Spaces:
Running
Running
""" | |
This module implements computation of elementary transcendental | |
functions (powers, logarithms, trigonometric and hyperbolic | |
functions, inverse trigonometric and hyperbolic) for real | |
floating-point numbers. | |
For complex and interval implementations of the same functions, | |
see libmpc and libmpi. | |
""" | |
import math | |
from bisect import bisect | |
from .backend import xrange | |
from .backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_FIVE, BACKEND | |
from .libmpf import ( | |
round_floor, round_ceiling, round_down, round_up, | |
round_nearest, round_fast, | |
ComplexResult, | |
bitcount, bctable, lshift, rshift, giant_steps, sqrt_fixed, | |
from_int, to_int, from_man_exp, to_fixed, to_float, from_float, | |
from_rational, normalize, | |
fzero, fone, fnone, fhalf, finf, fninf, fnan, | |
mpf_cmp, mpf_sign, mpf_abs, | |
mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_div, mpf_shift, | |
mpf_rdiv_int, mpf_pow_int, mpf_sqrt, | |
reciprocal_rnd, negative_rnd, mpf_perturb, | |
isqrt_fast | |
) | |
from .libintmath import ifib | |
#------------------------------------------------------------------------------- | |
# Tuning parameters | |
#------------------------------------------------------------------------------- | |
# Cutoff for computing exp from cosh+sinh. This reduces the | |
# number of terms by half, but also requires a square root which | |
# is expensive with the pure-Python square root code. | |
if BACKEND == 'python': | |
EXP_COSH_CUTOFF = 600 | |
else: | |
EXP_COSH_CUTOFF = 400 | |
# Cutoff for using more than 2 series | |
EXP_SERIES_U_CUTOFF = 1500 | |
# Also basically determined by sqrt | |
if BACKEND == 'python': | |
COS_SIN_CACHE_PREC = 400 | |
else: | |
COS_SIN_CACHE_PREC = 200 | |
COS_SIN_CACHE_STEP = 8 | |
cos_sin_cache = {} | |
# Number of integer logarithms to cache (for zeta sums) | |
MAX_LOG_INT_CACHE = 2000 | |
log_int_cache = {} | |
LOG_TAYLOR_PREC = 2500 # Use Taylor series with caching up to this prec | |
LOG_TAYLOR_SHIFT = 9 # Cache log values in steps of size 2^-N | |
log_taylor_cache = {} | |
# prec/size ratio of x for fastest convergence in AGM formula | |
LOG_AGM_MAG_PREC_RATIO = 20 | |
ATAN_TAYLOR_PREC = 3000 # Same as for log | |
ATAN_TAYLOR_SHIFT = 7 # steps of size 2^-N | |
atan_taylor_cache = {} | |
# ~= next power of two + 20 | |
cache_prec_steps = [22,22] | |
for k in xrange(1, bitcount(LOG_TAYLOR_PREC)+1): | |
cache_prec_steps += [min(2**k,LOG_TAYLOR_PREC)+20] * 2**(k-1) | |
#----------------------------------------------------------------------------# | |
# # | |
# Elementary mathematical constants # | |
# # | |
#----------------------------------------------------------------------------# | |
def constant_memo(f): | |
""" | |
Decorator for caching computed values of mathematical | |
constants. This decorator should be applied to a | |
function taking a single argument prec as input and | |
returning a fixed-point value with the given precision. | |
""" | |
f.memo_prec = -1 | |
f.memo_val = None | |
def g(prec, **kwargs): | |
memo_prec = f.memo_prec | |
if prec <= memo_prec: | |
return f.memo_val >> (memo_prec-prec) | |
newprec = int(prec*1.05+10) | |
f.memo_val = f(newprec, **kwargs) | |
f.memo_prec = newprec | |
return f.memo_val >> (newprec-prec) | |
g.__name__ = f.__name__ | |
g.__doc__ = f.__doc__ | |
return g | |
def def_mpf_constant(fixed): | |
""" | |
Create a function that computes the mpf value for a mathematical | |
constant, given a function that computes the fixed-point value. | |
Assumptions: the constant is positive and has magnitude ~= 1; | |
the fixed-point function rounds to floor. | |
""" | |
def f(prec, rnd=round_fast): | |
wp = prec + 20 | |
v = fixed(wp) | |
if rnd in (round_up, round_ceiling): | |
v += 1 | |
return normalize(0, v, -wp, bitcount(v), prec, rnd) | |
f.__doc__ = fixed.__doc__ | |
return f | |
def bsp_acot(q, a, b, hyperbolic): | |
if b - a == 1: | |
a1 = MPZ(2*a + 3) | |
if hyperbolic or a&1: | |
return MPZ_ONE, a1 * q**2, a1 | |
else: | |
return -MPZ_ONE, a1 * q**2, a1 | |
m = (a+b)//2 | |
p1, q1, r1 = bsp_acot(q, a, m, hyperbolic) | |
p2, q2, r2 = bsp_acot(q, m, b, hyperbolic) | |
return q2*p1 + r1*p2, q1*q2, r1*r2 | |
# the acoth(x) series converges like the geometric series for x^2 | |
# N = ceil(p*log(2)/(2*log(x))) | |
def acot_fixed(a, prec, hyperbolic): | |
""" | |
Compute acot(a) or acoth(a) for an integer a with binary splitting; see | |
http://numbers.computation.free.fr/Constants/Algorithms/splitting.html | |
""" | |
N = int(0.35 * prec/math.log(a) + 20) | |
p, q, r = bsp_acot(a, 0,N, hyperbolic) | |
return ((p+q)<<prec)//(q*a) | |
def machin(coefs, prec, hyperbolic=False): | |
""" | |
Evaluate a Machin-like formula, i.e., a linear combination of | |
acot(n) or acoth(n) for specific integer values of n, using fixed- | |
point arithmetic. The input should be a list [(c, n), ...], giving | |
c*acot[h](n) + ... | |
""" | |
extraprec = 10 | |
s = MPZ_ZERO | |
for a, b in coefs: | |
s += MPZ(a) * acot_fixed(MPZ(b), prec+extraprec, hyperbolic) | |
return (s >> extraprec) | |
# Logarithms of integers are needed for various computations involving | |
# logarithms, powers, radix conversion, etc | |
def ln2_fixed(prec): | |
""" | |
Computes ln(2). This is done with a hyperbolic Machin-type formula, | |
with binary splitting at high precision. | |
""" | |
return machin([(18, 26), (-2, 4801), (8, 8749)], prec, True) | |
def ln10_fixed(prec): | |
""" | |
Computes ln(10). This is done with a hyperbolic Machin-type formula. | |
""" | |
return machin([(46, 31), (34, 49), (20, 161)], prec, True) | |
r""" | |
For computation of pi, we use the Chudnovsky series: | |
oo | |
___ k | |
1 \ (-1) (6 k)! (A + B k) | |
----- = ) ----------------------- | |
12 pi /___ 3 3k+3/2 | |
(3 k)! (k!) C | |
k = 0 | |
where A, B, and C are certain integer constants. This series adds roughly | |
14 digits per term. Note that C^(3/2) can be extracted so that the | |
series contains only rational terms. This makes binary splitting very | |
efficient. | |
The recurrence formulas for the binary splitting were taken from | |
ftp://ftp.gmplib.org/pub/src/gmp-chudnovsky.c | |
Previously, Machin's formula was used at low precision and the AGM iteration | |
was used at high precision. However, the Chudnovsky series is essentially as | |
fast as the Machin formula at low precision and in practice about 3x faster | |
than the AGM at high precision (despite theoretically having a worse | |
asymptotic complexity), so there is no reason not to use it in all cases. | |
""" | |
# Constants in Chudnovsky's series | |
CHUD_A = MPZ(13591409) | |
CHUD_B = MPZ(545140134) | |
CHUD_C = MPZ(640320) | |
CHUD_D = MPZ(12) | |
def bs_chudnovsky(a, b, level, verbose): | |
""" | |
Computes the sum from a to b of the series in the Chudnovsky | |
formula. Returns g, p, q where p/q is the sum as an exact | |
fraction and g is a temporary value used to save work | |
for recursive calls. | |
""" | |
if b-a == 1: | |
g = MPZ((6*b-5)*(2*b-1)*(6*b-1)) | |
p = b**3 * CHUD_C**3 // 24 | |
q = (-1)**b * g * (CHUD_A+CHUD_B*b) | |
else: | |
if verbose and level < 4: | |
print(" binary splitting", a, b) | |
mid = (a+b)//2 | |
g1, p1, q1 = bs_chudnovsky(a, mid, level+1, verbose) | |
g2, p2, q2 = bs_chudnovsky(mid, b, level+1, verbose) | |
p = p1*p2 | |
g = g1*g2 | |
q = q1*p2 + q2*g1 | |
return g, p, q | |
def pi_fixed(prec, verbose=False, verbose_base=None): | |
""" | |
Compute floor(pi * 2**prec) as a big integer. | |
This is done using Chudnovsky's series (see comments in | |
libelefun.py for details). | |
""" | |
# The Chudnovsky series gives 14.18 digits per term | |
N = int(prec/3.3219280948/14.181647462 + 2) | |
if verbose: | |
print("binary splitting with N =", N) | |
g, p, q = bs_chudnovsky(0, N, 0, verbose) | |
sqrtC = isqrt_fast(CHUD_C<<(2*prec)) | |
v = p*CHUD_C*sqrtC//((q+CHUD_A*p)*CHUD_D) | |
return v | |
def degree_fixed(prec): | |
return pi_fixed(prec)//180 | |
def bspe(a, b): | |
""" | |
Sum series for exp(1)-1 between a, b, returning the result | |
as an exact fraction (p, q). | |
""" | |
if b-a == 1: | |
return MPZ_ONE, MPZ(b) | |
m = (a+b)//2 | |
p1, q1 = bspe(a, m) | |
p2, q2 = bspe(m, b) | |
return p1*q2+p2, q1*q2 | |
def e_fixed(prec): | |
""" | |
Computes exp(1). This is done using the ordinary Taylor series for | |
exp, with binary splitting. For a description of the algorithm, | |
see: | |
http://numbers.computation.free.fr/Constants/ | |
Algorithms/splitting.html | |
""" | |
# Slight overestimate of N needed for 1/N! < 2**(-prec) | |
# This could be tightened for large N. | |
N = int(1.1*prec/math.log(prec) + 20) | |
p, q = bspe(0,N) | |
return ((p+q)<<prec)//q | |
def phi_fixed(prec): | |
""" | |
Computes the golden ratio, (1+sqrt(5))/2 | |
""" | |
prec += 10 | |
a = isqrt_fast(MPZ_FIVE<<(2*prec)) + (MPZ_ONE << prec) | |
return a >> 11 | |
mpf_phi = def_mpf_constant(phi_fixed) | |
mpf_pi = def_mpf_constant(pi_fixed) | |
mpf_e = def_mpf_constant(e_fixed) | |
mpf_degree = def_mpf_constant(degree_fixed) | |
mpf_ln2 = def_mpf_constant(ln2_fixed) | |
mpf_ln10 = def_mpf_constant(ln10_fixed) | |
def ln_sqrt2pi_fixed(prec): | |
wp = prec + 10 | |
# ln(sqrt(2*pi)) = ln(2*pi)/2 | |
return to_fixed(mpf_log(mpf_shift(mpf_pi(wp), 1), wp), prec-1) | |
def sqrtpi_fixed(prec): | |
return sqrt_fixed(pi_fixed(prec), prec) | |
mpf_sqrtpi = def_mpf_constant(sqrtpi_fixed) | |
mpf_ln_sqrt2pi = def_mpf_constant(ln_sqrt2pi_fixed) | |
#----------------------------------------------------------------------------# | |
# # | |
# Powers # | |
# # | |
#----------------------------------------------------------------------------# | |
def mpf_pow(s, t, prec, rnd=round_fast): | |
""" | |
Compute s**t. Raises ComplexResult if s is negative and t is | |
fractional. | |
""" | |
ssign, sman, sexp, sbc = s | |
tsign, tman, texp, tbc = t | |
if ssign and texp < 0: | |
raise ComplexResult("negative number raised to a fractional power") | |
if texp >= 0: | |
return mpf_pow_int(s, (-1)**tsign * (tman<<texp), prec, rnd) | |
# s**(n/2) = sqrt(s)**n | |
if texp == -1: | |
if tman == 1: | |
if tsign: | |
return mpf_div(fone, mpf_sqrt(s, prec+10, | |
reciprocal_rnd[rnd]), prec, rnd) | |
return mpf_sqrt(s, prec, rnd) | |
else: | |
if tsign: | |
return mpf_pow_int(mpf_sqrt(s, prec+10, | |
reciprocal_rnd[rnd]), -tman, prec, rnd) | |
return mpf_pow_int(mpf_sqrt(s, prec+10, rnd), tman, prec, rnd) | |
# General formula: s**t = exp(t*log(s)) | |
# TODO: handle rnd direction of the logarithm carefully | |
c = mpf_log(s, prec+10, rnd) | |
return mpf_exp(mpf_mul(t, c), prec, rnd) | |
def int_pow_fixed(y, n, prec): | |
"""n-th power of a fixed point number with precision prec | |
Returns the power in the form man, exp, | |
man * 2**exp ~= y**n | |
""" | |
if n == 2: | |
return (y*y), 0 | |
bc = bitcount(y) | |
exp = 0 | |
workprec = 2 * (prec + 4*bitcount(n) + 4) | |
_, pm, pe, pbc = fone | |
while 1: | |
if n & 1: | |
pm = pm*y | |
pe = pe+exp | |
pbc += bc - 2 | |
pbc = pbc + bctable[int(pm >> pbc)] | |
if pbc > workprec: | |
pm = pm >> (pbc-workprec) | |
pe += pbc - workprec | |
pbc = workprec | |
n -= 1 | |
if not n: | |
break | |
y = y*y | |
exp = exp+exp | |
bc = bc + bc - 2 | |
bc = bc + bctable[int(y >> bc)] | |
if bc > workprec: | |
y = y >> (bc-workprec) | |
exp += bc - workprec | |
bc = workprec | |
n = n // 2 | |
return pm, pe | |
# froot(s, n, prec, rnd) computes the real n-th root of a | |
# positive mpf tuple s. | |
# To compute the root we start from a 50-bit estimate for r | |
# generated with ordinary floating-point arithmetic, and then refine | |
# the value to full accuracy using the iteration | |
# 1 / y \ | |
# r = --- | (n-1) * r + ---------- | | |
# n+1 n \ n r_n**(n-1) / | |
# which is simply Newton's method applied to the equation r**n = y. | |
# With giant_steps(start, prec+extra) = [p0,...,pm, prec+extra] | |
# and y = man * 2**-shift one has | |
# (man * 2**exp)**(1/n) = | |
# y**(1/n) * 2**(start-prec/n) * 2**(p0-start) * ... * 2**(prec+extra-pm) * | |
# 2**((exp+shift-(n-1)*prec)/n -extra)) | |
# The last factor is accounted for in the last line of froot. | |
def nthroot_fixed(y, n, prec, exp1): | |
start = 50 | |
try: | |
y1 = rshift(y, prec - n*start) | |
r = MPZ(int(y1**(1.0/n))) | |
except OverflowError: | |
y1 = from_int(y1, start) | |
fn = from_int(n) | |
fn = mpf_rdiv_int(1, fn, start) | |
r = mpf_pow(y1, fn, start) | |
r = to_int(r) | |
extra = 10 | |
extra1 = n | |
prevp = start | |
for p in giant_steps(start, prec+extra): | |
pm, pe = int_pow_fixed(r, n-1, prevp) | |
r2 = rshift(pm, (n-1)*prevp - p - pe - extra1) | |
B = lshift(y, 2*p-prec+extra1)//r2 | |
r = (B + (n-1) * lshift(r, p-prevp))//n | |
prevp = p | |
return r | |
def mpf_nthroot(s, n, prec, rnd=round_fast): | |
"""nth-root of a positive number | |
Use the Newton method when faster, otherwise use x**(1/n) | |
""" | |
sign, man, exp, bc = s | |
if sign: | |
raise ComplexResult("nth root of a negative number") | |
if not man: | |
if s == fnan: | |
return fnan | |
if s == fzero: | |
if n > 0: | |
return fzero | |
if n == 0: | |
return fone | |
return finf | |
# Infinity | |
if not n: | |
return fnan | |
if n < 0: | |
return fzero | |
return finf | |
flag_inverse = False | |
if n < 2: | |
if n == 0: | |
return fone | |
if n == 1: | |
return mpf_pos(s, prec, rnd) | |
if n == -1: | |
return mpf_div(fone, s, prec, rnd) | |
# n < 0 | |
rnd = reciprocal_rnd[rnd] | |
flag_inverse = True | |
extra_inverse = 5 | |
prec += extra_inverse | |
n = -n | |
if n > 20 and (n >= 20000 or prec < int(233 + 28.3 * n**0.62)): | |
prec2 = prec + 10 | |
fn = from_int(n) | |
nth = mpf_rdiv_int(1, fn, prec2) | |
r = mpf_pow(s, nth, prec2, rnd) | |
s = normalize(r[0], r[1], r[2], r[3], prec, rnd) | |
if flag_inverse: | |
return mpf_div(fone, s, prec-extra_inverse, rnd) | |
else: | |
return s | |
# Convert to a fixed-point number with prec2 bits. | |
prec2 = prec + 2*n - (prec%n) | |
# a few tests indicate that | |
# for 10 < n < 10**4 a bit more precision is needed | |
if n > 10: | |
prec2 += prec2//10 | |
prec2 = prec2 - prec2%n | |
# Mantissa may have more bits than we need. Trim it down. | |
shift = bc - prec2 | |
# Adjust exponents to make prec2 and exp+shift multiples of n. | |
sign1 = 0 | |
es = exp+shift | |
if es < 0: | |
sign1 = 1 | |
es = -es | |
if sign1: | |
shift += es%n | |
else: | |
shift -= es%n | |
man = rshift(man, shift) | |
extra = 10 | |
exp1 = ((exp+shift-(n-1)*prec2)//n) - extra | |
rnd_shift = 0 | |
if flag_inverse: | |
if rnd == 'u' or rnd == 'c': | |
rnd_shift = 1 | |
else: | |
if rnd == 'd' or rnd == 'f': | |
rnd_shift = 1 | |
man = nthroot_fixed(man+rnd_shift, n, prec2, exp1) | |
s = from_man_exp(man, exp1, prec, rnd) | |
if flag_inverse: | |
return mpf_div(fone, s, prec-extra_inverse, rnd) | |
else: | |
return s | |
def mpf_cbrt(s, prec, rnd=round_fast): | |
"""cubic root of a positive number""" | |
return mpf_nthroot(s, 3, prec, rnd) | |
#----------------------------------------------------------------------------# | |
# # | |
# Logarithms # | |
# # | |
#----------------------------------------------------------------------------# | |
def log_int_fixed(n, prec, ln2=None): | |
""" | |
Fast computation of log(n), caching the value for small n, | |
intended for zeta sums. | |
""" | |
if n in log_int_cache: | |
value, vprec = log_int_cache[n] | |
if vprec >= prec: | |
return value >> (vprec - prec) | |
wp = prec + 10 | |
if wp <= LOG_TAYLOR_SHIFT: | |
if ln2 is None: | |
ln2 = ln2_fixed(wp) | |
r = bitcount(n) | |
x = n << (wp-r) | |
v = log_taylor_cached(x, wp) + r*ln2 | |
else: | |
v = to_fixed(mpf_log(from_int(n), wp+5), wp) | |
if n < MAX_LOG_INT_CACHE: | |
log_int_cache[n] = (v, wp) | |
return v >> (wp-prec) | |
def agm_fixed(a, b, prec): | |
""" | |
Fixed-point computation of agm(a,b), assuming | |
a, b both close to unit magnitude. | |
""" | |
i = 0 | |
while 1: | |
anew = (a+b)>>1 | |
if i > 4 and abs(a-anew) < 8: | |
return a | |
b = isqrt_fast(a*b) | |
a = anew | |
i += 1 | |
return a | |
def log_agm(x, prec): | |
""" | |
Fixed-point computation of -log(x) = log(1/x), suitable | |
for large precision. It is required that 0 < x < 1. The | |
algorithm used is the Sasaki-Kanada formula | |
-log(x) = pi/agm(theta2(x)^2,theta3(x)^2). [1] | |
For faster convergence in the theta functions, x should | |
be chosen closer to 0. | |
Guard bits must be added by the caller. | |
HYPOTHESIS: if x = 2^(-n), n bits need to be added to | |
account for the truncation to a fixed-point number, | |
and this is the only significant cancellation error. | |
The number of bits lost to roundoff is small and can be | |
considered constant. | |
[1] Richard P. Brent, "Fast Algorithms for High-Precision | |
Computation of Elementary Functions (extended abstract)", | |
http://wwwmaths.anu.edu.au/~brent/pd/RNC7-Brent.pdf | |
""" | |
x2 = (x*x) >> prec | |
# Compute jtheta2(x)**2 | |
s = a = b = x2 | |
while a: | |
b = (b*x2) >> prec | |
a = (a*b) >> prec | |
s += a | |
s += (MPZ_ONE<<prec) | |
s = (s*s)>>(prec-2) | |
s = (s*isqrt_fast(x<<prec))>>prec | |
# Compute jtheta3(x)**2 | |
t = a = b = x | |
while a: | |
b = (b*x2) >> prec | |
a = (a*b) >> prec | |
t += a | |
t = (MPZ_ONE<<prec) + (t<<1) | |
t = (t*t)>>prec | |
# Final formula | |
p = agm_fixed(s, t, prec) | |
return (pi_fixed(prec) << prec) // p | |
def log_taylor(x, prec, r=0): | |
""" | |
Fixed-point calculation of log(x). It is assumed that x is close | |
enough to 1 for the Taylor series to converge quickly. Convergence | |
can be improved by specifying r > 0 to compute | |
log(x^(1/2^r))*2^r, at the cost of performing r square roots. | |
The caller must provide sufficient guard bits. | |
""" | |
for i in xrange(r): | |
x = isqrt_fast(x<<prec) | |
one = MPZ_ONE << prec | |
v = ((x-one)<<prec)//(x+one) | |
sign = v < 0 | |
if sign: | |
v = -v | |
v2 = (v*v) >> prec | |
v4 = (v2*v2) >> prec | |
s0 = v | |
s1 = v//3 | |
v = (v*v4) >> prec | |
k = 5 | |
while v: | |
s0 += v // k | |
k += 2 | |
s1 += v // k | |
v = (v*v4) >> prec | |
k += 2 | |
s1 = (s1*v2) >> prec | |
s = (s0+s1) << (1+r) | |
if sign: | |
return -s | |
return s | |
def log_taylor_cached(x, prec): | |
""" | |
Fixed-point computation of log(x), assuming x in (0.5, 2) | |
and prec <= LOG_TAYLOR_PREC. | |
""" | |
n = x >> (prec-LOG_TAYLOR_SHIFT) | |
cached_prec = cache_prec_steps[prec] | |
dprec = cached_prec - prec | |
if (n, cached_prec) in log_taylor_cache: | |
a, log_a = log_taylor_cache[n, cached_prec] | |
else: | |
a = n << (cached_prec - LOG_TAYLOR_SHIFT) | |
log_a = log_taylor(a, cached_prec, 8) | |
log_taylor_cache[n, cached_prec] = (a, log_a) | |
a >>= dprec | |
log_a >>= dprec | |
u = ((x - a) << prec) // a | |
v = (u << prec) // ((MPZ_TWO << prec) + u) | |
v2 = (v*v) >> prec | |
v4 = (v2*v2) >> prec | |
s0 = v | |
s1 = v//3 | |
v = (v*v4) >> prec | |
k = 5 | |
while v: | |
s0 += v//k | |
k += 2 | |
s1 += v//k | |
v = (v*v4) >> prec | |
k += 2 | |
s1 = (s1*v2) >> prec | |
s = (s0+s1) << 1 | |
return log_a + s | |
def mpf_log(x, prec, rnd=round_fast): | |
""" | |
Compute the natural logarithm of the mpf value x. If x is negative, | |
ComplexResult is raised. | |
""" | |
sign, man, exp, bc = x | |
#------------------------------------------------------------------ | |
# Handle special values | |
if not man: | |
if x == fzero: return fninf | |
if x == finf: return finf | |
if x == fnan: return fnan | |
if sign: | |
raise ComplexResult("logarithm of a negative number") | |
wp = prec + 20 | |
#------------------------------------------------------------------ | |
# Handle log(2^n) = log(n)*2. | |
# Here we catch the only possible exact value, log(1) = 0 | |
if man == 1: | |
if not exp: | |
return fzero | |
return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd) | |
mag = exp+bc | |
abs_mag = abs(mag) | |
#------------------------------------------------------------------ | |
# Handle x = 1+eps, where log(x) ~ x. We need to check for | |
# cancellation when moving to fixed-point math and compensate | |
# by increasing the precision. Note that abs_mag in (0, 1) <=> | |
# 0.5 < x < 2 and x != 1 | |
if abs_mag <= 1: | |
# Calculate t = x-1 to measure distance from 1 in bits | |
tsign = 1-abs_mag | |
if tsign: | |
tman = (MPZ_ONE<<bc) - man | |
else: | |
tman = man - (MPZ_ONE<<(bc-1)) | |
tbc = bitcount(tman) | |
cancellation = bc - tbc | |
if cancellation > wp: | |
t = normalize(tsign, tman, abs_mag-bc, tbc, tbc, 'n') | |
return mpf_perturb(t, tsign, prec, rnd) | |
else: | |
wp += cancellation | |
# TODO: if close enough to 1, we could use Taylor series | |
# even in the AGM precision range, since the Taylor series | |
# converges rapidly | |
#------------------------------------------------------------------ | |
# Another special case: | |
# n*log(2) is a good enough approximation | |
if abs_mag > 10000: | |
if bitcount(abs_mag) > wp: | |
return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd) | |
#------------------------------------------------------------------ | |
# General case. | |
# Perform argument reduction using log(x) = log(x*2^n) - n*log(2): | |
# If we are in the Taylor precision range, choose magnitude 0 or 1. | |
# If we are in the AGM precision range, choose magnitude -m for | |
# some large m; benchmarking on one machine showed m = prec/20 to be | |
# optimal between 1000 and 100,000 digits. | |
if wp <= LOG_TAYLOR_PREC: | |
m = log_taylor_cached(lshift(man, wp-bc), wp) | |
if mag: | |
m += mag*ln2_fixed(wp) | |
else: | |
optimal_mag = -wp//LOG_AGM_MAG_PREC_RATIO | |
n = optimal_mag - mag | |
x = mpf_shift(x, n) | |
wp += (-optimal_mag) | |
m = -log_agm(to_fixed(x, wp), wp) | |
m -= n*ln2_fixed(wp) | |
return from_man_exp(m, -wp, prec, rnd) | |
def mpf_log_hypot(a, b, prec, rnd): | |
""" | |
Computes log(sqrt(a^2+b^2)) accurately. | |
""" | |
# If either a or b is inf/nan/0, assume it to be a | |
if not b[1]: | |
a, b = b, a | |
# a is inf/nan/0 | |
if not a[1]: | |
# both are inf/nan/0 | |
if not b[1]: | |
if a == b == fzero: | |
return fninf | |
if fnan in (a, b): | |
return fnan | |
# at least one term is (+/- inf)^2 | |
return finf | |
# only a is inf/nan/0 | |
if a == fzero: | |
# log(sqrt(0+b^2)) = log(|b|) | |
return mpf_log(mpf_abs(b), prec, rnd) | |
if a == fnan: | |
return fnan | |
return finf | |
# Exact | |
a2 = mpf_mul(a,a) | |
b2 = mpf_mul(b,b) | |
extra = 20 | |
# Not exact | |
h2 = mpf_add(a2, b2, prec+extra) | |
cancelled = mpf_add(h2, fnone, 10) | |
mag_cancelled = cancelled[2]+cancelled[3] | |
# Just redo the sum exactly if necessary (could be smarter | |
# and avoid memory allocation when a or b is precisely 1 | |
# and the other is tiny...) | |
if cancelled == fzero or mag_cancelled < -extra//2: | |
h2 = mpf_add(a2, b2, prec+extra-min(a2[2],b2[2])) | |
return mpf_shift(mpf_log(h2, prec, rnd), -1) | |
#---------------------------------------------------------------------- | |
# Inverse tangent | |
# | |
def atan_newton(x, prec): | |
if prec >= 100: | |
r = math.atan(int((x>>(prec-53)))/2.0**53) | |
else: | |
r = math.atan(int(x)/2.0**prec) | |
prevp = 50 | |
r = MPZ(int(r * 2.0**53) >> (53-prevp)) | |
extra_p = 50 | |
for wp in giant_steps(prevp, prec): | |
wp += extra_p | |
r = r << (wp-prevp) | |
cos, sin = cos_sin_fixed(r, wp) | |
tan = (sin << wp) // cos | |
a = ((tan-rshift(x, prec-wp)) << wp) // ((MPZ_ONE<<wp) + ((tan**2)>>wp)) | |
r = r - a | |
prevp = wp | |
return rshift(r, prevp-prec) | |
def atan_taylor_get_cached(n, prec): | |
# Taylor series with caching wins up to huge precisions | |
# To avoid unnecessary precomputation at low precision, we | |
# do it in steps | |
# Round to next power of 2 | |
prec2 = (1<<(bitcount(prec-1))) + 20 | |
dprec = prec2 - prec | |
if (n, prec2) in atan_taylor_cache: | |
a, atan_a = atan_taylor_cache[n, prec2] | |
else: | |
a = n << (prec2 - ATAN_TAYLOR_SHIFT) | |
atan_a = atan_newton(a, prec2) | |
atan_taylor_cache[n, prec2] = (a, atan_a) | |
return (a >> dprec), (atan_a >> dprec) | |
def atan_taylor(x, prec): | |
n = (x >> (prec-ATAN_TAYLOR_SHIFT)) | |
a, atan_a = atan_taylor_get_cached(n, prec) | |
d = x - a | |
s0 = v = (d << prec) // ((a**2 >> prec) + (a*d >> prec) + (MPZ_ONE << prec)) | |
v2 = (v**2 >> prec) | |
v4 = (v2 * v2) >> prec | |
s1 = v//3 | |
v = (v * v4) >> prec | |
k = 5 | |
while v: | |
s0 += v // k | |
k += 2 | |
s1 += v // k | |
v = (v * v4) >> prec | |
k += 2 | |
s1 = (s1 * v2) >> prec | |
s = s0 - s1 | |
return atan_a + s | |
def atan_inf(sign, prec, rnd): | |
if not sign: | |
return mpf_shift(mpf_pi(prec, rnd), -1) | |
return mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1)) | |
def mpf_atan(x, prec, rnd=round_fast): | |
sign, man, exp, bc = x | |
if not man: | |
if x == fzero: return fzero | |
if x == finf: return atan_inf(0, prec, rnd) | |
if x == fninf: return atan_inf(1, prec, rnd) | |
return fnan | |
mag = exp + bc | |
# Essentially infinity | |
if mag > prec+20: | |
return atan_inf(sign, prec, rnd) | |
# Essentially ~ x | |
if -mag > prec+20: | |
return mpf_perturb(x, 1-sign, prec, rnd) | |
wp = prec + 30 + abs(mag) | |
# For large x, use atan(x) = pi/2 - atan(1/x) | |
if mag >= 2: | |
x = mpf_rdiv_int(1, x, wp) | |
reciprocal = True | |
else: | |
reciprocal = False | |
t = to_fixed(x, wp) | |
if sign: | |
t = -t | |
if wp < ATAN_TAYLOR_PREC: | |
a = atan_taylor(t, wp) | |
else: | |
a = atan_newton(t, wp) | |
if reciprocal: | |
a = ((pi_fixed(wp)>>1)+1) - a | |
if sign: | |
a = -a | |
return from_man_exp(a, -wp, prec, rnd) | |
# TODO: cleanup the special cases | |
def mpf_atan2(y, x, prec, rnd=round_fast): | |
xsign, xman, xexp, xbc = x | |
ysign, yman, yexp, ybc = y | |
if not yman: | |
if y == fzero and x != fnan: | |
if mpf_sign(x) >= 0: | |
return fzero | |
return mpf_pi(prec, rnd) | |
if y in (finf, fninf): | |
if x in (finf, fninf): | |
return fnan | |
# pi/2 | |
if y == finf: | |
return mpf_shift(mpf_pi(prec, rnd), -1) | |
# -pi/2 | |
return mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1)) | |
return fnan | |
if ysign: | |
return mpf_neg(mpf_atan2(mpf_neg(y), x, prec, negative_rnd[rnd])) | |
if not xman: | |
if x == fnan: | |
return fnan | |
if x == finf: | |
return fzero | |
if x == fninf: | |
return mpf_pi(prec, rnd) | |
if y == fzero: | |
return fzero | |
return mpf_shift(mpf_pi(prec, rnd), -1) | |
tquo = mpf_atan(mpf_div(y, x, prec+4), prec+4) | |
if xsign: | |
return mpf_add(mpf_pi(prec+4), tquo, prec, rnd) | |
else: | |
return mpf_pos(tquo, prec, rnd) | |
def mpf_asin(x, prec, rnd=round_fast): | |
sign, man, exp, bc = x | |
if bc+exp > 0 and x not in (fone, fnone): | |
raise ComplexResult("asin(x) is real only for -1 <= x <= 1") | |
# asin(x) = 2*atan(x/(1+sqrt(1-x**2))) | |
wp = prec + 15 | |
a = mpf_mul(x, x) | |
b = mpf_add(fone, mpf_sqrt(mpf_sub(fone, a, wp), wp), wp) | |
c = mpf_div(x, b, wp) | |
return mpf_shift(mpf_atan(c, prec, rnd), 1) | |
def mpf_acos(x, prec, rnd=round_fast): | |
# acos(x) = 2*atan(sqrt(1-x**2)/(1+x)) | |
sign, man, exp, bc = x | |
if bc + exp > 0: | |
if x not in (fone, fnone): | |
raise ComplexResult("acos(x) is real only for -1 <= x <= 1") | |
if x == fnone: | |
return mpf_pi(prec, rnd) | |
wp = prec + 15 | |
a = mpf_mul(x, x) | |
b = mpf_sqrt(mpf_sub(fone, a, wp), wp) | |
c = mpf_div(b, mpf_add(fone, x, wp), wp) | |
return mpf_shift(mpf_atan(c, prec, rnd), 1) | |
def mpf_asinh(x, prec, rnd=round_fast): | |
wp = prec + 20 | |
sign, man, exp, bc = x | |
mag = exp+bc | |
if mag < -8: | |
if mag < -wp: | |
return mpf_perturb(x, 1-sign, prec, rnd) | |
wp += (-mag) | |
# asinh(x) = log(x+sqrt(x**2+1)) | |
# use reflection symmetry to avoid cancellation | |
q = mpf_sqrt(mpf_add(mpf_mul(x, x), fone, wp), wp) | |
q = mpf_add(mpf_abs(x), q, wp) | |
if sign: | |
return mpf_neg(mpf_log(q, prec, negative_rnd[rnd])) | |
else: | |
return mpf_log(q, prec, rnd) | |
def mpf_acosh(x, prec, rnd=round_fast): | |
# acosh(x) = log(x+sqrt(x**2-1)) | |
wp = prec + 15 | |
if mpf_cmp(x, fone) == -1: | |
raise ComplexResult("acosh(x) is real only for x >= 1") | |
q = mpf_sqrt(mpf_add(mpf_mul(x,x), fnone, wp), wp) | |
return mpf_log(mpf_add(x, q, wp), prec, rnd) | |
def mpf_atanh(x, prec, rnd=round_fast): | |
# atanh(x) = log((1+x)/(1-x))/2 | |
sign, man, exp, bc = x | |
if (not man) and exp: | |
if x in (fzero, fnan): | |
return x | |
raise ComplexResult("atanh(x) is real only for -1 <= x <= 1") | |
mag = bc + exp | |
if mag > 0: | |
if mag == 1 and man == 1: | |
return [finf, fninf][sign] | |
raise ComplexResult("atanh(x) is real only for -1 <= x <= 1") | |
wp = prec + 15 | |
if mag < -8: | |
if mag < -wp: | |
return mpf_perturb(x, sign, prec, rnd) | |
wp += (-mag) | |
a = mpf_add(x, fone, wp) | |
b = mpf_sub(fone, x, wp) | |
return mpf_shift(mpf_log(mpf_div(a, b, wp), prec, rnd), -1) | |
def mpf_fibonacci(x, prec, rnd=round_fast): | |
sign, man, exp, bc = x | |
if not man: | |
if x == fninf: | |
return fnan | |
return x | |
# F(2^n) ~= 2^(2^n) | |
size = abs(exp+bc) | |
if exp >= 0: | |
# Exact | |
if size < 10 or size <= bitcount(prec): | |
return from_int(ifib(to_int(x)), prec, rnd) | |
# Use the modified Binet formula | |
wp = prec + size + 20 | |
a = mpf_phi(wp) | |
b = mpf_add(mpf_shift(a, 1), fnone, wp) | |
u = mpf_pow(a, x, wp) | |
v = mpf_cos_pi(x, wp) | |
v = mpf_div(v, u, wp) | |
u = mpf_sub(u, v, wp) | |
u = mpf_div(u, b, prec, rnd) | |
return u | |
#------------------------------------------------------------------------------- | |
# Exponential-type functions | |
#------------------------------------------------------------------------------- | |
def exponential_series(x, prec, type=0): | |
""" | |
Taylor series for cosh/sinh or cos/sin. | |
type = 0 -- returns exp(x) (slightly faster than cosh+sinh) | |
type = 1 -- returns (cosh(x), sinh(x)) | |
type = 2 -- returns (cos(x), sin(x)) | |
""" | |
if x < 0: | |
x = -x | |
sign = 1 | |
else: | |
sign = 0 | |
r = int(0.5*prec**0.5) | |
xmag = bitcount(x) - prec | |
r = max(0, xmag + r) | |
extra = 10 + 2*max(r,-xmag) | |
wp = prec + extra | |
x <<= (extra - r) | |
one = MPZ_ONE << wp | |
alt = (type == 2) | |
if prec < EXP_SERIES_U_CUTOFF: | |
x2 = a = (x*x) >> wp | |
x4 = (x2*x2) >> wp | |
s0 = s1 = MPZ_ZERO | |
k = 2 | |
while a: | |
a //= (k-1)*k; s0 += a; k += 2 | |
a //= (k-1)*k; s1 += a; k += 2 | |
a = (a*x4) >> wp | |
s1 = (x2*s1) >> wp | |
if alt: | |
c = s1 - s0 + one | |
else: | |
c = s1 + s0 + one | |
else: | |
u = int(0.3*prec**0.35) | |
x2 = a = (x*x) >> wp | |
xpowers = [one, x2] | |
for i in xrange(1, u): | |
xpowers.append((xpowers[-1]*x2)>>wp) | |
sums = [MPZ_ZERO] * u | |
k = 2 | |
while a: | |
for i in xrange(u): | |
a //= (k-1)*k | |
if alt and k & 2: sums[i] -= a | |
else: sums[i] += a | |
k += 2 | |
a = (a*xpowers[-1]) >> wp | |
for i in xrange(1, u): | |
sums[i] = (sums[i]*xpowers[i]) >> wp | |
c = sum(sums) + one | |
if type == 0: | |
s = isqrt_fast(c*c - (one<<wp)) | |
if sign: | |
v = c - s | |
else: | |
v = c + s | |
for i in xrange(r): | |
v = (v*v) >> wp | |
return v >> extra | |
else: | |
# Repeatedly apply the double-angle formula | |
# cosh(2*x) = 2*cosh(x)^2 - 1 | |
# cos(2*x) = 2*cos(x)^2 - 1 | |
pshift = wp-1 | |
for i in xrange(r): | |
c = ((c*c) >> pshift) - one | |
# With the abs, this is the same for sinh and sin | |
s = isqrt_fast(abs((one<<wp) - c*c)) | |
if sign: | |
s = -s | |
return (c>>extra), (s>>extra) | |
def exp_basecase(x, prec): | |
""" | |
Compute exp(x) as a fixed-point number. Works for any x, | |
but for speed should have |x| < 1. For an arbitrary number, | |
use exp(x) = exp(x-m*log(2)) * 2^m where m = floor(x/log(2)). | |
""" | |
if prec > EXP_COSH_CUTOFF: | |
return exponential_series(x, prec, 0) | |
r = int(prec**0.5) | |
prec += r | |
s0 = s1 = (MPZ_ONE << prec) | |
k = 2 | |
a = x2 = (x*x) >> prec | |
while a: | |
a //= k; s0 += a; k += 1 | |
a //= k; s1 += a; k += 1 | |
a = (a*x2) >> prec | |
s1 = (s1*x) >> prec | |
s = s0 + s1 | |
u = r | |
while r: | |
s = (s*s) >> prec | |
r -= 1 | |
return s >> u | |
def exp_expneg_basecase(x, prec): | |
""" | |
Computation of exp(x), exp(-x) | |
""" | |
if prec > EXP_COSH_CUTOFF: | |
cosh, sinh = exponential_series(x, prec, 1) | |
return cosh+sinh, cosh-sinh | |
a = exp_basecase(x, prec) | |
b = (MPZ_ONE << (prec+prec)) // a | |
return a, b | |
def cos_sin_basecase(x, prec): | |
""" | |
Compute cos(x), sin(x) as fixed-point numbers, assuming x | |
in [0, pi/2). For an arbitrary number, use x' = x - m*(pi/2) | |
where m = floor(x/(pi/2)) along with quarter-period symmetries. | |
""" | |
if prec > COS_SIN_CACHE_PREC: | |
return exponential_series(x, prec, 2) | |
precs = prec - COS_SIN_CACHE_STEP | |
t = x >> precs | |
n = int(t) | |
if n not in cos_sin_cache: | |
w = t<<(10+COS_SIN_CACHE_PREC-COS_SIN_CACHE_STEP) | |
cos_t, sin_t = exponential_series(w, 10+COS_SIN_CACHE_PREC, 2) | |
cos_sin_cache[n] = (cos_t>>10), (sin_t>>10) | |
cos_t, sin_t = cos_sin_cache[n] | |
offset = COS_SIN_CACHE_PREC - prec | |
cos_t >>= offset | |
sin_t >>= offset | |
x -= t << precs | |
cos = MPZ_ONE << prec | |
sin = x | |
k = 2 | |
a = -((x*x) >> prec) | |
while a: | |
a //= k; cos += a; k += 1; a = (a*x) >> prec | |
a //= k; sin += a; k += 1; a = -((a*x) >> prec) | |
return ((cos*cos_t-sin*sin_t) >> prec), ((sin*cos_t+cos*sin_t) >> prec) | |
def mpf_exp(x, prec, rnd=round_fast): | |
sign, man, exp, bc = x | |
if man: | |
mag = bc + exp | |
wp = prec + 14 | |
if sign: | |
man = -man | |
# TODO: the best cutoff depends on both x and the precision. | |
if prec > 600 and exp >= 0: | |
# Need about log2(exp(n)) ~= 1.45*mag extra precision | |
e = mpf_e(wp+int(1.45*mag)) | |
return mpf_pow_int(e, man<<exp, prec, rnd) | |
if mag < -wp: | |
return mpf_perturb(fone, sign, prec, rnd) | |
# |x| >= 2 | |
if mag > 1: | |
# For large arguments: exp(2^mag*(1+eps)) = | |
# exp(2^mag)*exp(2^mag*eps) = exp(2^mag)*(1 + 2^mag*eps + ...) | |
# so about mag extra bits is required. | |
wpmod = wp + mag | |
offset = exp + wpmod | |
if offset >= 0: | |
t = man << offset | |
else: | |
t = man >> (-offset) | |
lg2 = ln2_fixed(wpmod) | |
n, t = divmod(t, lg2) | |
n = int(n) | |
t >>= mag | |
else: | |
offset = exp + wp | |
if offset >= 0: | |
t = man << offset | |
else: | |
t = man >> (-offset) | |
n = 0 | |
man = exp_basecase(t, wp) | |
return from_man_exp(man, n-wp, prec, rnd) | |
if not exp: | |
return fone | |
if x == fninf: | |
return fzero | |
return x | |
def mpf_cosh_sinh(x, prec, rnd=round_fast, tanh=0): | |
"""Simultaneously compute (cosh(x), sinh(x)) for real x""" | |
sign, man, exp, bc = x | |
if (not man) and exp: | |
if tanh: | |
if x == finf: return fone | |
if x == fninf: return fnone | |
return fnan | |
if x == finf: return (finf, finf) | |
if x == fninf: return (finf, fninf) | |
return fnan, fnan | |
mag = exp+bc | |
wp = prec+14 | |
if mag < -4: | |
# Extremely close to 0, sinh(x) ~= x and cosh(x) ~= 1 | |
if mag < -wp: | |
if tanh: | |
return mpf_perturb(x, 1-sign, prec, rnd) | |
cosh = mpf_perturb(fone, 0, prec, rnd) | |
sinh = mpf_perturb(x, sign, prec, rnd) | |
return cosh, sinh | |
# Fix for cancellation when computing sinh | |
wp += (-mag) | |
# Does exp(-2*x) vanish? | |
if mag > 10: | |
if 3*(1<<(mag-1)) > wp: | |
# XXX: rounding | |
if tanh: | |
return mpf_perturb([fone,fnone][sign], 1-sign, prec, rnd) | |
c = s = mpf_shift(mpf_exp(mpf_abs(x), prec, rnd), -1) | |
if sign: | |
s = mpf_neg(s) | |
return c, s | |
# |x| > 1 | |
if mag > 1: | |
wpmod = wp + mag | |
offset = exp + wpmod | |
if offset >= 0: | |
t = man << offset | |
else: | |
t = man >> (-offset) | |
lg2 = ln2_fixed(wpmod) | |
n, t = divmod(t, lg2) | |
n = int(n) | |
t >>= mag | |
else: | |
offset = exp + wp | |
if offset >= 0: | |
t = man << offset | |
else: | |
t = man >> (-offset) | |
n = 0 | |
a, b = exp_expneg_basecase(t, wp) | |
# TODO: optimize division precision | |
cosh = a + (b>>(2*n)) | |
sinh = a - (b>>(2*n)) | |
if sign: | |
sinh = -sinh | |
if tanh: | |
man = (sinh << wp) // cosh | |
return from_man_exp(man, -wp, prec, rnd) | |
else: | |
cosh = from_man_exp(cosh, n-wp-1, prec, rnd) | |
sinh = from_man_exp(sinh, n-wp-1, prec, rnd) | |
return cosh, sinh | |
def mod_pi2(man, exp, mag, wp): | |
# Reduce to standard interval | |
if mag > 0: | |
i = 0 | |
while 1: | |
cancellation_prec = 20 << i | |
wpmod = wp + mag + cancellation_prec | |
pi2 = pi_fixed(wpmod-1) | |
pi4 = pi2 >> 1 | |
offset = wpmod + exp | |
if offset >= 0: | |
t = man << offset | |
else: | |
t = man >> (-offset) | |
n, y = divmod(t, pi2) | |
if y > pi4: | |
small = pi2 - y | |
else: | |
small = y | |
if small >> (wp+mag-10): | |
n = int(n) | |
t = y >> mag | |
wp = wpmod - mag | |
break | |
i += 1 | |
else: | |
wp += (-mag) | |
offset = exp + wp | |
if offset >= 0: | |
t = man << offset | |
else: | |
t = man >> (-offset) | |
n = 0 | |
return t, n, wp | |
def mpf_cos_sin(x, prec, rnd=round_fast, which=0, pi=False): | |
""" | |
which: | |
0 -- return cos(x), sin(x) | |
1 -- return cos(x) | |
2 -- return sin(x) | |
3 -- return tan(x) | |
if pi=True, compute for pi*x | |
""" | |
sign, man, exp, bc = x | |
if not man: | |
if exp: | |
c, s = fnan, fnan | |
else: | |
c, s = fone, fzero | |
if which == 0: return c, s | |
if which == 1: return c | |
if which == 2: return s | |
if which == 3: return s | |
mag = bc + exp | |
wp = prec + 10 | |
# Extremely small? | |
if mag < 0: | |
if mag < -wp: | |
if pi: | |
x = mpf_mul(x, mpf_pi(wp)) | |
c = mpf_perturb(fone, 1, prec, rnd) | |
s = mpf_perturb(x, 1-sign, prec, rnd) | |
if which == 0: return c, s | |
if which == 1: return c | |
if which == 2: return s | |
if which == 3: return mpf_perturb(x, sign, prec, rnd) | |
if pi: | |
if exp >= -1: | |
if exp == -1: | |
c = fzero | |
s = (fone, fnone)[bool(man & 2) ^ sign] | |
elif exp == 0: | |
c, s = (fnone, fzero) | |
else: | |
c, s = (fone, fzero) | |
if which == 0: return c, s | |
if which == 1: return c | |
if which == 2: return s | |
if which == 3: return mpf_div(s, c, prec, rnd) | |
# Subtract nearest half-integer (= mod by pi/2) | |
n = ((man >> (-exp-2)) + 1) >> 1 | |
man = man - (n << (-exp-1)) | |
mag2 = bitcount(man) + exp | |
wp = prec + 10 - mag2 | |
offset = exp + wp | |
if offset >= 0: | |
t = man << offset | |
else: | |
t = man >> (-offset) | |
t = (t*pi_fixed(wp)) >> wp | |
else: | |
t, n, wp = mod_pi2(man, exp, mag, wp) | |
c, s = cos_sin_basecase(t, wp) | |
m = n & 3 | |
if m == 1: c, s = -s, c | |
elif m == 2: c, s = -c, -s | |
elif m == 3: c, s = s, -c | |
if sign: | |
s = -s | |
if which == 0: | |
c = from_man_exp(c, -wp, prec, rnd) | |
s = from_man_exp(s, -wp, prec, rnd) | |
return c, s | |
if which == 1: | |
return from_man_exp(c, -wp, prec, rnd) | |
if which == 2: | |
return from_man_exp(s, -wp, prec, rnd) | |
if which == 3: | |
return from_rational(s, c, prec, rnd) | |
def mpf_cos(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 1) | |
def mpf_sin(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 2) | |
def mpf_tan(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 3) | |
def mpf_cos_sin_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 0, 1) | |
def mpf_cos_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 1, 1) | |
def mpf_sin_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 2, 1) | |
def mpf_cosh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd)[0] | |
def mpf_sinh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd)[1] | |
def mpf_tanh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd, tanh=1) | |
# Low-overhead fixed-point versions | |
def cos_sin_fixed(x, prec, pi2=None): | |
if pi2 is None: | |
pi2 = pi_fixed(prec-1) | |
n, t = divmod(x, pi2) | |
n = int(n) | |
c, s = cos_sin_basecase(t, prec) | |
m = n & 3 | |
if m == 0: return c, s | |
if m == 1: return -s, c | |
if m == 2: return -c, -s | |
if m == 3: return s, -c | |
def exp_fixed(x, prec, ln2=None): | |
if ln2 is None: | |
ln2 = ln2_fixed(prec) | |
n, t = divmod(x, ln2) | |
n = int(n) | |
v = exp_basecase(t, prec) | |
if n >= 0: | |
return v << n | |
else: | |
return v >> (-n) | |
if BACKEND == 'sage': | |
try: | |
import sage.libs.mpmath.ext_libmp as _lbmp | |
mpf_sqrt = _lbmp.mpf_sqrt | |
mpf_exp = _lbmp.mpf_exp | |
mpf_log = _lbmp.mpf_log | |
mpf_cos = _lbmp.mpf_cos | |
mpf_sin = _lbmp.mpf_sin | |
mpf_pow = _lbmp.mpf_pow | |
exp_fixed = _lbmp.exp_fixed | |
cos_sin_fixed = _lbmp.cos_sin_fixed | |
log_int_fixed = _lbmp.log_int_fixed | |
except (ImportError, AttributeError): | |
print("Warning: Sage imports in libelefun failed") | |