Spaces:
Running
Running
from collections import UserDict | |
import pytest | |
import networkx as nx | |
from networkx.utils import edges_equal | |
from .test_multigraph import BaseMultiGraphTester | |
from .test_multigraph import TestEdgeSubgraph as _TestMultiGraphEdgeSubgraph | |
from .test_multigraph import TestMultiGraph as _TestMultiGraph | |
class BaseMultiDiGraphTester(BaseMultiGraphTester): | |
def test_edges(self): | |
G = self.K3 | |
edges = [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] | |
assert sorted(G.edges()) == edges | |
assert sorted(G.edges(0)) == [(0, 1), (0, 2)] | |
pytest.raises((KeyError, nx.NetworkXError), G.edges, -1) | |
def test_edges_data(self): | |
G = self.K3 | |
edges = [(0, 1, {}), (0, 2, {}), (1, 0, {}), (1, 2, {}), (2, 0, {}), (2, 1, {})] | |
assert sorted(G.edges(data=True)) == edges | |
assert sorted(G.edges(0, data=True)) == [(0, 1, {}), (0, 2, {})] | |
pytest.raises((KeyError, nx.NetworkXError), G.neighbors, -1) | |
def test_edges_multi(self): | |
G = self.K3 | |
assert sorted(G.edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] | |
assert sorted(G.edges(0)) == [(0, 1), (0, 2)] | |
G.add_edge(0, 1) | |
assert sorted(G.edges()) == [ | |
(0, 1), | |
(0, 1), | |
(0, 2), | |
(1, 0), | |
(1, 2), | |
(2, 0), | |
(2, 1), | |
] | |
def test_out_edges(self): | |
G = self.K3 | |
assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] | |
assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)] | |
pytest.raises((KeyError, nx.NetworkXError), G.out_edges, -1) | |
assert sorted(G.out_edges(0, keys=True)) == [(0, 1, 0), (0, 2, 0)] | |
def test_out_edges_multi(self): | |
G = self.K3 | |
assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] | |
assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)] | |
G.add_edge(0, 1, 2) | |
assert sorted(G.out_edges()) == [ | |
(0, 1), | |
(0, 1), | |
(0, 2), | |
(1, 0), | |
(1, 2), | |
(2, 0), | |
(2, 1), | |
] | |
def test_out_edges_data(self): | |
G = self.K3 | |
assert sorted(G.edges(0, data=True)) == [(0, 1, {}), (0, 2, {})] | |
G.remove_edge(0, 1) | |
G.add_edge(0, 1, data=1) | |
assert sorted(G.edges(0, data=True)) == [(0, 1, {"data": 1}), (0, 2, {})] | |
assert sorted(G.edges(0, data="data")) == [(0, 1, 1), (0, 2, None)] | |
assert sorted(G.edges(0, data="data", default=-1)) == [(0, 1, 1), (0, 2, -1)] | |
def test_in_edges(self): | |
G = self.K3 | |
assert sorted(G.in_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] | |
assert sorted(G.in_edges(0)) == [(1, 0), (2, 0)] | |
pytest.raises((KeyError, nx.NetworkXError), G.in_edges, -1) | |
G.add_edge(0, 1, 2) | |
assert sorted(G.in_edges()) == [ | |
(0, 1), | |
(0, 1), | |
(0, 2), | |
(1, 0), | |
(1, 2), | |
(2, 0), | |
(2, 1), | |
] | |
assert sorted(G.in_edges(0, keys=True)) == [(1, 0, 0), (2, 0, 0)] | |
def test_in_edges_no_keys(self): | |
G = self.K3 | |
assert sorted(G.in_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] | |
assert sorted(G.in_edges(0)) == [(1, 0), (2, 0)] | |
G.add_edge(0, 1, 2) | |
assert sorted(G.in_edges()) == [ | |
(0, 1), | |
(0, 1), | |
(0, 2), | |
(1, 0), | |
(1, 2), | |
(2, 0), | |
(2, 1), | |
] | |
assert sorted(G.in_edges(data=True, keys=False)) == [ | |
(0, 1, {}), | |
(0, 1, {}), | |
(0, 2, {}), | |
(1, 0, {}), | |
(1, 2, {}), | |
(2, 0, {}), | |
(2, 1, {}), | |
] | |
def test_in_edges_data(self): | |
G = self.K3 | |
assert sorted(G.in_edges(0, data=True)) == [(1, 0, {}), (2, 0, {})] | |
G.remove_edge(1, 0) | |
G.add_edge(1, 0, data=1) | |
assert sorted(G.in_edges(0, data=True)) == [(1, 0, {"data": 1}), (2, 0, {})] | |
assert sorted(G.in_edges(0, data="data")) == [(1, 0, 1), (2, 0, None)] | |
assert sorted(G.in_edges(0, data="data", default=-1)) == [(1, 0, 1), (2, 0, -1)] | |
def is_shallow(self, H, G): | |
# graph | |
assert G.graph["foo"] == H.graph["foo"] | |
G.graph["foo"].append(1) | |
assert G.graph["foo"] == H.graph["foo"] | |
# node | |
assert G.nodes[0]["foo"] == H.nodes[0]["foo"] | |
G.nodes[0]["foo"].append(1) | |
assert G.nodes[0]["foo"] == H.nodes[0]["foo"] | |
# edge | |
assert G[1][2][0]["foo"] == H[1][2][0]["foo"] | |
G[1][2][0]["foo"].append(1) | |
assert G[1][2][0]["foo"] == H[1][2][0]["foo"] | |
def is_deep(self, H, G): | |
# graph | |
assert G.graph["foo"] == H.graph["foo"] | |
G.graph["foo"].append(1) | |
assert G.graph["foo"] != H.graph["foo"] | |
# node | |
assert G.nodes[0]["foo"] == H.nodes[0]["foo"] | |
G.nodes[0]["foo"].append(1) | |
assert G.nodes[0]["foo"] != H.nodes[0]["foo"] | |
# edge | |
assert G[1][2][0]["foo"] == H[1][2][0]["foo"] | |
G[1][2][0]["foo"].append(1) | |
assert G[1][2][0]["foo"] != H[1][2][0]["foo"] | |
def test_to_undirected(self): | |
# MultiDiGraph -> MultiGraph changes number of edges so it is | |
# not a copy operation... use is_shallow, not is_shallow_copy | |
G = self.K3 | |
self.add_attributes(G) | |
H = nx.MultiGraph(G) | |
# self.is_shallow(H,G) | |
# the result is traversal order dependent so we | |
# can't use the is_shallow() test here. | |
try: | |
assert edges_equal(H.edges(), [(0, 1), (1, 2), (2, 0)]) | |
except AssertionError: | |
assert edges_equal(H.edges(), [(0, 1), (1, 2), (1, 2), (2, 0)]) | |
H = G.to_undirected() | |
self.is_deep(H, G) | |
def test_has_successor(self): | |
G = self.K3 | |
assert G.has_successor(0, 1) | |
assert not G.has_successor(0, -1) | |
def test_successors(self): | |
G = self.K3 | |
assert sorted(G.successors(0)) == [1, 2] | |
pytest.raises((KeyError, nx.NetworkXError), G.successors, -1) | |
def test_has_predecessor(self): | |
G = self.K3 | |
assert G.has_predecessor(0, 1) | |
assert not G.has_predecessor(0, -1) | |
def test_predecessors(self): | |
G = self.K3 | |
assert sorted(G.predecessors(0)) == [1, 2] | |
pytest.raises((KeyError, nx.NetworkXError), G.predecessors, -1) | |
def test_degree(self): | |
G = self.K3 | |
assert sorted(G.degree()) == [(0, 4), (1, 4), (2, 4)] | |
assert dict(G.degree()) == {0: 4, 1: 4, 2: 4} | |
assert G.degree(0) == 4 | |
assert list(G.degree(iter([0]))) == [(0, 4)] | |
G.add_edge(0, 1, weight=0.3, other=1.2) | |
assert sorted(G.degree(weight="weight")) == [(0, 4.3), (1, 4.3), (2, 4)] | |
assert sorted(G.degree(weight="other")) == [(0, 5.2), (1, 5.2), (2, 4)] | |
def test_in_degree(self): | |
G = self.K3 | |
assert sorted(G.in_degree()) == [(0, 2), (1, 2), (2, 2)] | |
assert dict(G.in_degree()) == {0: 2, 1: 2, 2: 2} | |
assert G.in_degree(0) == 2 | |
assert list(G.in_degree(iter([0]))) == [(0, 2)] | |
assert G.in_degree(0, weight="weight") == 2 | |
def test_out_degree(self): | |
G = self.K3 | |
assert sorted(G.out_degree()) == [(0, 2), (1, 2), (2, 2)] | |
assert dict(G.out_degree()) == {0: 2, 1: 2, 2: 2} | |
assert G.out_degree(0) == 2 | |
assert list(G.out_degree(iter([0]))) == [(0, 2)] | |
assert G.out_degree(0, weight="weight") == 2 | |
def test_size(self): | |
G = self.K3 | |
assert G.size() == 6 | |
assert G.number_of_edges() == 6 | |
G.add_edge(0, 1, weight=0.3, other=1.2) | |
assert round(G.size(weight="weight"), 2) == 6.3 | |
assert round(G.size(weight="other"), 2) == 7.2 | |
def test_to_undirected_reciprocal(self): | |
G = self.Graph() | |
G.add_edge(1, 2) | |
assert G.to_undirected().has_edge(1, 2) | |
assert not G.to_undirected(reciprocal=True).has_edge(1, 2) | |
G.add_edge(2, 1) | |
assert G.to_undirected(reciprocal=True).has_edge(1, 2) | |
def test_reverse_copy(self): | |
G = nx.MultiDiGraph([(0, 1), (0, 1)]) | |
R = G.reverse() | |
assert sorted(R.edges()) == [(1, 0), (1, 0)] | |
R.remove_edge(1, 0) | |
assert sorted(R.edges()) == [(1, 0)] | |
assert sorted(G.edges()) == [(0, 1), (0, 1)] | |
def test_reverse_nocopy(self): | |
G = nx.MultiDiGraph([(0, 1), (0, 1)]) | |
R = G.reverse(copy=False) | |
assert sorted(R.edges()) == [(1, 0), (1, 0)] | |
pytest.raises(nx.NetworkXError, R.remove_edge, 1, 0) | |
def test_di_attributes_cached(self): | |
G = self.K3.copy() | |
assert id(G.in_edges) == id(G.in_edges) | |
assert id(G.out_edges) == id(G.out_edges) | |
assert id(G.in_degree) == id(G.in_degree) | |
assert id(G.out_degree) == id(G.out_degree) | |
assert id(G.succ) == id(G.succ) | |
assert id(G.pred) == id(G.pred) | |
class TestMultiDiGraph(BaseMultiDiGraphTester, _TestMultiGraph): | |
def setup_method(self): | |
self.Graph = nx.MultiDiGraph | |
# build K3 | |
self.k3edges = [(0, 1), (0, 2), (1, 2)] | |
self.k3nodes = [0, 1, 2] | |
self.K3 = self.Graph() | |
self.K3._succ = {0: {}, 1: {}, 2: {}} | |
# K3._adj is synced with K3._succ | |
self.K3._pred = {0: {}, 1: {}, 2: {}} | |
for u in self.k3nodes: | |
for v in self.k3nodes: | |
if u == v: | |
continue | |
d = {0: {}} | |
self.K3._succ[u][v] = d | |
self.K3._pred[v][u] = d | |
self.K3._node = {} | |
self.K3._node[0] = {} | |
self.K3._node[1] = {} | |
self.K3._node[2] = {} | |
def test_add_edge(self): | |
G = self.Graph() | |
G.add_edge(0, 1) | |
assert G._adj == {0: {1: {0: {}}}, 1: {}} | |
assert G._succ == {0: {1: {0: {}}}, 1: {}} | |
assert G._pred == {0: {}, 1: {0: {0: {}}}} | |
G = self.Graph() | |
G.add_edge(*(0, 1)) | |
assert G._adj == {0: {1: {0: {}}}, 1: {}} | |
assert G._succ == {0: {1: {0: {}}}, 1: {}} | |
assert G._pred == {0: {}, 1: {0: {0: {}}}} | |
with pytest.raises(ValueError, match="None cannot be a node"): | |
G.add_edge(None, 3) | |
def test_add_edges_from(self): | |
G = self.Graph() | |
G.add_edges_from([(0, 1), (0, 1, {"weight": 3})]) | |
assert G._adj == {0: {1: {0: {}, 1: {"weight": 3}}}, 1: {}} | |
assert G._succ == {0: {1: {0: {}, 1: {"weight": 3}}}, 1: {}} | |
assert G._pred == {0: {}, 1: {0: {0: {}, 1: {"weight": 3}}}} | |
G.add_edges_from([(0, 1), (0, 1, {"weight": 3})], weight=2) | |
assert G._succ == { | |
0: {1: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}}, | |
1: {}, | |
} | |
assert G._pred == { | |
0: {}, | |
1: {0: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}}, | |
} | |
G = self.Graph() | |
edges = [ | |
(0, 1, {"weight": 3}), | |
(0, 1, (("weight", 2),)), | |
(0, 1, 5), | |
(0, 1, "s"), | |
] | |
G.add_edges_from(edges) | |
keydict = {0: {"weight": 3}, 1: {"weight": 2}, 5: {}, "s": {}} | |
assert G._succ == {0: {1: keydict}, 1: {}} | |
assert G._pred == {1: {0: keydict}, 0: {}} | |
# too few in tuple | |
pytest.raises(nx.NetworkXError, G.add_edges_from, [(0,)]) | |
# too many in tuple | |
pytest.raises(nx.NetworkXError, G.add_edges_from, [(0, 1, 2, 3, 4)]) | |
# not a tuple | |
pytest.raises(TypeError, G.add_edges_from, [0]) | |
with pytest.raises(ValueError, match="None cannot be a node"): | |
G.add_edges_from([(None, 3), (3, 2)]) | |
def test_remove_edge(self): | |
G = self.K3 | |
G.remove_edge(0, 1) | |
assert G._succ == { | |
0: {2: {0: {}}}, | |
1: {0: {0: {}}, 2: {0: {}}}, | |
2: {0: {0: {}}, 1: {0: {}}}, | |
} | |
assert G._pred == { | |
0: {1: {0: {}}, 2: {0: {}}}, | |
1: {2: {0: {}}}, | |
2: {0: {0: {}}, 1: {0: {}}}, | |
} | |
pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, -1, 0) | |
pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, 0, 2, key=1) | |
def test_remove_multiedge(self): | |
G = self.K3 | |
G.add_edge(0, 1, key="parallel edge") | |
G.remove_edge(0, 1, key="parallel edge") | |
assert G._adj == { | |
0: {1: {0: {}}, 2: {0: {}}}, | |
1: {0: {0: {}}, 2: {0: {}}}, | |
2: {0: {0: {}}, 1: {0: {}}}, | |
} | |
assert G._succ == { | |
0: {1: {0: {}}, 2: {0: {}}}, | |
1: {0: {0: {}}, 2: {0: {}}}, | |
2: {0: {0: {}}, 1: {0: {}}}, | |
} | |
assert G._pred == { | |
0: {1: {0: {}}, 2: {0: {}}}, | |
1: {0: {0: {}}, 2: {0: {}}}, | |
2: {0: {0: {}}, 1: {0: {}}}, | |
} | |
G.remove_edge(0, 1) | |
assert G._succ == { | |
0: {2: {0: {}}}, | |
1: {0: {0: {}}, 2: {0: {}}}, | |
2: {0: {0: {}}, 1: {0: {}}}, | |
} | |
assert G._pred == { | |
0: {1: {0: {}}, 2: {0: {}}}, | |
1: {2: {0: {}}}, | |
2: {0: {0: {}}, 1: {0: {}}}, | |
} | |
pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, -1, 0) | |
def test_remove_edges_from(self): | |
G = self.K3 | |
G.remove_edges_from([(0, 1)]) | |
assert G._succ == { | |
0: {2: {0: {}}}, | |
1: {0: {0: {}}, 2: {0: {}}}, | |
2: {0: {0: {}}, 1: {0: {}}}, | |
} | |
assert G._pred == { | |
0: {1: {0: {}}, 2: {0: {}}}, | |
1: {2: {0: {}}}, | |
2: {0: {0: {}}, 1: {0: {}}}, | |
} | |
G.remove_edges_from([(0, 0)]) # silent fail | |
class TestEdgeSubgraph(_TestMultiGraphEdgeSubgraph): | |
"""Unit tests for the :meth:`MultiDiGraph.edge_subgraph` method.""" | |
def setup_method(self): | |
# Create a quadruply-linked path graph on five nodes. | |
G = nx.MultiDiGraph() | |
nx.add_path(G, range(5)) | |
nx.add_path(G, range(5)) | |
nx.add_path(G, reversed(range(5))) | |
nx.add_path(G, reversed(range(5))) | |
# Add some node, edge, and graph attributes. | |
for i in range(5): | |
G.nodes[i]["name"] = f"node{i}" | |
G.adj[0][1][0]["name"] = "edge010" | |
G.adj[0][1][1]["name"] = "edge011" | |
G.adj[3][4][0]["name"] = "edge340" | |
G.adj[3][4][1]["name"] = "edge341" | |
G.graph["name"] = "graph" | |
# Get the subgraph induced by one of the first edges and one of | |
# the last edges. | |
self.G = G | |
self.H = G.edge_subgraph([(0, 1, 0), (3, 4, 1)]) | |
class CustomDictClass(UserDict): | |
pass | |
class MultiDiGraphSubClass(nx.MultiDiGraph): | |
node_dict_factory = CustomDictClass # type: ignore[assignment] | |
node_attr_dict_factory = CustomDictClass # type: ignore[assignment] | |
adjlist_outer_dict_factory = CustomDictClass # type: ignore[assignment] | |
adjlist_inner_dict_factory = CustomDictClass # type: ignore[assignment] | |
edge_key_dict_factory = CustomDictClass # type: ignore[assignment] | |
edge_attr_dict_factory = CustomDictClass # type: ignore[assignment] | |
graph_attr_dict_factory = CustomDictClass # type: ignore[assignment] | |
class TestMultiDiGraphSubclass(TestMultiDiGraph): | |
def setup_method(self): | |
self.Graph = MultiDiGraphSubClass | |
# build K3 | |
self.k3edges = [(0, 1), (0, 2), (1, 2)] | |
self.k3nodes = [0, 1, 2] | |
self.K3 = self.Graph() | |
self.K3._succ = self.K3.adjlist_outer_dict_factory( | |
{ | |
0: self.K3.adjlist_inner_dict_factory(), | |
1: self.K3.adjlist_inner_dict_factory(), | |
2: self.K3.adjlist_inner_dict_factory(), | |
} | |
) | |
# K3._adj is synced with K3._succ | |
self.K3._pred = {0: {}, 1: {}, 2: {}} | |
for u in self.k3nodes: | |
for v in self.k3nodes: | |
if u == v: | |
continue | |
d = {0: {}} | |
self.K3._succ[u][v] = d | |
self.K3._pred[v][u] = d | |
self.K3._node = self.K3.node_dict_factory() | |
self.K3._node[0] = self.K3.node_attr_dict_factory() | |
self.K3._node[1] = self.K3.node_attr_dict_factory() | |
self.K3._node[2] = self.K3.node_attr_dict_factory() | |