as the (typically) overdetermined matrix equation



    .. math:: V(x) * c = w * y,



    where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the

    coefficients to be solved for, `w` are the weights, and `y` are the

    observed values.  This equation is then solved using the singular value

    decomposition of `V`.



    If some of the singular values of `V` are so small that they are

    neglected, then a `RankWarning` will be issued. This means that the

    coefficient values may be poorly determined. Using a lower order fit

    will usually get rid of the warning.  The `rcond` parameter can also be

    set to a value smaller than its default, but the resulting fit may be

    spurious and have large contributions from roundoff error.



    Fits using Legendre series are usually better conditioned than fits

    using power series, but much can depend on the distribution of the

    sample points and the smoothness of the data. If the quality of the fit

    is inadequate splines may be a good alternative.



    References

    ----------

    .. [1] Wikipedia, "Curve fitting",

           https://en.wikipedia.org/wiki/Curve_fitting



    Examples

    --------



    """
    return pu._fit(legvander, x, y, deg, rcond, full, w)


def legcompanion(c):
    """Return the scaled companion matrix of c.



    The basis polynomials are scaled so that the companion matrix is

    symmetric when `c` is an Legendre basis polynomial. This provides

    better eigenvalue estimates than the unscaled case and for basis

    polynomials the eigenvalues are guaranteed to be real if

    `numpy.linalg.eigvalsh` is used to obtain them.



    Parameters

    ----------

    c : array_like

        1-D array of Legendre series coefficients ordered from low to high

        degree.



    Returns

    -------

    mat : ndarray

        Scaled companion matrix of dimensions (deg, deg).



    Notes

    -----



    .. versionadded:: 1.7.0



    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        raise ValueError('Series must have maximum degree of at least 1.')
    if len(c) == 2:
        return np.array([[-c[0]/c[1]]])

    n = len(c) - 1
    mat = np.zeros((n, n), dtype=c.dtype)
    scl = 1./np.sqrt(2*np.arange(n) + 1)
    top = mat.reshape(-1)[1::n+1]
    bot = mat.reshape(-1)[n::n+1]
    top[...] = np.arange(1, n)*scl[:n-1]*scl[1:n]
    bot[...] = top
    mat[:, -1] -= (c[:-1]/c[-1])*(scl/scl[-1])*(n/(2*n - 1))
    return mat


def legroots(c):
    """

    Compute the roots of a Legendre series.



    Return the roots (a.k.a. "zeros") of the polynomial



    .. math:: p(x) = \\sum_i c[i] * L_i(x).



    Parameters

    ----------

    c : 1-D array_like

        1-D array of coefficients.



    Returns

    -------

    out : ndarray

        Array of the roots of the series. If all the roots are real,

        then `out` is also real, otherwise it is complex.



    See Also

    --------

    numpy.polynomial.polynomial.polyroots

    numpy.polynomial.chebyshev.chebroots

    numpy.polynomial.laguerre.lagroots

    numpy.polynomial.hermite.hermroots

    numpy.polynomial.hermite_e.hermeroots



    Notes

    -----

    The root estimates are obtained as the eigenvalues of the companion

    matrix, Roots far from the origin of the complex plane may have large

    errors due to the numerical instability of the series for such values.

    Roots with multiplicity greater than 1 will also show larger errors as

    the value of the series near such points is relatively insensitive to

    errors in the roots. Isolated roots near the origin can be improved by

    a few iterations of Newton's method.



    The Legendre series basis polynomials aren't powers of ``x`` so the

    results of this function may seem unintuitive.



    Examples

    --------

    >>> import numpy.polynomial.legendre as leg

    >>> leg.legroots((1, 2, 3, 4)) # 4L_3 + 3L_2 + 2L_1 + 1L_0, all real roots

    array([-0.85099543, -0.11407192,  0.51506735]) # may vary



    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-c[0]/c[1]])

    # rotated companion matrix reduces error
    m = legcompanion(c)[::-1,::-1]
    r = la.eigvals(m)
    r.sort()
    return r


def leggauss(deg):
    """

    Gauss-Legendre quadrature.



    Computes the sample points and weights for Gauss-Legendre quadrature.

    These sample points and weights will correctly integrate polynomials of

    degree :math:`2*deg - 1` or less over the interval :math:`[-1, 1]` with

    the weight function :math:`f(x) = 1`.



    Parameters

    ----------

    deg : int

        Number of sample points and weights. It must be >= 1.



    Returns

    -------

    x : ndarray

        1-D ndarray containing the sample points.

    y : ndarray

        1-D ndarray containing the weights.



    Notes

    -----



    .. versionadded:: 1.7.0



    The results have only been tested up to degree 100, higher degrees may

    be problematic. The weights are determined by using the fact that



    .. math:: w_k = c / (L'_n(x_k) * L_{n-1}(x_k))



    where :math:`c` is a constant independent of :math:`k` and :math:`x_k`

    is the k'th root of :math:`L_n`, and then scaling the results to get

    the right value when integrating 1.



    """
    ideg = pu._deprecate_as_int(deg, "deg")
    if ideg <= 0:
        raise ValueError("deg must be a positive integer")

    # first approximation of roots. We use the fact that the companion
    # matrix is symmetric in this case in order to obtain better zeros.
    c = np.array([0]*deg + [1])
    m = legcompanion(c)
    x = la.eigvalsh(m)

    # improve roots by one application of Newton
    dy = legval(x, c)
    df = legval(x, legder(c))
    x -= dy/df

    # compute the weights. We scale the factor to avoid possible numerical
    # overflow.
    fm = legval(x, c[1:])
    fm /= np.abs(fm).max()
    df /= np.abs(df).max()
    w = 1/(fm * df)

    # for Legendre we can also symmetrize
    w = (w + w[::-1])/2
    x = (x - x[::-1])/2

    # scale w to get the right value
    w *= 2. / w.sum()

    return x, w


def legweight(x):
    """

    Weight function of the Legendre polynomials.



    The weight function is :math:`1` and the interval of integration is

    :math:`[-1, 1]`. The Legendre polynomials are orthogonal, but not

    normalized, with respect to this weight function.



    Parameters

    ----------

    x : array_like

       Values at which the weight function will be computed.



    Returns

    -------

    w : ndarray

       The weight function at `x`.



    Notes

    -----



    .. versionadded:: 1.7.0



    """
    w = x*0.0 + 1.0
    return w

#
# Legendre series class
#

class Legendre(ABCPolyBase):
    """A Legendre series class.



    The Legendre class provides the standard Python numerical methods

    '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the

    attributes and methods listed in the `ABCPolyBase` documentation.



    Parameters

    ----------

    coef : array_like

        Legendre coefficients in order of increasing degree, i.e.,

        ``(1, 2, 3)`` gives ``1*P_0(x) + 2*P_1(x) + 3*P_2(x)``.

    domain : (2,) array_like, optional

        Domain to use. The interval ``[domain[0], domain[1]]`` is mapped

        to the interval ``[window[0], window[1]]`` by shifting and scaling.

        The default value is [-1, 1].

    window : (2,) array_like, optional

        Window, see `domain` for its use. The default value is [-1, 1].



        .. versionadded:: 1.6.0



    """
    # Virtual Functions
    _add = staticmethod(legadd)
    _sub = staticmethod(legsub)
    _mul = staticmethod(legmul)
    _div = staticmethod(legdiv)
    _pow = staticmethod(legpow)
    _val = staticmethod(legval)
    _int = staticmethod(legint)
    _der = staticmethod(legder)
    _fit = staticmethod(legfit)
    _line = staticmethod(legline)
    _roots = staticmethod(legroots)
    _fromroots = staticmethod(legfromroots)

    # Virtual properties
    domain = np.array(legdomain)
    window = np.array(legdomain)
    basis_name = 'P'