Spaces:
Running
Running
from typing import Optional | |
from .communicator import Communicator, PollCallback | |
from .environment import UnityEnvironment | |
from mlagents_envs.communicator_objects.unity_rl_output_pb2 import UnityRLOutputProto | |
from mlagents_envs.communicator_objects.brain_parameters_pb2 import ( | |
BrainParametersProto, | |
ActionSpecProto, | |
) | |
from mlagents_envs.communicator_objects.unity_rl_initialization_output_pb2 import ( | |
UnityRLInitializationOutputProto, | |
) | |
from mlagents_envs.communicator_objects.unity_input_pb2 import UnityInputProto | |
from mlagents_envs.communicator_objects.unity_output_pb2 import UnityOutputProto | |
from mlagents_envs.communicator_objects.agent_info_pb2 import AgentInfoProto | |
from mlagents_envs.communicator_objects.observation_pb2 import ( | |
ObservationProto, | |
NONE as COMPRESSION_TYPE_NONE, | |
PNG as COMPRESSION_TYPE_PNG, | |
) | |
class MockCommunicator(Communicator): | |
def __init__( | |
self, | |
discrete_action=False, | |
visual_inputs=0, | |
num_agents=3, | |
brain_name="RealFakeBrain", | |
vec_obs_size=3, | |
): | |
""" | |
Python side of the grpc communication. Python is the client and Unity the server | |
""" | |
super().__init__() | |
self.is_discrete = discrete_action | |
self.steps = 0 | |
self.visual_inputs = visual_inputs | |
self.has_been_closed = False | |
self.num_agents = num_agents | |
self.brain_name = brain_name | |
self.vec_obs_size = vec_obs_size | |
def initialize( | |
self, inputs: UnityInputProto, poll_callback: Optional[PollCallback] = None | |
) -> UnityOutputProto: | |
if self.is_discrete: | |
action_spec = ActionSpecProto( | |
num_discrete_actions=2, discrete_branch_sizes=[3, 2] | |
) | |
else: | |
action_spec = ActionSpecProto(num_continuous_actions=2) | |
bp = BrainParametersProto( | |
brain_name=self.brain_name, is_training=True, action_spec=action_spec | |
) | |
rl_init = UnityRLInitializationOutputProto( | |
name="RealFakeAcademy", | |
communication_version=UnityEnvironment.API_VERSION, | |
package_version="mock_package_version", | |
log_path="", | |
brain_parameters=[bp], | |
) | |
output = UnityRLOutputProto(agentInfos=self._get_agent_infos()) | |
return UnityOutputProto(rl_initialization_output=rl_init, rl_output=output) | |
def _get_agent_infos(self): | |
dict_agent_info = {} | |
list_agent_info = [] | |
vector_obs = [1, 2, 3] | |
observations = [ | |
ObservationProto( | |
compressed_data=None, | |
shape=[30, 40, 3], | |
compression_type=COMPRESSION_TYPE_PNG, | |
) | |
for _ in range(self.visual_inputs) | |
] | |
vector_obs_proto = ObservationProto( | |
float_data=ObservationProto.FloatData(data=vector_obs), | |
shape=[len(vector_obs)], | |
compression_type=COMPRESSION_TYPE_NONE, | |
) | |
observations.append(vector_obs_proto) | |
for i in range(self.num_agents): | |
list_agent_info.append( | |
AgentInfoProto( | |
reward=1, | |
done=(i == 2), | |
max_step_reached=False, | |
id=i, | |
observations=observations, | |
) | |
) | |
dict_agent_info["RealFakeBrain"] = UnityRLOutputProto.ListAgentInfoProto( | |
value=list_agent_info | |
) | |
return dict_agent_info | |
def exchange( | |
self, inputs: UnityInputProto, poll_callback: Optional[PollCallback] = None | |
) -> UnityOutputProto: | |
result = UnityRLOutputProto(agentInfos=self._get_agent_infos()) | |
return UnityOutputProto(rl_output=result) | |
def close(self): | |
""" | |
Sends a shutdown signal to the unity environment, and closes the grpc connection. | |
""" | |
self.has_been_closed = True | |