Spaces:
Running
Running
""" | |
Eigenvalue spectrum of graphs. | |
""" | |
import networkx as nx | |
__all__ = [ | |
"laplacian_spectrum", | |
"adjacency_spectrum", | |
"modularity_spectrum", | |
"normalized_laplacian_spectrum", | |
"bethe_hessian_spectrum", | |
] | |
def laplacian_spectrum(G, weight="weight"): | |
"""Returns eigenvalues of the Laplacian of G | |
Parameters | |
---------- | |
G : graph | |
A NetworkX graph | |
weight : string or None, optional (default='weight') | |
The edge data key used to compute each value in the matrix. | |
If None, then each edge has weight 1. | |
Returns | |
------- | |
evals : NumPy array | |
Eigenvalues | |
Notes | |
----- | |
For MultiGraph/MultiDiGraph, the edges weights are summed. | |
See :func:`~networkx.convert_matrix.to_numpy_array` for other options. | |
See Also | |
-------- | |
laplacian_matrix | |
Examples | |
-------- | |
The multiplicity of 0 as an eigenvalue of the laplacian matrix is equal | |
to the number of connected components of G. | |
>>> G = nx.Graph() # Create a graph with 5 nodes and 3 connected components | |
>>> G.add_nodes_from(range(5)) | |
>>> G.add_edges_from([(0, 2), (3, 4)]) | |
>>> nx.laplacian_spectrum(G) | |
array([0., 0., 0., 2., 2.]) | |
""" | |
import scipy as sp | |
return sp.linalg.eigvalsh(nx.laplacian_matrix(G, weight=weight).todense()) | |
def normalized_laplacian_spectrum(G, weight="weight"): | |
"""Return eigenvalues of the normalized Laplacian of G | |
Parameters | |
---------- | |
G : graph | |
A NetworkX graph | |
weight : string or None, optional (default='weight') | |
The edge data key used to compute each value in the matrix. | |
If None, then each edge has weight 1. | |
Returns | |
------- | |
evals : NumPy array | |
Eigenvalues | |
Notes | |
----- | |
For MultiGraph/MultiDiGraph, the edges weights are summed. | |
See to_numpy_array for other options. | |
See Also | |
-------- | |
normalized_laplacian_matrix | |
""" | |
import scipy as sp | |
return sp.linalg.eigvalsh( | |
nx.normalized_laplacian_matrix(G, weight=weight).todense() | |
) | |
def adjacency_spectrum(G, weight="weight"): | |
"""Returns eigenvalues of the adjacency matrix of G. | |
Parameters | |
---------- | |
G : graph | |
A NetworkX graph | |
weight : string or None, optional (default='weight') | |
The edge data key used to compute each value in the matrix. | |
If None, then each edge has weight 1. | |
Returns | |
------- | |
evals : NumPy array | |
Eigenvalues | |
Notes | |
----- | |
For MultiGraph/MultiDiGraph, the edges weights are summed. | |
See to_numpy_array for other options. | |
See Also | |
-------- | |
adjacency_matrix | |
""" | |
import scipy as sp | |
return sp.linalg.eigvals(nx.adjacency_matrix(G, weight=weight).todense()) | |
def modularity_spectrum(G): | |
"""Returns eigenvalues of the modularity matrix of G. | |
Parameters | |
---------- | |
G : Graph | |
A NetworkX Graph or DiGraph | |
Returns | |
------- | |
evals : NumPy array | |
Eigenvalues | |
See Also | |
-------- | |
modularity_matrix | |
References | |
---------- | |
.. [1] M. E. J. Newman, "Modularity and community structure in networks", | |
Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006. | |
""" | |
import scipy as sp | |
if G.is_directed(): | |
return sp.linalg.eigvals(nx.directed_modularity_matrix(G)) | |
else: | |
return sp.linalg.eigvals(nx.modularity_matrix(G)) | |
def bethe_hessian_spectrum(G, r=None): | |
"""Returns eigenvalues of the Bethe Hessian matrix of G. | |
Parameters | |
---------- | |
G : Graph | |
A NetworkX Graph or DiGraph | |
r : float | |
Regularizer parameter | |
Returns | |
------- | |
evals : NumPy array | |
Eigenvalues | |
See Also | |
-------- | |
bethe_hessian_matrix | |
References | |
---------- | |
.. [1] A. Saade, F. Krzakala and L. Zdeborová | |
"Spectral clustering of graphs with the bethe hessian", | |
Advances in Neural Information Processing Systems. 2014. | |
""" | |
import scipy as sp | |
return sp.linalg.eigvalsh(nx.bethe_hessian_matrix(G, r).todense()) | |