Kano001's picture
Upload 280 files
e11e4fe verified
raw
history blame
8.38 kB
# # Unity ML-Agents Toolkit
# ## ML-Agent Learning (PPO)
# Contains an implementation of PPO as described in: https://arxiv.org/abs/1707.06347
from typing import cast, Type, Union, Dict, Any
import numpy as np
from mlagents_envs.base_env import BehaviorSpec
from mlagents_envs.logging_util import get_logger
from mlagents.trainers.buffer import BufferKey, RewardSignalUtil
from mlagents.trainers.trainer.on_policy_trainer import OnPolicyTrainer
from mlagents.trainers.policy.policy import Policy
from mlagents.trainers.trainer.trainer_utils import get_gae
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer
from mlagents.trainers.policy.torch_policy import TorchPolicy
from mlagents.trainers.ppo.optimizer_torch import TorchPPOOptimizer, PPOSettings
from mlagents.trainers.trajectory import Trajectory
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers
from mlagents.trainers.settings import TrainerSettings
from mlagents.trainers.torch_entities.networks import SimpleActor, SharedActorCritic
logger = get_logger(__name__)
TRAINER_NAME = "ppo"
class PPOTrainer(OnPolicyTrainer):
"""The PPOTrainer is an implementation of the PPO algorithm."""
def __init__(
self,
behavior_name: str,
reward_buff_cap: int,
trainer_settings: TrainerSettings,
training: bool,
load: bool,
seed: int,
artifact_path: str,
):
"""
Responsible for collecting experiences and training PPO model.
:param behavior_name: The name of the behavior associated with trainer config
:param reward_buff_cap: Max reward history to track in the reward buffer
:param trainer_settings: The parameters for the trainer.
:param training: Whether the trainer is set for training.
:param load: Whether the model should be loaded.
:param seed: The seed the model will be initialized with
:param artifact_path: The directory within which to store artifacts from this trainer.
"""
super().__init__(
behavior_name,
reward_buff_cap,
trainer_settings,
training,
load,
seed,
artifact_path,
)
self.hyperparameters: PPOSettings = cast(
PPOSettings, self.trainer_settings.hyperparameters
)
self.seed = seed
self.shared_critic = self.hyperparameters.shared_critic
self.policy: TorchPolicy = None # type: ignore
def _process_trajectory(self, trajectory: Trajectory) -> None:
"""
Takes a trajectory and processes it, putting it into the update buffer.
Processing involves calculating value and advantage targets for model updating step.
:param trajectory: The Trajectory tuple containing the steps to be processed.
"""
super()._process_trajectory(trajectory)
agent_id = trajectory.agent_id # All the agents should have the same ID
agent_buffer_trajectory = trajectory.to_agentbuffer()
# Check if we used group rewards, warn if so.
self._warn_if_group_reward(agent_buffer_trajectory)
# Update the normalization
if self.is_training:
self.policy.actor.update_normalization(agent_buffer_trajectory)
self.optimizer.critic.update_normalization(agent_buffer_trajectory)
# Get all value estimates
(
value_estimates,
value_next,
value_memories,
) = self.optimizer.get_trajectory_value_estimates(
agent_buffer_trajectory,
trajectory.next_obs,
trajectory.done_reached and not trajectory.interrupted,
)
if value_memories is not None:
agent_buffer_trajectory[BufferKey.CRITIC_MEMORY].set(value_memories)
for name, v in value_estimates.items():
agent_buffer_trajectory[RewardSignalUtil.value_estimates_key(name)].extend(
v
)
self._stats_reporter.add_stat(
f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Value Estimate",
np.mean(v),
)
# Evaluate all reward functions
self.collected_rewards["environment"][agent_id] += np.sum(
agent_buffer_trajectory[BufferKey.ENVIRONMENT_REWARDS]
)
for name, reward_signal in self.optimizer.reward_signals.items():
evaluate_result = (
reward_signal.evaluate(agent_buffer_trajectory) * reward_signal.strength
)
agent_buffer_trajectory[RewardSignalUtil.rewards_key(name)].extend(
evaluate_result
)
# Report the reward signals
self.collected_rewards[name][agent_id] += np.sum(evaluate_result)
# Compute GAE and returns
tmp_advantages = []
tmp_returns = []
for name in self.optimizer.reward_signals:
bootstrap_value = value_next[name]
local_rewards = agent_buffer_trajectory[
RewardSignalUtil.rewards_key(name)
].get_batch()
local_value_estimates = agent_buffer_trajectory[
RewardSignalUtil.value_estimates_key(name)
].get_batch()
local_advantage = get_gae(
rewards=local_rewards,
value_estimates=local_value_estimates,
value_next=bootstrap_value,
gamma=self.optimizer.reward_signals[name].gamma,
lambd=self.hyperparameters.lambd,
)
local_return = local_advantage + local_value_estimates
# This is later use as target for the different value estimates
agent_buffer_trajectory[RewardSignalUtil.returns_key(name)].set(
local_return
)
agent_buffer_trajectory[RewardSignalUtil.advantage_key(name)].set(
local_advantage
)
tmp_advantages.append(local_advantage)
tmp_returns.append(local_return)
# Get global advantages
global_advantages = list(
np.mean(np.array(tmp_advantages, dtype=np.float32), axis=0)
)
global_returns = list(np.mean(np.array(tmp_returns, dtype=np.float32), axis=0))
agent_buffer_trajectory[BufferKey.ADVANTAGES].set(global_advantages)
agent_buffer_trajectory[BufferKey.DISCOUNTED_RETURNS].set(global_returns)
self._append_to_update_buffer(agent_buffer_trajectory)
# If this was a terminal trajectory, append stats and reset reward collection
if trajectory.done_reached:
self._update_end_episode_stats(agent_id, self.optimizer)
def create_optimizer(self) -> TorchOptimizer:
return TorchPPOOptimizer( # type: ignore
cast(TorchPolicy, self.policy), self.trainer_settings # type: ignore
) # type: ignore
def create_policy(
self, parsed_behavior_id: BehaviorIdentifiers, behavior_spec: BehaviorSpec
) -> TorchPolicy:
"""
Creates a policy with a PyTorch backend and PPO hyperparameters
:param parsed_behavior_id:
:param behavior_spec: specifications for policy construction
:return policy
"""
actor_cls: Union[Type[SimpleActor], Type[SharedActorCritic]] = SimpleActor
actor_kwargs: Dict[str, Any] = {
"conditional_sigma": False,
"tanh_squash": False,
}
if self.shared_critic:
reward_signal_configs = self.trainer_settings.reward_signals
reward_signal_names = [
key.value for key, _ in reward_signal_configs.items()
]
actor_cls = SharedActorCritic
actor_kwargs.update({"stream_names": reward_signal_names})
policy = TorchPolicy(
self.seed,
behavior_spec,
self.trainer_settings.network_settings,
actor_cls,
actor_kwargs,
)
return policy
def get_policy(self, name_behavior_id: str) -> Policy:
"""
Gets policy from trainer associated with name_behavior_id
:param name_behavior_id: full identifier of policy
"""
return self.policy
@staticmethod
def get_trainer_name() -> str:
return TRAINER_NAME