Spaces:
Running
Running
""" | |
Low-level functions for complex arithmetic. | |
""" | |
import sys | |
from .backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_TWO, BACKEND | |
from .libmpf import (\ | |
round_floor, round_ceiling, round_down, round_up, | |
round_nearest, round_fast, bitcount, | |
bctable, normalize, normalize1, reciprocal_rnd, rshift, lshift, giant_steps, | |
negative_rnd, | |
to_str, to_fixed, from_man_exp, from_float, to_float, from_int, to_int, | |
fzero, fone, ftwo, fhalf, finf, fninf, fnan, fnone, | |
mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, | |
mpf_div, mpf_mul_int, mpf_shift, mpf_sqrt, mpf_hypot, | |
mpf_rdiv_int, mpf_floor, mpf_ceil, mpf_nint, mpf_frac, | |
mpf_sign, mpf_hash, | |
ComplexResult | |
) | |
from .libelefun import (\ | |
mpf_pi, mpf_exp, mpf_log, mpf_cos_sin, mpf_cosh_sinh, mpf_tan, mpf_pow_int, | |
mpf_log_hypot, | |
mpf_cos_sin_pi, mpf_phi, | |
mpf_cos, mpf_sin, mpf_cos_pi, mpf_sin_pi, | |
mpf_atan, mpf_atan2, mpf_cosh, mpf_sinh, mpf_tanh, | |
mpf_asin, mpf_acos, mpf_acosh, mpf_nthroot, mpf_fibonacci | |
) | |
# An mpc value is a (real, imag) tuple | |
mpc_one = fone, fzero | |
mpc_zero = fzero, fzero | |
mpc_two = ftwo, fzero | |
mpc_half = (fhalf, fzero) | |
_infs = (finf, fninf) | |
_infs_nan = (finf, fninf, fnan) | |
def mpc_is_inf(z): | |
"""Check if either real or imaginary part is infinite""" | |
re, im = z | |
if re in _infs: return True | |
if im in _infs: return True | |
return False | |
def mpc_is_infnan(z): | |
"""Check if either real or imaginary part is infinite or nan""" | |
re, im = z | |
if re in _infs_nan: return True | |
if im in _infs_nan: return True | |
return False | |
def mpc_to_str(z, dps, **kwargs): | |
re, im = z | |
rs = to_str(re, dps) | |
if im[0]: | |
return rs + " - " + to_str(mpf_neg(im), dps, **kwargs) + "j" | |
else: | |
return rs + " + " + to_str(im, dps, **kwargs) + "j" | |
def mpc_to_complex(z, strict=False, rnd=round_fast): | |
re, im = z | |
return complex(to_float(re, strict, rnd), to_float(im, strict, rnd)) | |
def mpc_hash(z): | |
if sys.version_info >= (3, 2): | |
re, im = z | |
h = mpf_hash(re) + sys.hash_info.imag * mpf_hash(im) | |
# Need to reduce either module 2^32 or 2^64 | |
h = h % (2**sys.hash_info.width) | |
return int(h) | |
else: | |
try: | |
return hash(mpc_to_complex(z, strict=True)) | |
except OverflowError: | |
return hash(z) | |
def mpc_conjugate(z, prec, rnd=round_fast): | |
re, im = z | |
return re, mpf_neg(im, prec, rnd) | |
def mpc_is_nonzero(z): | |
return z != mpc_zero | |
def mpc_add(z, w, prec, rnd=round_fast): | |
a, b = z | |
c, d = w | |
return mpf_add(a, c, prec, rnd), mpf_add(b, d, prec, rnd) | |
def mpc_add_mpf(z, x, prec, rnd=round_fast): | |
a, b = z | |
return mpf_add(a, x, prec, rnd), b | |
def mpc_sub(z, w, prec=0, rnd=round_fast): | |
a, b = z | |
c, d = w | |
return mpf_sub(a, c, prec, rnd), mpf_sub(b, d, prec, rnd) | |
def mpc_sub_mpf(z, p, prec=0, rnd=round_fast): | |
a, b = z | |
return mpf_sub(a, p, prec, rnd), b | |
def mpc_pos(z, prec, rnd=round_fast): | |
a, b = z | |
return mpf_pos(a, prec, rnd), mpf_pos(b, prec, rnd) | |
def mpc_neg(z, prec=None, rnd=round_fast): | |
a, b = z | |
return mpf_neg(a, prec, rnd), mpf_neg(b, prec, rnd) | |
def mpc_shift(z, n): | |
a, b = z | |
return mpf_shift(a, n), mpf_shift(b, n) | |
def mpc_abs(z, prec, rnd=round_fast): | |
"""Absolute value of a complex number, |a+bi|. | |
Returns an mpf value.""" | |
a, b = z | |
return mpf_hypot(a, b, prec, rnd) | |
def mpc_arg(z, prec, rnd=round_fast): | |
"""Argument of a complex number. Returns an mpf value.""" | |
a, b = z | |
return mpf_atan2(b, a, prec, rnd) | |
def mpc_floor(z, prec, rnd=round_fast): | |
a, b = z | |
return mpf_floor(a, prec, rnd), mpf_floor(b, prec, rnd) | |
def mpc_ceil(z, prec, rnd=round_fast): | |
a, b = z | |
return mpf_ceil(a, prec, rnd), mpf_ceil(b, prec, rnd) | |
def mpc_nint(z, prec, rnd=round_fast): | |
a, b = z | |
return mpf_nint(a, prec, rnd), mpf_nint(b, prec, rnd) | |
def mpc_frac(z, prec, rnd=round_fast): | |
a, b = z | |
return mpf_frac(a, prec, rnd), mpf_frac(b, prec, rnd) | |
def mpc_mul(z, w, prec, rnd=round_fast): | |
""" | |
Complex multiplication. | |
Returns the real and imaginary part of (a+bi)*(c+di), rounded to | |
the specified precision. The rounding mode applies to the real and | |
imaginary parts separately. | |
""" | |
a, b = z | |
c, d = w | |
p = mpf_mul(a, c) | |
q = mpf_mul(b, d) | |
r = mpf_mul(a, d) | |
s = mpf_mul(b, c) | |
re = mpf_sub(p, q, prec, rnd) | |
im = mpf_add(r, s, prec, rnd) | |
return re, im | |
def mpc_square(z, prec, rnd=round_fast): | |
# (a+b*I)**2 == a**2 - b**2 + 2*I*a*b | |
a, b = z | |
p = mpf_mul(a,a) | |
q = mpf_mul(b,b) | |
r = mpf_mul(a,b, prec, rnd) | |
re = mpf_sub(p, q, prec, rnd) | |
im = mpf_shift(r, 1) | |
return re, im | |
def mpc_mul_mpf(z, p, prec, rnd=round_fast): | |
a, b = z | |
re = mpf_mul(a, p, prec, rnd) | |
im = mpf_mul(b, p, prec, rnd) | |
return re, im | |
def mpc_mul_imag_mpf(z, x, prec, rnd=round_fast): | |
""" | |
Multiply the mpc value z by I*x where x is an mpf value. | |
""" | |
a, b = z | |
re = mpf_neg(mpf_mul(b, x, prec, rnd)) | |
im = mpf_mul(a, x, prec, rnd) | |
return re, im | |
def mpc_mul_int(z, n, prec, rnd=round_fast): | |
a, b = z | |
re = mpf_mul_int(a, n, prec, rnd) | |
im = mpf_mul_int(b, n, prec, rnd) | |
return re, im | |
def mpc_div(z, w, prec, rnd=round_fast): | |
a, b = z | |
c, d = w | |
wp = prec + 10 | |
# mag = c*c + d*d | |
mag = mpf_add(mpf_mul(c, c), mpf_mul(d, d), wp) | |
# (a*c+b*d)/mag, (b*c-a*d)/mag | |
t = mpf_add(mpf_mul(a,c), mpf_mul(b,d), wp) | |
u = mpf_sub(mpf_mul(b,c), mpf_mul(a,d), wp) | |
return mpf_div(t,mag,prec,rnd), mpf_div(u,mag,prec,rnd) | |
def mpc_div_mpf(z, p, prec, rnd=round_fast): | |
"""Calculate z/p where p is real""" | |
a, b = z | |
re = mpf_div(a, p, prec, rnd) | |
im = mpf_div(b, p, prec, rnd) | |
return re, im | |
def mpc_reciprocal(z, prec, rnd=round_fast): | |
"""Calculate 1/z efficiently""" | |
a, b = z | |
m = mpf_add(mpf_mul(a,a),mpf_mul(b,b),prec+10) | |
re = mpf_div(a, m, prec, rnd) | |
im = mpf_neg(mpf_div(b, m, prec, rnd)) | |
return re, im | |
def mpc_mpf_div(p, z, prec, rnd=round_fast): | |
"""Calculate p/z where p is real efficiently""" | |
a, b = z | |
m = mpf_add(mpf_mul(a,a),mpf_mul(b,b), prec+10) | |
re = mpf_div(mpf_mul(a,p), m, prec, rnd) | |
im = mpf_div(mpf_neg(mpf_mul(b,p)), m, prec, rnd) | |
return re, im | |
def complex_int_pow(a, b, n): | |
"""Complex integer power: computes (a+b*I)**n exactly for | |
nonnegative n (a and b must be Python ints).""" | |
wre = 1 | |
wim = 0 | |
while n: | |
if n & 1: | |
wre, wim = wre*a - wim*b, wim*a + wre*b | |
n -= 1 | |
a, b = a*a - b*b, 2*a*b | |
n //= 2 | |
return wre, wim | |
def mpc_pow(z, w, prec, rnd=round_fast): | |
if w[1] == fzero: | |
return mpc_pow_mpf(z, w[0], prec, rnd) | |
return mpc_exp(mpc_mul(mpc_log(z, prec+10), w, prec+10), prec, rnd) | |
def mpc_pow_mpf(z, p, prec, rnd=round_fast): | |
psign, pman, pexp, pbc = p | |
if pexp >= 0: | |
return mpc_pow_int(z, (-1)**psign * (pman<<pexp), prec, rnd) | |
if pexp == -1: | |
sqrtz = mpc_sqrt(z, prec+10) | |
return mpc_pow_int(sqrtz, (-1)**psign * pman, prec, rnd) | |
return mpc_exp(mpc_mul_mpf(mpc_log(z, prec+10), p, prec+10), prec, rnd) | |
def mpc_pow_int(z, n, prec, rnd=round_fast): | |
a, b = z | |
if b == fzero: | |
return mpf_pow_int(a, n, prec, rnd), fzero | |
if a == fzero: | |
v = mpf_pow_int(b, n, prec, rnd) | |
n %= 4 | |
if n == 0: | |
return v, fzero | |
elif n == 1: | |
return fzero, v | |
elif n == 2: | |
return mpf_neg(v), fzero | |
elif n == 3: | |
return fzero, mpf_neg(v) | |
if n == 0: return mpc_one | |
if n == 1: return mpc_pos(z, prec, rnd) | |
if n == 2: return mpc_square(z, prec, rnd) | |
if n == -1: return mpc_reciprocal(z, prec, rnd) | |
if n < 0: return mpc_reciprocal(mpc_pow_int(z, -n, prec+4), prec, rnd) | |
asign, aman, aexp, abc = a | |
bsign, bman, bexp, bbc = b | |
if asign: aman = -aman | |
if bsign: bman = -bman | |
de = aexp - bexp | |
abs_de = abs(de) | |
exact_size = n*(abs_de + max(abc, bbc)) | |
if exact_size < 10000: | |
if de > 0: | |
aman <<= de | |
aexp = bexp | |
else: | |
bman <<= (-de) | |
bexp = aexp | |
re, im = complex_int_pow(aman, bman, n) | |
re = from_man_exp(re, int(n*aexp), prec, rnd) | |
im = from_man_exp(im, int(n*bexp), prec, rnd) | |
return re, im | |
return mpc_exp(mpc_mul_int(mpc_log(z, prec+10), n, prec+10), prec, rnd) | |
def mpc_sqrt(z, prec, rnd=round_fast): | |
"""Complex square root (principal branch). | |
We have sqrt(a+bi) = sqrt((r+a)/2) + b/sqrt(2*(r+a))*i where | |
r = abs(a+bi), when a+bi is not a negative real number.""" | |
a, b = z | |
if b == fzero: | |
if a == fzero: | |
return (a, b) | |
# When a+bi is a negative real number, we get a real sqrt times i | |
if a[0]: | |
im = mpf_sqrt(mpf_neg(a), prec, rnd) | |
return (fzero, im) | |
else: | |
re = mpf_sqrt(a, prec, rnd) | |
return (re, fzero) | |
wp = prec+20 | |
if not a[0]: # case a positive | |
t = mpf_add(mpc_abs((a, b), wp), a, wp) # t = abs(a+bi) + a | |
u = mpf_shift(t, -1) # u = t/2 | |
re = mpf_sqrt(u, prec, rnd) # re = sqrt(u) | |
v = mpf_shift(t, 1) # v = 2*t | |
w = mpf_sqrt(v, wp) # w = sqrt(v) | |
im = mpf_div(b, w, prec, rnd) # im = b / w | |
else: # case a negative | |
t = mpf_sub(mpc_abs((a, b), wp), a, wp) # t = abs(a+bi) - a | |
u = mpf_shift(t, -1) # u = t/2 | |
im = mpf_sqrt(u, prec, rnd) # im = sqrt(u) | |
v = mpf_shift(t, 1) # v = 2*t | |
w = mpf_sqrt(v, wp) # w = sqrt(v) | |
re = mpf_div(b, w, prec, rnd) # re = b/w | |
if b[0]: | |
re = mpf_neg(re) | |
im = mpf_neg(im) | |
return re, im | |
def mpc_nthroot_fixed(a, b, n, prec): | |
# a, b signed integers at fixed precision prec | |
start = 50 | |
a1 = int(rshift(a, prec - n*start)) | |
b1 = int(rshift(b, prec - n*start)) | |
try: | |
r = (a1 + 1j * b1)**(1.0/n) | |
re = r.real | |
im = r.imag | |
re = MPZ(int(re)) | |
im = MPZ(int(im)) | |
except OverflowError: | |
a1 = from_int(a1, start) | |
b1 = from_int(b1, start) | |
fn = from_int(n) | |
nth = mpf_rdiv_int(1, fn, start) | |
re, im = mpc_pow((a1, b1), (nth, fzero), start) | |
re = to_int(re) | |
im = to_int(im) | |
extra = 10 | |
prevp = start | |
extra1 = n | |
for p in giant_steps(start, prec+extra): | |
# this is slow for large n, unlike int_pow_fixed | |
re2, im2 = complex_int_pow(re, im, n-1) | |
re2 = rshift(re2, (n-1)*prevp - p - extra1) | |
im2 = rshift(im2, (n-1)*prevp - p - extra1) | |
r4 = (re2*re2 + im2*im2) >> (p + extra1) | |
ap = rshift(a, prec - p) | |
bp = rshift(b, prec - p) | |
rec = (ap * re2 + bp * im2) >> p | |
imc = (-ap * im2 + bp * re2) >> p | |
reb = (rec << p) // r4 | |
imb = (imc << p) // r4 | |
re = (reb + (n-1)*lshift(re, p-prevp))//n | |
im = (imb + (n-1)*lshift(im, p-prevp))//n | |
prevp = p | |
return re, im | |
def mpc_nthroot(z, n, prec, rnd=round_fast): | |
""" | |
Complex n-th root. | |
Use Newton method as in the real case when it is faster, | |
otherwise use z**(1/n) | |
""" | |
a, b = z | |
if a[0] == 0 and b == fzero: | |
re = mpf_nthroot(a, n, prec, rnd) | |
return (re, fzero) | |
if n < 2: | |
if n == 0: | |
return mpc_one | |
if n == 1: | |
return mpc_pos((a, b), prec, rnd) | |
if n == -1: | |
return mpc_div(mpc_one, (a, b), prec, rnd) | |
inverse = mpc_nthroot((a, b), -n, prec+5, reciprocal_rnd[rnd]) | |
return mpc_div(mpc_one, inverse, prec, rnd) | |
if n <= 20: | |
prec2 = int(1.2 * (prec + 10)) | |
asign, aman, aexp, abc = a | |
bsign, bman, bexp, bbc = b | |
pf = mpc_abs((a,b), prec) | |
if pf[-2] + pf[-1] > -10 and pf[-2] + pf[-1] < prec: | |
af = to_fixed(a, prec2) | |
bf = to_fixed(b, prec2) | |
re, im = mpc_nthroot_fixed(af, bf, n, prec2) | |
extra = 10 | |
re = from_man_exp(re, -prec2-extra, prec2, rnd) | |
im = from_man_exp(im, -prec2-extra, prec2, rnd) | |
return re, im | |
fn = from_int(n) | |
prec2 = prec+10 + 10 | |
nth = mpf_rdiv_int(1, fn, prec2) | |
re, im = mpc_pow((a, b), (nth, fzero), prec2, rnd) | |
re = normalize(re[0], re[1], re[2], re[3], prec, rnd) | |
im = normalize(im[0], im[1], im[2], im[3], prec, rnd) | |
return re, im | |
def mpc_cbrt(z, prec, rnd=round_fast): | |
""" | |
Complex cubic root. | |
""" | |
return mpc_nthroot(z, 3, prec, rnd) | |
def mpc_exp(z, prec, rnd=round_fast): | |
""" | |
Complex exponential function. | |
We use the direct formula exp(a+bi) = exp(a) * (cos(b) + sin(b)*i) | |
for the computation. This formula is very nice because it is | |
pefectly stable; since we just do real multiplications, the only | |
numerical errors that can creep in are single-ulp rounding errors. | |
The formula is efficient since mpmath's real exp is quite fast and | |
since we can compute cos and sin simultaneously. | |
It is no problem if a and b are large; if the implementations of | |
exp/cos/sin are accurate and efficient for all real numbers, then | |
so is this function for all complex numbers. | |
""" | |
a, b = z | |
if a == fzero: | |
return mpf_cos_sin(b, prec, rnd) | |
if b == fzero: | |
return mpf_exp(a, prec, rnd), fzero | |
mag = mpf_exp(a, prec+4, rnd) | |
c, s = mpf_cos_sin(b, prec+4, rnd) | |
re = mpf_mul(mag, c, prec, rnd) | |
im = mpf_mul(mag, s, prec, rnd) | |
return re, im | |
def mpc_log(z, prec, rnd=round_fast): | |
re = mpf_log_hypot(z[0], z[1], prec, rnd) | |
im = mpc_arg(z, prec, rnd) | |
return re, im | |
def mpc_cos(z, prec, rnd=round_fast): | |
"""Complex cosine. The formula used is cos(a+bi) = cos(a)*cosh(b) - | |
sin(a)*sinh(b)*i. | |
The same comments apply as for the complex exp: only real | |
multiplications are pewrormed, so no cancellation errors are | |
possible. The formula is also efficient since we can compute both | |
pairs (cos, sin) and (cosh, sinh) in single stwps.""" | |
a, b = z | |
if b == fzero: | |
return mpf_cos(a, prec, rnd), fzero | |
if a == fzero: | |
return mpf_cosh(b, prec, rnd), fzero | |
wp = prec + 6 | |
c, s = mpf_cos_sin(a, wp) | |
ch, sh = mpf_cosh_sinh(b, wp) | |
re = mpf_mul(c, ch, prec, rnd) | |
im = mpf_mul(s, sh, prec, rnd) | |
return re, mpf_neg(im) | |
def mpc_sin(z, prec, rnd=round_fast): | |
"""Complex sine. We have sin(a+bi) = sin(a)*cosh(b) + | |
cos(a)*sinh(b)*i. See the docstring for mpc_cos for additional | |
comments.""" | |
a, b = z | |
if b == fzero: | |
return mpf_sin(a, prec, rnd), fzero | |
if a == fzero: | |
return fzero, mpf_sinh(b, prec, rnd) | |
wp = prec + 6 | |
c, s = mpf_cos_sin(a, wp) | |
ch, sh = mpf_cosh_sinh(b, wp) | |
re = mpf_mul(s, ch, prec, rnd) | |
im = mpf_mul(c, sh, prec, rnd) | |
return re, im | |
def mpc_tan(z, prec, rnd=round_fast): | |
"""Complex tangent. Computed as tan(a+bi) = sin(2a)/M + sinh(2b)/M*i | |
where M = cos(2a) + cosh(2b).""" | |
a, b = z | |
asign, aman, aexp, abc = a | |
bsign, bman, bexp, bbc = b | |
if b == fzero: return mpf_tan(a, prec, rnd), fzero | |
if a == fzero: return fzero, mpf_tanh(b, prec, rnd) | |
wp = prec + 15 | |
a = mpf_shift(a, 1) | |
b = mpf_shift(b, 1) | |
c, s = mpf_cos_sin(a, wp) | |
ch, sh = mpf_cosh_sinh(b, wp) | |
# TODO: handle cancellation when c ~= -1 and ch ~= 1 | |
mag = mpf_add(c, ch, wp) | |
re = mpf_div(s, mag, prec, rnd) | |
im = mpf_div(sh, mag, prec, rnd) | |
return re, im | |
def mpc_cos_pi(z, prec, rnd=round_fast): | |
a, b = z | |
if b == fzero: | |
return mpf_cos_pi(a, prec, rnd), fzero | |
b = mpf_mul(b, mpf_pi(prec+5), prec+5) | |
if a == fzero: | |
return mpf_cosh(b, prec, rnd), fzero | |
wp = prec + 6 | |
c, s = mpf_cos_sin_pi(a, wp) | |
ch, sh = mpf_cosh_sinh(b, wp) | |
re = mpf_mul(c, ch, prec, rnd) | |
im = mpf_mul(s, sh, prec, rnd) | |
return re, mpf_neg(im) | |
def mpc_sin_pi(z, prec, rnd=round_fast): | |
a, b = z | |
if b == fzero: | |
return mpf_sin_pi(a, prec, rnd), fzero | |
b = mpf_mul(b, mpf_pi(prec+5), prec+5) | |
if a == fzero: | |
return fzero, mpf_sinh(b, prec, rnd) | |
wp = prec + 6 | |
c, s = mpf_cos_sin_pi(a, wp) | |
ch, sh = mpf_cosh_sinh(b, wp) | |
re = mpf_mul(s, ch, prec, rnd) | |
im = mpf_mul(c, sh, prec, rnd) | |
return re, im | |
def mpc_cos_sin(z, prec, rnd=round_fast): | |
a, b = z | |
if a == fzero: | |
ch, sh = mpf_cosh_sinh(b, prec, rnd) | |
return (ch, fzero), (fzero, sh) | |
if b == fzero: | |
c, s = mpf_cos_sin(a, prec, rnd) | |
return (c, fzero), (s, fzero) | |
wp = prec + 6 | |
c, s = mpf_cos_sin(a, wp) | |
ch, sh = mpf_cosh_sinh(b, wp) | |
cre = mpf_mul(c, ch, prec, rnd) | |
cim = mpf_mul(s, sh, prec, rnd) | |
sre = mpf_mul(s, ch, prec, rnd) | |
sim = mpf_mul(c, sh, prec, rnd) | |
return (cre, mpf_neg(cim)), (sre, sim) | |
def mpc_cos_sin_pi(z, prec, rnd=round_fast): | |
a, b = z | |
if b == fzero: | |
c, s = mpf_cos_sin_pi(a, prec, rnd) | |
return (c, fzero), (s, fzero) | |
b = mpf_mul(b, mpf_pi(prec+5), prec+5) | |
if a == fzero: | |
ch, sh = mpf_cosh_sinh(b, prec, rnd) | |
return (ch, fzero), (fzero, sh) | |
wp = prec + 6 | |
c, s = mpf_cos_sin_pi(a, wp) | |
ch, sh = mpf_cosh_sinh(b, wp) | |
cre = mpf_mul(c, ch, prec, rnd) | |
cim = mpf_mul(s, sh, prec, rnd) | |
sre = mpf_mul(s, ch, prec, rnd) | |
sim = mpf_mul(c, sh, prec, rnd) | |
return (cre, mpf_neg(cim)), (sre, sim) | |
def mpc_cosh(z, prec, rnd=round_fast): | |
"""Complex hyperbolic cosine. Computed as cosh(z) = cos(z*i).""" | |
a, b = z | |
return mpc_cos((b, mpf_neg(a)), prec, rnd) | |
def mpc_sinh(z, prec, rnd=round_fast): | |
"""Complex hyperbolic sine. Computed as sinh(z) = -i*sin(z*i).""" | |
a, b = z | |
b, a = mpc_sin((b, a), prec, rnd) | |
return a, b | |
def mpc_tanh(z, prec, rnd=round_fast): | |
"""Complex hyperbolic tangent. Computed as tanh(z) = -i*tan(z*i).""" | |
a, b = z | |
b, a = mpc_tan((b, a), prec, rnd) | |
return a, b | |
# TODO: avoid loss of accuracy | |
def mpc_atan(z, prec, rnd=round_fast): | |
a, b = z | |
# atan(z) = (I/2)*(log(1-I*z) - log(1+I*z)) | |
# x = 1-I*z = 1 + b - I*a | |
# y = 1+I*z = 1 - b + I*a | |
wp = prec + 15 | |
x = mpf_add(fone, b, wp), mpf_neg(a) | |
y = mpf_sub(fone, b, wp), a | |
l1 = mpc_log(x, wp) | |
l2 = mpc_log(y, wp) | |
a, b = mpc_sub(l1, l2, prec, rnd) | |
# (I/2) * (a+b*I) = (-b/2 + a/2*I) | |
v = mpf_neg(mpf_shift(b,-1)), mpf_shift(a,-1) | |
# Subtraction at infinity gives correct real part but | |
# wrong imaginary part (should be zero) | |
if v[1] == fnan and mpc_is_inf(z): | |
v = (v[0], fzero) | |
return v | |
beta_crossover = from_float(0.6417) | |
alpha_crossover = from_float(1.5) | |
def acos_asin(z, prec, rnd, n): | |
""" complex acos for n = 0, asin for n = 1 | |
The algorithm is described in | |
T.E. Hull, T.F. Fairgrieve and P.T.P. Tang | |
'Implementing the Complex Arcsine and Arcosine Functions | |
using Exception Handling', | |
ACM Trans. on Math. Software Vol. 23 (1997), p299 | |
The complex acos and asin can be defined as | |
acos(z) = acos(beta) - I*sign(a)* log(alpha + sqrt(alpha**2 -1)) | |
asin(z) = asin(beta) + I*sign(a)* log(alpha + sqrt(alpha**2 -1)) | |
where z = a + I*b | |
alpha = (1/2)*(r + s); beta = (1/2)*(r - s) = a/alpha | |
r = sqrt((a+1)**2 + y**2); s = sqrt((a-1)**2 + y**2) | |
These expressions are rewritten in different ways in different | |
regions, delimited by two crossovers alpha_crossover and beta_crossover, | |
and by abs(a) <= 1, in order to improve the numerical accuracy. | |
""" | |
a, b = z | |
wp = prec + 10 | |
# special cases with real argument | |
if b == fzero: | |
am = mpf_sub(fone, mpf_abs(a), wp) | |
# case abs(a) <= 1 | |
if not am[0]: | |
if n == 0: | |
return mpf_acos(a, prec, rnd), fzero | |
else: | |
return mpf_asin(a, prec, rnd), fzero | |
# cases abs(a) > 1 | |
else: | |
# case a < -1 | |
if a[0]: | |
pi = mpf_pi(prec, rnd) | |
c = mpf_acosh(mpf_neg(a), prec, rnd) | |
if n == 0: | |
return pi, mpf_neg(c) | |
else: | |
return mpf_neg(mpf_shift(pi, -1)), c | |
# case a > 1 | |
else: | |
c = mpf_acosh(a, prec, rnd) | |
if n == 0: | |
return fzero, c | |
else: | |
pi = mpf_pi(prec, rnd) | |
return mpf_shift(pi, -1), mpf_neg(c) | |
asign = bsign = 0 | |
if a[0]: | |
a = mpf_neg(a) | |
asign = 1 | |
if b[0]: | |
b = mpf_neg(b) | |
bsign = 1 | |
am = mpf_sub(fone, a, wp) | |
ap = mpf_add(fone, a, wp) | |
r = mpf_hypot(ap, b, wp) | |
s = mpf_hypot(am, b, wp) | |
alpha = mpf_shift(mpf_add(r, s, wp), -1) | |
beta = mpf_div(a, alpha, wp) | |
b2 = mpf_mul(b,b, wp) | |
# case beta <= beta_crossover | |
if not mpf_sub(beta_crossover, beta, wp)[0]: | |
if n == 0: | |
re = mpf_acos(beta, wp) | |
else: | |
re = mpf_asin(beta, wp) | |
else: | |
# to compute the real part in this region use the identity | |
# asin(beta) = atan(beta/sqrt(1-beta**2)) | |
# beta/sqrt(1-beta**2) = (alpha + a) * (alpha - a) | |
# alpha + a is numerically accurate; alpha - a can have | |
# cancellations leading to numerical inaccuracies, so rewrite | |
# it in differente ways according to the region | |
Ax = mpf_add(alpha, a, wp) | |
# case a <= 1 | |
if not am[0]: | |
# c = b*b/(r + (a+1)); d = (s + (1-a)) | |
# alpha - a = (1/2)*(c + d) | |
# case n=0: re = atan(sqrt((1/2) * Ax * (c + d))/a) | |
# case n=1: re = atan(a/sqrt((1/2) * Ax * (c + d))) | |
c = mpf_div(b2, mpf_add(r, ap, wp), wp) | |
d = mpf_add(s, am, wp) | |
re = mpf_shift(mpf_mul(Ax, mpf_add(c, d, wp), wp), -1) | |
if n == 0: | |
re = mpf_atan(mpf_div(mpf_sqrt(re, wp), a, wp), wp) | |
else: | |
re = mpf_atan(mpf_div(a, mpf_sqrt(re, wp), wp), wp) | |
else: | |
# c = Ax/(r + (a+1)); d = Ax/(s - (1-a)) | |
# alpha - a = (1/2)*(c + d) | |
# case n = 0: re = atan(b*sqrt(c + d)/2/a) | |
# case n = 1: re = atan(a/(b*sqrt(c + d)/2) | |
c = mpf_div(Ax, mpf_add(r, ap, wp), wp) | |
d = mpf_div(Ax, mpf_sub(s, am, wp), wp) | |
re = mpf_shift(mpf_add(c, d, wp), -1) | |
re = mpf_mul(b, mpf_sqrt(re, wp), wp) | |
if n == 0: | |
re = mpf_atan(mpf_div(re, a, wp), wp) | |
else: | |
re = mpf_atan(mpf_div(a, re, wp), wp) | |
# to compute alpha + sqrt(alpha**2 - 1), if alpha <= alpha_crossover | |
# replace it with 1 + Am1 + sqrt(Am1*(alpha+1))) | |
# where Am1 = alpha -1 | |
# if alpha <= alpha_crossover: | |
if not mpf_sub(alpha_crossover, alpha, wp)[0]: | |
c1 = mpf_div(b2, mpf_add(r, ap, wp), wp) | |
# case a < 1 | |
if mpf_neg(am)[0]: | |
# Am1 = (1/2) * (b*b/(r + (a+1)) + b*b/(s + (1-a)) | |
c2 = mpf_add(s, am, wp) | |
c2 = mpf_div(b2, c2, wp) | |
Am1 = mpf_shift(mpf_add(c1, c2, wp), -1) | |
else: | |
# Am1 = (1/2) * (b*b/(r + (a+1)) + (s - (1-a))) | |
c2 = mpf_sub(s, am, wp) | |
Am1 = mpf_shift(mpf_add(c1, c2, wp), -1) | |
# im = log(1 + Am1 + sqrt(Am1*(alpha+1))) | |
im = mpf_mul(Am1, mpf_add(alpha, fone, wp), wp) | |
im = mpf_log(mpf_add(fone, mpf_add(Am1, mpf_sqrt(im, wp), wp), wp), wp) | |
else: | |
# im = log(alpha + sqrt(alpha*alpha - 1)) | |
im = mpf_sqrt(mpf_sub(mpf_mul(alpha, alpha, wp), fone, wp), wp) | |
im = mpf_log(mpf_add(alpha, im, wp), wp) | |
if asign: | |
if n == 0: | |
re = mpf_sub(mpf_pi(wp), re, wp) | |
else: | |
re = mpf_neg(re) | |
if not bsign and n == 0: | |
im = mpf_neg(im) | |
if bsign and n == 1: | |
im = mpf_neg(im) | |
re = normalize(re[0], re[1], re[2], re[3], prec, rnd) | |
im = normalize(im[0], im[1], im[2], im[3], prec, rnd) | |
return re, im | |
def mpc_acos(z, prec, rnd=round_fast): | |
return acos_asin(z, prec, rnd, 0) | |
def mpc_asin(z, prec, rnd=round_fast): | |
return acos_asin(z, prec, rnd, 1) | |
def mpc_asinh(z, prec, rnd=round_fast): | |
# asinh(z) = I * asin(-I z) | |
a, b = z | |
a, b = mpc_asin((b, mpf_neg(a)), prec, rnd) | |
return mpf_neg(b), a | |
def mpc_acosh(z, prec, rnd=round_fast): | |
# acosh(z) = -I * acos(z) for Im(acos(z)) <= 0 | |
# +I * acos(z) otherwise | |
a, b = mpc_acos(z, prec, rnd) | |
if b[0] or b == fzero: | |
return mpf_neg(b), a | |
else: | |
return b, mpf_neg(a) | |
def mpc_atanh(z, prec, rnd=round_fast): | |
# atanh(z) = (log(1+z)-log(1-z))/2 | |
wp = prec + 15 | |
a = mpc_add(z, mpc_one, wp) | |
b = mpc_sub(mpc_one, z, wp) | |
a = mpc_log(a, wp) | |
b = mpc_log(b, wp) | |
v = mpc_shift(mpc_sub(a, b, wp), -1) | |
# Subtraction at infinity gives correct imaginary part but | |
# wrong real part (should be zero) | |
if v[0] == fnan and mpc_is_inf(z): | |
v = (fzero, v[1]) | |
return v | |
def mpc_fibonacci(z, prec, rnd=round_fast): | |
re, im = z | |
if im == fzero: | |
return (mpf_fibonacci(re, prec, rnd), fzero) | |
size = max(abs(re[2]+re[3]), abs(re[2]+re[3])) | |
wp = prec + size + 20 | |
a = mpf_phi(wp) | |
b = mpf_add(mpf_shift(a, 1), fnone, wp) | |
u = mpc_pow((a, fzero), z, wp) | |
v = mpc_cos_pi(z, wp) | |
v = mpc_div(v, u, wp) | |
u = mpc_sub(u, v, wp) | |
u = mpc_div_mpf(u, b, prec, rnd) | |
return u | |
def mpf_expj(x, prec, rnd='f'): | |
raise ComplexResult | |
def mpc_expj(z, prec, rnd='f'): | |
re, im = z | |
if im == fzero: | |
return mpf_cos_sin(re, prec, rnd) | |
if re == fzero: | |
return mpf_exp(mpf_neg(im), prec, rnd), fzero | |
ey = mpf_exp(mpf_neg(im), prec+10) | |
c, s = mpf_cos_sin(re, prec+10) | |
re = mpf_mul(ey, c, prec, rnd) | |
im = mpf_mul(ey, s, prec, rnd) | |
return re, im | |
def mpf_expjpi(x, prec, rnd='f'): | |
raise ComplexResult | |
def mpc_expjpi(z, prec, rnd='f'): | |
re, im = z | |
if im == fzero: | |
return mpf_cos_sin_pi(re, prec, rnd) | |
sign, man, exp, bc = im | |
wp = prec+10 | |
if man: | |
wp += max(0, exp+bc) | |
im = mpf_neg(mpf_mul(mpf_pi(wp), im, wp)) | |
if re == fzero: | |
return mpf_exp(im, prec, rnd), fzero | |
ey = mpf_exp(im, prec+10) | |
c, s = mpf_cos_sin_pi(re, prec+10) | |
re = mpf_mul(ey, c, prec, rnd) | |
im = mpf_mul(ey, s, prec, rnd) | |
return re, im | |
if BACKEND == 'sage': | |
try: | |
import sage.libs.mpmath.ext_libmp as _lbmp | |
mpc_exp = _lbmp.mpc_exp | |
mpc_sqrt = _lbmp.mpc_sqrt | |
except (ImportError, AttributeError): | |
print("Warning: Sage imports in libmpc failed") | |