Spaces:
Running
Running
""" | |
Plotting (requires matplotlib) | |
""" | |
from colorsys import hsv_to_rgb, hls_to_rgb | |
from .libmp import NoConvergence | |
from .libmp.backend import xrange | |
class VisualizationMethods(object): | |
plot_ignore = (ValueError, ArithmeticError, ZeroDivisionError, NoConvergence) | |
def plot(ctx, f, xlim=[-5,5], ylim=None, points=200, file=None, dpi=None, | |
singularities=[], axes=None): | |
r""" | |
Shows a simple 2D plot of a function `f(x)` or list of functions | |
`[f_0(x), f_1(x), \ldots, f_n(x)]` over a given interval | |
specified by *xlim*. Some examples:: | |
plot(lambda x: exp(x)*li(x), [1, 4]) | |
plot([cos, sin], [-4, 4]) | |
plot([fresnels, fresnelc], [-4, 4]) | |
plot([sqrt, cbrt], [-4, 4]) | |
plot(lambda t: zeta(0.5+t*j), [-20, 20]) | |
plot([floor, ceil, abs, sign], [-5, 5]) | |
Points where the function raises a numerical exception or | |
returns an infinite value are removed from the graph. | |
Singularities can also be excluded explicitly | |
as follows (useful for removing erroneous vertical lines):: | |
plot(cot, ylim=[-5, 5]) # bad | |
plot(cot, ylim=[-5, 5], singularities=[-pi, 0, pi]) # good | |
For parts where the function assumes complex values, the | |
real part is plotted with dashes and the imaginary part | |
is plotted with dots. | |
.. note :: This function requires matplotlib (pylab). | |
""" | |
if file: | |
axes = None | |
fig = None | |
if not axes: | |
import pylab | |
fig = pylab.figure() | |
axes = fig.add_subplot(111) | |
if not isinstance(f, (tuple, list)): | |
f = [f] | |
a, b = xlim | |
colors = ['b', 'r', 'g', 'm', 'k'] | |
for n, func in enumerate(f): | |
x = ctx.arange(a, b, (b-a)/float(points)) | |
segments = [] | |
segment = [] | |
in_complex = False | |
for i in xrange(len(x)): | |
try: | |
if i != 0: | |
for sing in singularities: | |
if x[i-1] <= sing and x[i] >= sing: | |
raise ValueError | |
v = func(x[i]) | |
if ctx.isnan(v) or abs(v) > 1e300: | |
raise ValueError | |
if hasattr(v, "imag") and v.imag: | |
re = float(v.real) | |
im = float(v.imag) | |
if not in_complex: | |
in_complex = True | |
segments.append(segment) | |
segment = [] | |
segment.append((float(x[i]), re, im)) | |
else: | |
if in_complex: | |
in_complex = False | |
segments.append(segment) | |
segment = [] | |
if hasattr(v, "real"): | |
v = v.real | |
segment.append((float(x[i]), v)) | |
except ctx.plot_ignore: | |
if segment: | |
segments.append(segment) | |
segment = [] | |
if segment: | |
segments.append(segment) | |
for segment in segments: | |
x = [s[0] for s in segment] | |
y = [s[1] for s in segment] | |
if not x: | |
continue | |
c = colors[n % len(colors)] | |
if len(segment[0]) == 3: | |
z = [s[2] for s in segment] | |
axes.plot(x, y, '--'+c, linewidth=3) | |
axes.plot(x, z, ':'+c, linewidth=3) | |
else: | |
axes.plot(x, y, c, linewidth=3) | |
axes.set_xlim([float(_) for _ in xlim]) | |
if ylim: | |
axes.set_ylim([float(_) for _ in ylim]) | |
axes.set_xlabel('x') | |
axes.set_ylabel('f(x)') | |
axes.grid(True) | |
if fig: | |
if file: | |
pylab.savefig(file, dpi=dpi) | |
else: | |
pylab.show() | |
def default_color_function(ctx, z): | |
if ctx.isinf(z): | |
return (1.0, 1.0, 1.0) | |
if ctx.isnan(z): | |
return (0.5, 0.5, 0.5) | |
pi = 3.1415926535898 | |
a = (float(ctx.arg(z)) + ctx.pi) / (2*ctx.pi) | |
a = (a + 0.5) % 1.0 | |
b = 1.0 - float(1/(1.0+abs(z)**0.3)) | |
return hls_to_rgb(a, b, 0.8) | |
blue_orange_colors = [ | |
(-1.0, (0.0, 0.0, 0.0)), | |
(-0.95, (0.1, 0.2, 0.5)), # dark blue | |
(-0.5, (0.0, 0.5, 1.0)), # blueish | |
(-0.05, (0.4, 0.8, 0.8)), # cyanish | |
( 0.0, (1.0, 1.0, 1.0)), | |
( 0.05, (1.0, 0.9, 0.3)), # yellowish | |
( 0.5, (0.9, 0.5, 0.0)), # orangeish | |
( 0.95, (0.7, 0.1, 0.0)), # redish | |
( 1.0, (0.0, 0.0, 0.0)), | |
( 2.0, (0.0, 0.0, 0.0)), | |
] | |
def phase_color_function(ctx, z): | |
if ctx.isinf(z): | |
return (1.0, 1.0, 1.0) | |
if ctx.isnan(z): | |
return (0.5, 0.5, 0.5) | |
pi = 3.1415926535898 | |
w = float(ctx.arg(z)) / pi | |
w = max(min(w, 1.0), -1.0) | |
for i in range(1,len(blue_orange_colors)): | |
if blue_orange_colors[i][0] > w: | |
a, (ra, ga, ba) = blue_orange_colors[i-1] | |
b, (rb, gb, bb) = blue_orange_colors[i] | |
s = (w-a) / (b-a) | |
return ra+(rb-ra)*s, ga+(gb-ga)*s, ba+(bb-ba)*s | |
def cplot(ctx, f, re=[-5,5], im=[-5,5], points=2000, color=None, | |
verbose=False, file=None, dpi=None, axes=None): | |
""" | |
Plots the given complex-valued function *f* over a rectangular part | |
of the complex plane specified by the pairs of intervals *re* and *im*. | |
For example:: | |
cplot(lambda z: z, [-2, 2], [-10, 10]) | |
cplot(exp) | |
cplot(zeta, [0, 1], [0, 50]) | |
By default, the complex argument (phase) is shown as color (hue) and | |
the magnitude is show as brightness. You can also supply a | |
custom color function (*color*). This function should take a | |
complex number as input and return an RGB 3-tuple containing | |
floats in the range 0.0-1.0. | |
Alternatively, you can select a builtin color function by passing | |
a string as *color*: | |
* "default" - default color scheme | |
* "phase" - a color scheme that only renders the phase of the function, | |
with white for positive reals, black for negative reals, gold in the | |
upper half plane, and blue in the lower half plane. | |
To obtain a sharp image, the number of points may need to be | |
increased to 100,000 or thereabout. Since evaluating the | |
function that many times is likely to be slow, the 'verbose' | |
option is useful to display progress. | |
.. note :: This function requires matplotlib (pylab). | |
""" | |
if color is None or color == "default": | |
color = ctx.default_color_function | |
if color == "phase": | |
color = ctx.phase_color_function | |
import pylab | |
if file: | |
axes = None | |
fig = None | |
if not axes: | |
fig = pylab.figure() | |
axes = fig.add_subplot(111) | |
rea, reb = re | |
ima, imb = im | |
dre = reb - rea | |
dim = imb - ima | |
M = int(ctx.sqrt(points*dre/dim)+1) | |
N = int(ctx.sqrt(points*dim/dre)+1) | |
x = pylab.linspace(rea, reb, M) | |
y = pylab.linspace(ima, imb, N) | |
# Note: we have to be careful to get the right rotation. | |
# Test with these plots: | |
# cplot(lambda z: z if z.real < 0 else 0) | |
# cplot(lambda z: z if z.imag < 0 else 0) | |
w = pylab.zeros((N, M, 3)) | |
for n in xrange(N): | |
for m in xrange(M): | |
z = ctx.mpc(x[m], y[n]) | |
try: | |
v = color(f(z)) | |
except ctx.plot_ignore: | |
v = (0.5, 0.5, 0.5) | |
w[n,m] = v | |
if verbose: | |
print(str(n) + ' of ' + str(N)) | |
rea, reb, ima, imb = [float(_) for _ in [rea, reb, ima, imb]] | |
axes.imshow(w, extent=(rea, reb, ima, imb), origin='lower') | |
axes.set_xlabel('Re(z)') | |
axes.set_ylabel('Im(z)') | |
if fig: | |
if file: | |
pylab.savefig(file, dpi=dpi) | |
else: | |
pylab.show() | |
def splot(ctx, f, u=[-5,5], v=[-5,5], points=100, keep_aspect=True, \ | |
wireframe=False, file=None, dpi=None, axes=None): | |
""" | |
Plots the surface defined by `f`. | |
If `f` returns a single component, then this plots the surface | |
defined by `z = f(x,y)` over the rectangular domain with | |
`x = u` and `y = v`. | |
If `f` returns three components, then this plots the parametric | |
surface `x, y, z = f(u,v)` over the pairs of intervals `u` and `v`. | |
For example, to plot a simple function:: | |
>>> from mpmath import * | |
>>> f = lambda x, y: sin(x+y)*cos(y) | |
>>> splot(f, [-pi,pi], [-pi,pi]) # doctest: +SKIP | |
Plotting a donut:: | |
>>> r, R = 1, 2.5 | |
>>> f = lambda u, v: [r*cos(u), (R+r*sin(u))*cos(v), (R+r*sin(u))*sin(v)] | |
>>> splot(f, [0, 2*pi], [0, 2*pi]) # doctest: +SKIP | |
.. note :: This function requires matplotlib (pylab) 0.98.5.3 or higher. | |
""" | |
import pylab | |
import mpl_toolkits.mplot3d as mplot3d | |
if file: | |
axes = None | |
fig = None | |
if not axes: | |
fig = pylab.figure() | |
axes = mplot3d.axes3d.Axes3D(fig) | |
ua, ub = u | |
va, vb = v | |
du = ub - ua | |
dv = vb - va | |
if not isinstance(points, (list, tuple)): | |
points = [points, points] | |
M, N = points | |
u = pylab.linspace(ua, ub, M) | |
v = pylab.linspace(va, vb, N) | |
x, y, z = [pylab.zeros((M, N)) for i in xrange(3)] | |
xab, yab, zab = [[0, 0] for i in xrange(3)] | |
for n in xrange(N): | |
for m in xrange(M): | |
fdata = f(ctx.convert(u[m]), ctx.convert(v[n])) | |
try: | |
x[m,n], y[m,n], z[m,n] = fdata | |
except TypeError: | |
x[m,n], y[m,n], z[m,n] = u[m], v[n], fdata | |
for c, cab in [(x[m,n], xab), (y[m,n], yab), (z[m,n], zab)]: | |
if c < cab[0]: | |
cab[0] = c | |
if c > cab[1]: | |
cab[1] = c | |
if wireframe: | |
axes.plot_wireframe(x, y, z, rstride=4, cstride=4) | |
else: | |
axes.plot_surface(x, y, z, rstride=4, cstride=4) | |
axes.set_xlabel('x') | |
axes.set_ylabel('y') | |
axes.set_zlabel('z') | |
if keep_aspect: | |
dx, dy, dz = [cab[1] - cab[0] for cab in [xab, yab, zab]] | |
maxd = max(dx, dy, dz) | |
if dx < maxd: | |
delta = maxd - dx | |
axes.set_xlim3d(xab[0] - delta / 2.0, xab[1] + delta / 2.0) | |
if dy < maxd: | |
delta = maxd - dy | |
axes.set_ylim3d(yab[0] - delta / 2.0, yab[1] + delta / 2.0) | |
if dz < maxd: | |
delta = maxd - dz | |
axes.set_zlim3d(zab[0] - delta / 2.0, zab[1] + delta / 2.0) | |
if fig: | |
if file: | |
pylab.savefig(file, dpi=dpi) | |
else: | |
pylab.show() | |
VisualizationMethods.plot = plot | |
VisualizationMethods.default_color_function = default_color_function | |
VisualizationMethods.phase_color_function = phase_color_function | |
VisualizationMethods.cplot = cplot | |
VisualizationMethods.splot = splot | |