Spaces:
Running
Running
"""Bethe Hessian or deformed Laplacian matrix of graphs.""" | |
import networkx as nx | |
from networkx.utils import not_implemented_for | |
__all__ = ["bethe_hessian_matrix"] | |
def bethe_hessian_matrix(G, r=None, nodelist=None): | |
r"""Returns the Bethe Hessian matrix of G. | |
The Bethe Hessian is a family of matrices parametrized by r, defined as | |
H(r) = (r^2 - 1) I - r A + D where A is the adjacency matrix, D is the | |
diagonal matrix of node degrees, and I is the identify matrix. It is equal | |
to the graph laplacian when the regularizer r = 1. | |
The default choice of regularizer should be the ratio [2]_ | |
.. math:: | |
r_m = \left(\sum k_i \right)^{-1}\left(\sum k_i^2 \right) - 1 | |
Parameters | |
---------- | |
G : Graph | |
A NetworkX graph | |
r : float | |
Regularizer parameter | |
nodelist : list, optional | |
The rows and columns are ordered according to the nodes in nodelist. | |
If nodelist is None, then the ordering is produced by ``G.nodes()``. | |
Returns | |
------- | |
H : scipy.sparse.csr_array | |
The Bethe Hessian matrix of `G`, with parameter `r`. | |
Examples | |
-------- | |
>>> k = [3, 2, 2, 1, 0] | |
>>> G = nx.havel_hakimi_graph(k) | |
>>> H = nx.bethe_hessian_matrix(G) | |
>>> H.toarray() | |
array([[ 3.5625, -1.25 , -1.25 , -1.25 , 0. ], | |
[-1.25 , 2.5625, -1.25 , 0. , 0. ], | |
[-1.25 , -1.25 , 2.5625, 0. , 0. ], | |
[-1.25 , 0. , 0. , 1.5625, 0. ], | |
[ 0. , 0. , 0. , 0. , 0.5625]]) | |
See Also | |
-------- | |
bethe_hessian_spectrum | |
adjacency_matrix | |
laplacian_matrix | |
References | |
---------- | |
.. [1] A. Saade, F. Krzakala and L. Zdeborová | |
"Spectral Clustering of Graphs with the Bethe Hessian", | |
Advances in Neural Information Processing Systems, 2014. | |
.. [2] C. M. Le, E. Levina | |
"Estimating the number of communities in networks by spectral methods" | |
arXiv:1507.00827, 2015. | |
""" | |
import scipy as sp | |
if nodelist is None: | |
nodelist = list(G) | |
if r is None: | |
r = sum(d**2 for v, d in nx.degree(G)) / sum(d for v, d in nx.degree(G)) - 1 | |
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, format="csr") | |
n, m = A.shape | |
# TODO: Rm csr_array wrapper when spdiags array creation becomes available | |
D = sp.sparse.csr_array(sp.sparse.spdiags(A.sum(axis=1), 0, m, n, format="csr")) | |
# TODO: Rm csr_array wrapper when eye array creation becomes available | |
I = sp.sparse.csr_array(sp.sparse.eye(m, n, format="csr")) | |
return (r**2 - 1) * I - r * A + D | |