Kano001's picture
Upload 5252 files
c61ccee verified
raw
history blame
137 kB
import _collections_abc
import _weakrefset
import abc
import builtins
import collections
import contextlib
import copy
import copyreg
import dataclasses
import enum
import functools
import importlib
import inspect
import itertools
import linecache
import logging
import multiprocessing
import operator
import os
import posixpath
import random
import re
import selectors
import signal
import sys
import tempfile
import threading
import tokenize
import traceback
import types
import typing
import unittest
import weakref
from collections import defaultdict
from typing import Any, Callable, cast, Dict, List, Optional, Set, Union
np: Optional[types.ModuleType] = None
try:
import numpy as np
except ModuleNotFoundError:
pass
import torch
import torch._inductor.test_operators
import torch.distributed
import torch.utils._content_store
from ..utils import _config_module
from .utils import getfile, hashable, NP_SUPPORTED_MODULES, unwrap_if_wrapper
from .variables import (
BuiltinVariable,
FunctorchHigherOrderVariable,
NestedUserFunctionVariable,
SkipFunctionVariable,
TorchInGraphFunctionVariable,
UserFunctionVariable,
UserMethodVariable,
)
from .variables.base import VariableTracker
"""
Map of function objects to their tracing rules (Dynamo variables).
* TorchInGraphFunctionVariable: The functions should be put into the FX graph or can be constant folded. E.g.,
- torch.add: should be put into the FX graph.
- torch.is_floating_point: constant folded.
* SkipFunctionVariable: The objects should be skipped from tracing.
* UserFunctionVariable: The functions should be inlined.
For developers: If you add/remove a torch level API, it may trigger failures from
test/dynamo/test_trace_rules.py:test_torch_name_rule_map_updated. To fix the failures:
If you are adding a new torch level API or Dynamo implementation:
* Add the name with the corresponding tracing rule to this map
if you are adding a new in graph function or Dynamo implementation for an existing function.
* Remove the object name from test/dynamo/test_trace_rules.ignored_c_binding_in_graph_function_names if it's there.
If you are removing an existing torch level API:
* Remove the entry represented the API from this map or test/dynamo/test_trace_rules.ignored_c_binding_in_graph_function_names
depends on where it is.
"""
manual_torch_name_rule_map = {
"torch.onnx.is_in_onnx_export": TorchInGraphFunctionVariable,
"torch.onnx.operators.shape_as_tensor": TorchInGraphFunctionVariable,
"torch.overrides.is_tensor_like": TorchInGraphFunctionVariable,
"torch.jit.is_scripting": TorchInGraphFunctionVariable,
"torch.jit.is_tracing": TorchInGraphFunctionVariable,
"torch.jit.annotate": TorchInGraphFunctionVariable,
"torch.distributed.is_available": TorchInGraphFunctionVariable,
"torch.distributed.is_initialized": TorchInGraphFunctionVariable,
"torch.distributed.get_rank": TorchInGraphFunctionVariable,
"torch.distributed.get_world_size": TorchInGraphFunctionVariable,
"torch.distributed._tensor.api.DTensor#from_local": TorchInGraphFunctionVariable,
"torch.distributed.distributed_c10d._get_group_size_by_name": TorchInGraphFunctionVariable,
"torch.distributed.distributed_c10d._resolve_group_name_by_ranks_and_tag": TorchInGraphFunctionVariable,
"torch.distributed.distributed_c10d._get_group_tag": TorchInGraphFunctionVariable,
"torch.distributed.distributed_c10d.get_process_group_ranks": TorchInGraphFunctionVariable,
"torch._utils.is_compiling": TorchInGraphFunctionVariable,
"torch.overrides.get_default_nowrap_functions": TorchInGraphFunctionVariable,
"torch.fx._symbolic_trace.is_fx_tracing": TorchInGraphFunctionVariable,
"torch._dynamo.external_utils.is_compiling": TorchInGraphFunctionVariable,
"torch.compiler.is_compiling": TorchInGraphFunctionVariable,
"torch.compiler.is_dynamo_compiling": TorchInGraphFunctionVariable,
"torch.autograd._profiler_enabled": SkipFunctionVariable,
# We graph break on RNG state setters or getters like
# `torch.get_rng_state` or `torch.set_rng_state`. These functions
# are not aten operations and therefore they are completely ignored
# by the AOT dispatcher. As a result, the AOT graph does not have
# these setter or getter functions, producing an incorrect graph
# when it comes to rng states.
"torch.default_generator#get_state": SkipFunctionVariable,
"torch._C.Generator#get_state": SkipFunctionVariable,
"torch.get_rng_state": SkipFunctionVariable,
"torch.cuda.get_rng_state": SkipFunctionVariable,
"torch.default_generator#set_state": SkipFunctionVariable,
"torch._C.Generator#set_state": SkipFunctionVariable,
"torch.set_rng_state": SkipFunctionVariable,
"torch.cuda.set_rng_state": SkipFunctionVariable,
# https://github.com/pytorch/pytorch/issues/107187
"torch.manual_seed": SkipFunctionVariable,
# https://github.com/pytorch/pytorch/issues/93501
"torch.nn.utils.rnn.pack_padded_sequence": SkipFunctionVariable,
"torch.nn.Parameter": TorchInGraphFunctionVariable,
"torch._nested_tensor_from_mask": SkipFunctionVariable,
"torch._nested_from_padded": SkipFunctionVariable,
# symbol operators implemented in Python
"torch.sym_not": TorchInGraphFunctionVariable,
"torch.sym_float": TorchInGraphFunctionVariable,
"torch.sym_int": TorchInGraphFunctionVariable,
"torch.sym_max": TorchInGraphFunctionVariable,
"torch.sym_min": TorchInGraphFunctionVariable,
"torch.sym_sqrt": TorchInGraphFunctionVariable,
"torch.sym_ite": TorchInGraphFunctionVariable,
"torch.Tensor#_make_wrapper_subclass": SkipFunctionVariable,
"torch.Tensor#__init__": SkipFunctionVariable,
"torch.cuda.set_device": SkipFunctionVariable,
"torch.cuda.current_device": SkipFunctionVariable,
"torch._C.autocast_decrement_nesting": SkipFunctionVariable,
"torch._C.autocast_increment_nesting": SkipFunctionVariable,
"torch.autograd.grad": SkipFunctionVariable,
"torch._C.clear_autocast_cache": SkipFunctionVariable,
"torch.distributions.constraints.is_dependent": SkipFunctionVariable,
"torch.jit.isinstance": SkipFunctionVariable,
"torch._C.set_anomaly_enabled": SkipFunctionVariable,
"torch._C.set_autocast_cache_enabled": SkipFunctionVariable,
"torch._C.set_autocast_cpu_dtype": SkipFunctionVariable,
"torch._C.set_autocast_cpu_enabled": SkipFunctionVariable,
"torch._C.set_autocast_enabled": SkipFunctionVariable,
"torch._C.set_autocast_gpu_dtype": SkipFunctionVariable,
"torch._C.set_autocast_ipu_dtype": SkipFunctionVariable,
"torch._C.set_autocast_ipu_enabled": SkipFunctionVariable,
"torch._C.set_autocast_xla_dtype": SkipFunctionVariable,
"torch._C.set_autocast_xla_enabled": SkipFunctionVariable,
"torch.resize_as_": SkipFunctionVariable,
"torch.resize_as_sparse_": SkipFunctionVariable,
"torch.get_default_device": TorchInGraphFunctionVariable,
# functorch/vmap
"torch._functorch.vmap._check_int_or_none": UserFunctionVariable,
"torch._functorch.vmap._check_out_dims_is_int_or_int_pytree": UserFunctionVariable,
"torch._functorch.vmap._check_randomness_arg": UserFunctionVariable,
"torch._functorch.vmap._chunked_vmap": UserFunctionVariable,
"torch._functorch.vmap._concat_chunked_outputs": UserFunctionVariable,
"torch._functorch.vmap._create_batched_inputs": UserFunctionVariable,
"torch._functorch.vmap._flat_vmap": UserFunctionVariable,
"torch._functorch.vmap._flatten_chunks_output": UserFunctionVariable,
"torch._functorch.vmap._get_chunked_inputs": UserFunctionVariable,
"torch._functorch.vmap._get_name": UserFunctionVariable,
"torch._functorch.vmap._maybe_remove_batch_dim": UserFunctionVariable,
"torch._functorch.vmap._num_outputs": UserFunctionVariable,
"torch._functorch.vmap._process_batched_inputs": UserFunctionVariable,
"torch._functorch.vmap._unwrap_batched": UserFunctionVariable,
"torch._functorch.vmap._validate_and_get_batch_size": UserFunctionVariable,
"torch._functorch.vmap.doesnt_support_saved_tensors_hooks": UserFunctionVariable,
"torch._functorch.vmap.get_chunk_sizes": UserFunctionVariable,
# lazy_load_decompositions uses a lock that is not supported yet in dynamo
# "torch._functorch.vmap.lazy_load_decompositions": UserFunctionVariable,
"torch._functorch.vmap.restore_vmap": UserFunctionVariable,
"torch._functorch.apis.vmap": UserFunctionVariable,
"torch._functorch.vmap.unwrap_batched": UserFunctionVariable,
"torch._functorch.vmap.vmap_impl": FunctorchHigherOrderVariable,
"torch._functorch.vmap.wrap_batched": UserFunctionVariable,
# functorch/grad
"torch._functorch.eager_transforms.grad_impl": FunctorchHigherOrderVariable,
"torch._functorch.apis.grad_and_value": UserFunctionVariable,
"torch._functorch.eager_transforms._as_tuple": UserFunctionVariable,
"torch._functorch.eager_transforms._check_unique_non_empty": UserFunctionVariable,
"torch._functorch.eager_transforms._create_differentiable": UserFunctionVariable,
"torch._functorch.eager_transforms._slice_argnums": UserFunctionVariable,
"torch._functorch.eager_transforms._undo_create_differentiable": UserFunctionVariable,
"torch._functorch.eager_transforms._validate_and_wrap_argnum": UserFunctionVariable,
"torch._functorch.eager_transforms._validate_and_wrap_argnums": UserFunctionVariable,
"torch._functorch.eager_transforms._wrap_all_tensors": UserFunctionVariable,
"torch._functorch.eager_transforms._wrap_tensor_for_grad": UserFunctionVariable,
# functorch/jacrev
"torch._functorch.eager_transforms.jacrev": UserFunctionVariable,
"torch._functorch.eager_transforms.error_if_complex": UserFunctionVariable,
"torch._functorch.eager_transforms._chunked_standard_basis_for_": UserFunctionVariable,
"torch._functorch.eager_transforms._safe_zero_index": UserFunctionVariable,
# functorch/vjp
"torch._functorch.eager_transforms.vjp": UserFunctionVariable,
"torch._functorch.eager_transforms._vjp_with_argnums": UserFunctionVariable,
"torch._functorch.eager_transforms.assert_non_empty_tensor_output": UserFunctionVariable,
"torch._constrain_as_size": UserFunctionVariable,
"torch._constrain_as_value": UserFunctionVariable,
"torch._tensor._convert": UserFunctionVariable,
"torch.jit._unwrap_optional": UserFunctionVariable,
"torch.backends.mha.get_fastpath_enabled": UserFunctionVariable,
"torch._C._functorch._add_batch_dim": TorchInGraphFunctionVariable,
"torch._C._functorch._remove_batch_dim": TorchInGraphFunctionVariable,
"torch._C._functorch._wrap_for_grad": TorchInGraphFunctionVariable,
"torch._C._functorch._unwrap_for_grad": TorchInGraphFunctionVariable,
"torch._C._functorch.is_batchedtensor": TorchInGraphFunctionVariable,
"torch._dynamo.mark_static": UserFunctionVariable,
"torch.fx.experimental.symbolic_shapes.guard_size_oblivious": TorchInGraphFunctionVariable,
"torch.cuda._get_device_properties": TorchInGraphFunctionVariable,
"torch.utils.hooks.BackwardHook": TorchInGraphFunctionVariable,
"torch.sparse_bsc_tensor": SkipFunctionVariable,
"torch.sparse_bsr_tensor": SkipFunctionVariable,
"torch.sparse_csc_tensor": SkipFunctionVariable,
"torch.sparse_csr_tensor": SkipFunctionVariable,
"torch.sparse_compressed_tensor": SkipFunctionVariable,
"torch._C._autograd._unsafe_set_version_counter": TorchInGraphFunctionVariable,
}
# In graph functions (including constant folding) that are C bindings
torch_c_binding_in_graph_functions = dict.fromkeys(
[
"math.acos",
"math.acosh",
"math.asin",
"math.asinh",
"math.atan",
"math.atan2",
"math.atanh",
"math.ceil",
"math.comb",
"math.copysign",
"math.cos",
"math.cosh",
"math.degrees",
"math.dist",
"math.erf",
"math.erfc",
"math.exp",
"math.expm1",
"math.fabs",
"math.factorial",
"math.floor",
"math.fmod",
"math.frexp",
"math.fsum",
"math.gamma",
"math.gcd",
"math.hypot",
"math.isclose",
"math.isfinite",
"math.isinf",
"math.isnan",
"math.isqrt",
"math.ldexp",
"math.lgamma",
"math.log",
"math.log10",
"math.log1p",
"math.log2",
"math.modf",
"math.nextafter",
"math.perm",
"math.pow",
"math.prod",
"math.radians",
"math.remainder",
"math.sin",
"math.sinh",
"math.tan",
"math.tanh",
"math.trunc",
"math.ulp",
"torch._adaptive_avg_pool2d",
"torch._adaptive_avg_pool3d",
"torch._add_batch_dim",
"torch._add_relu_",
"torch._add_relu",
"torch._addmm_activation",
"torch._aminmax",
"torch._amp_foreach_non_finite_check_and_unscale_",
"torch._amp_update_scale_",
"torch._assert_async",
"torch._assert_tensor_metadata",
"torch._batch_norm_impl_index",
"torch._C._activate_cuda_trace",
"torch._C._add_cached_tensor",
"torch._C._add_docstr",
"torch._C._are_functorch_transforms_active",
"torch._C._autograd_init",
"torch._C._awaitable_nowait",
"torch._C._awaitable_wait",
"torch._C._awaitable",
"torch._C._backport_for_mobile_from_buffer_to_buffer",
"torch._C._backport_for_mobile_from_buffer",
"torch._C._backport_for_mobile_to_buffer",
"torch._C._backport_for_mobile",
"torch._C._broadcast_coalesced",
"torch._C._broadcast_out",
"torch._C._broadcast",
"torch._C._c10d_init",
"torch._C._calculate_package_version_based_on_upgraders",
"torch._C._can_use_flash_attention",
"torch._C._can_use_mem_efficient_attention",
"torch._C._check_onnx_proto",
"torch._C._check_sparse_tensor_invariants",
"torch._C._collect_all",
"torch._C._commit_update",
"torch._C._compile_graph_to_code_table",
"torch._C._construct_CUDA_Tensor_From_Storage_And_Metadata",
"torch._C._construct_storage_from_data_pointer",
"torch._C._conv_determine_backend_memory_format",
"torch._C._cpu._is_cpu_support_vnni",
"torch._C._crash_if_aten_asan",
"torch._C._crash_if_csrc_asan",
"torch._C._crash_if_csrc_ubsan",
"torch._C._crash_if_debug_asserts_fail",
"torch._C._crash_if_vptr_ubsan",
"torch._C._create_function_from_graph",
"torch._C._create_function_from_trace_with_dict",
"torch._C._create_function_from_trace",
"torch._C._create_graph_by_tracing",
"torch._C._create_module_with_type",
"torch._C._create_object_with_type",
"torch._C._cuda_attach_out_of_memory_observer",
"torch._C._cuda_beginAllocateCurrentStreamToPool",
"torch._C._cuda_canDeviceAccessPeer",
"torch._C._cuda_changeCurrentAllocator",
"torch._C._cuda_checkPoolLiveAllocations",
"torch._C._cuda_clearCublasWorkspaces",
"torch._C._cuda_cudaCachingAllocator_raw_alloc",
"torch._C._cuda_cudaCachingAllocator_raw_delete",
"torch._C._cuda_cudaCachingAllocator_set_allocator_settings",
"torch._C._cuda_cudaHostAllocator",
"torch._C._cuda_customAllocator",
"torch._C._cuda_emptyCache",
"torch._C._cuda_endAllocateCurrentStreamToPool",
"torch._C._cuda_exchangeDevice",
"torch._C._cuda_get_conv_benchmark_empty_cache",
"torch._C._cuda_get_cudnn_benchmark_limit",
"torch._C._cuda_get_sync_debug_mode",
"torch._C._cuda_getAllocator",
"torch._C._cuda_getAllocatorBackend",
"torch._C._cuda_getArchFlags",
"torch._C._cuda_getCheckpointState",
"torch._C._cuda_getCompiledVersion",
"torch._C._cuda_getCurrentBlasHandle",
"torch._C._cuda_getCurrentRawStream",
"torch._C._cuda_getCurrentStream",
"torch._C._cuda_getDefaultStream",
"torch._C._cuda_getDevice",
"torch._C._cuda_getDeviceCount",
"torch._C._cuda_hasPrimaryContext",
"torch._C._cuda_init",
"torch._C._cuda_ipc_collect",
"torch._C._cuda_isCurrentStreamCapturing",
"torch._C._cuda_isHistoryEnabled",
"torch._C._cuda_isInBadFork",
"torch._C._cuda_jiterator_compile_and_launch_kernel",
"torch._C._cuda_lock_mutex",
"torch._C._cuda_maybeExchangeDevice",
"torch._C._cuda_memorySnapshot",
"torch._C._cuda_memoryStats",
"torch._C._cuda_record_memory_history_legacy",
"torch._C._cuda_record_memory_history",
"torch._C._cuda_releasePool",
"torch._C._cuda_resetAccumulatedMemoryStats",
"torch._C._cuda_resetPeakMemoryStats",
"torch._C._cuda_set_cudnn_benchmark_limit",
"torch._C._cuda_set_sync_debug_mode",
"torch._C._cuda_setCheckpointPoolState",
"torch._C._cuda_setDevice",
"torch._C._cuda_setMemoryFraction",
"torch._C._cuda_setStream",
"torch._C._cuda_sleep",
"torch._C._cuda_synchronize",
"torch._C._cuda_unlock_mutex",
"torch._C._cudnn_set_conv_benchmark_empty_cache",
"torch._C._cudnn.getCompileVersion",
"torch._C._cudnn.getRuntimeVersion",
"torch._C._cudnn.getVersionInt",
"torch._C._current_autograd_node",
"torch._C._current_graph_task_execution_order",
"torch._C._current_graph_task_id",
"torch._C._cxx_flags",
"torch._C._debug_get_fusion_group_inlining",
"torch._C._debug_only_are_vmap_fallback_warnings_enabled",
"torch._C._debug_only_display_vmap_fallback_warnings",
"torch._C._debug_set_autodiff_subgraph_inlining",
"torch._C._debug_set_fusion_group_inlining",
"torch._C._demangle",
"torch._C._disabled_torch_dispatch_impl",
"torch._C._disabled_torch_function_impl",
"torch._C._dispatch_call_boxed",
"torch._C._dispatch_check_all_invariants",
"torch._C._dispatch_check_invariants",
"torch._C._dispatch_dump_table",
"torch._C._dispatch_dump",
"torch._C._dispatch_find_dangling_impls",
"torch._C._dispatch_find_schema_or_throw",
"torch._C._dispatch_get_all_op_names",
"torch._C._dispatch_get_backend_keyset_from_autograd",
"torch._C._dispatch_get_registrations_for_dispatch_key",
"torch._C._dispatch_has_backend_fallback",
"torch._C._dispatch_has_computed_kernel_for_dispatch_key",
"torch._C._dispatch_has_kernel_for_any_dispatch_key",
"torch._C._dispatch_has_kernel_for_dispatch_key",
"torch._C._dispatch_has_kernel",
"torch._C._dispatch_is_alias_key",
"torch._C._dispatch_is_included_in_alias",
"torch._C._dispatch_is_main_interpreter",
"torch._C._dispatch_isTensorSubclassLike",
"torch._C._dispatch_key_for_device",
"torch._C._dispatch_key_name",
"torch._C._dispatch_key_parse",
"torch._C._dispatch_key_set",
"torch._C._dispatch_keys",
"torch._C._dispatch_keyset_full_after",
"torch._C._dispatch_keyset_full",
"torch._C._dispatch_keyset_to_string",
"torch._C._dispatch_library",
"torch._C._dispatch_num_backends",
"torch._C._dispatch_print_registrations_for_dispatch_key",
"torch._C._dispatch_pystub",
"torch._C._dispatch_set_report_error_callback",
"torch._C._dispatch_tls_is_dispatch_key_excluded",
"torch._C._dispatch_tls_is_dispatch_key_included",
"torch._C._dispatch_tls_local_exclude_set",
"torch._C._dispatch_tls_local_include_set",
"torch._C._dispatch_tls_set_dispatch_key_excluded",
"torch._C._dispatch_tls_set_dispatch_key_included",
"torch._C._dist_autograd_init",
"torch._C._dump_local_tls_set",
"torch._C._dump_upgraders_map",
"torch._C._enable_mobile_interface_call_export",
"torch._C._enter_dual_level",
"torch._C._error_if_any_worker_fails",
"torch._C._exit_dual_level",
"torch._C._export_operator_list",
"torch._C._export_opnames",
"torch._C._faulty_agent_init",
"torch._C._fft.fft_fft",
"torch._C._fft.fft_fft2",
"torch._C._fft.fft_fftfreq",
"torch._C._fft.fft_fftn",
"torch._C._fft.fft_fftshift",
"torch._C._fft.fft_hfft",
"torch._C._fft.fft_hfft2",
"torch._C._fft.fft_hfftn",
"torch._C._fft.fft_ifft",
"torch._C._fft.fft_ifft2",
"torch._C._fft.fft_ifftn",
"torch._C._fft.fft_ifftshift",
"torch._C._fft.fft_ihfft",
"torch._C._fft.fft_ihfft2",
"torch._C._fft.fft_ihfftn",
"torch._C._fft.fft_irfft",
"torch._C._fft.fft_irfft2",
"torch._C._fft.fft_irfftn",
"torch._C._fft.fft_rfft",
"torch._C._fft.fft_rfft2",
"torch._C._fft.fft_rfftfreq",
"torch._C._fft.fft_rfftn",
"torch._C._free_And_Remove_DeleterFn",
"torch._C._freeze_module",
"torch._C._from_dlpack",
"torch._C._functionality_to_backend_keys",
"torch._C._functionalization_reapply_views_tls",
"torch._C._fuse_to_static_module",
"torch._C._gather_out",
"torch._C._gather",
"torch._C._generate_upgraders_graph",
"torch._C._get_autograd_fallback_mode",
"torch._C._get_backcompat_broadcast_warn",
"torch._C._get_backcompat_keepdim_warn",
"torch._C._get_caught_jit_exception_class_name",
"torch._C._get_caught_jit_exception_original_msg",
"torch._C._get_constant_bool_symnode",
"torch._C._get_cpp_backtrace",
"torch._C._get_cpu_capability",
"torch._C._get_cublas_allow_bf16_reduced_precision_reduction",
"torch._C._get_cublas_allow_fp16_reduced_precision_reduction",
"torch._C._get_cublas_allow_tf32",
"torch._C._get_cudnn_allow_tf32",
"torch._C._get_cudnn_benchmark",
"torch._C._get_cudnn_deterministic",
"torch._C._get_cudnn_enabled",
"torch._C._get_custom_class_python_wrapper",
"torch._C._get_default_device",
"torch._C._get_deterministic_algorithms_warn_only",
"torch._C._get_deterministic_algorithms",
"torch._C._get_deterministic_fill_uninitialized_memory",
"torch._C._get_dispatch_mode",
"torch._C._get_dispatch_stack_at",
"torch._C._get_file_format",
"torch._C._get_flash_sdp_enabled",
"torch._C._get_float32_matmul_precision",
"torch._C._get_function_stack_at",
"torch._C._get_graph_executor_optimize",
"torch._C._get_linalg_preferred_backend",
"torch._C._get_math_sdp_enabled",
"torch._C._get_max_operator_version",
"torch._C._get_mem_efficient_sdp_enabled",
"torch._C._get_mkldnn_enabled",
"torch._C._get_cudnn_sdp_enabled",
"torch._C._set_sdp_use_cudnn",
"torch._C._get_mobile_model_contained_types_from_buffer",
"torch._C._get_mobile_model_contained_types",
"torch._C._get_model_bytecode_version_from_buffer",
"torch._C._get_model_bytecode_version",
"torch._C._get_model_extra_files_from_buffer",
"torch._C._get_model_extra_files",
"torch._C._get_model_ops_and_info_from_buffer",
"torch._C._get_model_ops_and_info",
"torch._C._get_module_info_from_flatbuffer",
"torch._C._get_nnpack_enabled",
"torch._C._get_obj_in_tls",
"torch._C._get_operation_overload",
"torch._C._get_operator_version_map",
"torch._C._get_privateuse1_backend_name",
"torch._C._get_qengine",
"torch._C._get_schema",
"torch._C._get_nested_int",
"torch._C._get_tensor_metadata",
"torch._C._get_tracing_state",
"torch._C._get_upgrader_ranges",
"torch._C._get_upgraders_entry_map",
"torch._C._get_upgraders_map_size",
"torch._C._get_value_trace",
"torch._C._get_version_calculator_flag",
"torch._C._get_warnAlways",
"torch._C._graph_pool_handle",
"torch._C._group_tensors_by_device_and_dtype",
"torch._C._hack_do_not_use_clone_module_with_class",
"torch._C._has_distributed",
"torch._C._has_Standard_Deleter",
"torch._C._has_storage",
"torch._C._has_tensorexpr_cpp_tests",
"torch._C._run_tensorexpr_cpp_tests",
"torch._C._has_torch_function_unary",
"torch._C._has_torch_function_variadic",
"torch._C._has_torch_function",
"torch._C._import_ir_module_from_package",
"torch._C._increment_version",
"torch._C._infer_size",
"torch._C._init_names",
"torch._C._initExtension",
"torch._C._is_alias_of",
"torch._C._is_any_autocast_enabled",
"torch._C._is_cached_tensor",
"torch._C._is_fwd_grad_enabled",
"torch._C._is_key_in_tls",
"torch._C._is_multithreading_enabled",
"torch._C._is_torch_function_enabled",
"torch._C._is_torch_function_mode_enabled",
"torch._C._is_tracing",
"torch._C._is_view_replay_enabled",
"torch._C._is_xnnpack_enabled",
"torch._C._itt.is_available",
"torch._C._itt.mark",
"torch._C._itt.rangePop",
"torch._C._itt.rangePush",
"torch._C._ivalue_debug_python_object",
"torch._C._ivalue_tags_match",
"torch._C._jit_assert_is_instance",
"torch._C._jit_can_fuse_on_cpu_legacy",
"torch._C._jit_can_fuse_on_cpu",
"torch._C._jit_can_fuse_on_gpu",
"torch._C._jit_cat_wo_conditionals",
"torch._C._jit_check_alias_annotation",
"torch._C._jit_clear_class_registry",
"torch._C._jit_debug_fuser_num_cached_kernel_specs",
"torch._C._jit_debug_module_iterators",
"torch._C._jit_decay_packed_param_input_types",
"torch._C._jit_decomposition_graph_for_node",
"torch._C._jit_differentiate",
"torch._C._jit_erase_non_input_shape_information",
"torch._C._jit_flatten",
"torch._C._jit_fuser_get_fused_kernel_code",
"torch._C._jit_get_all_schemas",
"torch._C._jit_get_custom_class_schemas",
"torch._C._jit_get_emit_hooks",
"torch._C._jit_get_inline_everything_mode",
"torch._C._jit_get_logging_option",
"torch._C._jit_get_num_profiled_runs",
"torch._C._jit_get_operation",
"torch._C._jit_get_schemas_for_operator",
"torch._C._jit_get_te_cuda_pointwise_block_count",
"torch._C._jit_get_te_cuda_pointwise_block_size",
"torch._C._jit_get_te_cuda_pointwise_loop_levels",
"torch._C._jit_get_te_generate_block_code",
"torch._C._jit_get_te_must_use_llvm_cpu",
"torch._C._jit_get_tracer_state_warn",
"torch._C._jit_has_cpp_tests",
"torch._C._jit_init",
"torch._C._jit_interpret_graph",
"torch._C._jit_is_onnx_log_enabled",
"torch._C._jit_is_script_object",
"torch._C._jit_llga_enabled",
"torch._C._jit_nvfuser_can_be_enabled",
"torch._C._jit_nvfuser_clear_comparison_callback",
"torch._C._jit_nvfuser_enabled",
"torch._C._jit_nvfuser_horizontal_mode",
"torch._C._jit_nvfuser_set_comparison_callback",
"torch._C._jit_nvfuser_single_node_mode",
"torch._C._jit_object_is_non_holding",
"torch._C._jit_onnx_convert_pattern_from_subblock",
"torch._C._jit_onnx_create_full_scope_name",
"torch._C._jit_onnx_list_model_parameters",
"torch._C._jit_onnx_log",
"torch._C._jit_opt_conditionals",
"torch._C._jit_override_can_fuse_on_cpu_legacy",
"torch._C._jit_override_can_fuse_on_cpu",
"torch._C._jit_override_can_fuse_on_gpu",
"torch._C._jit_pass_autocast",
"torch._C._jit_pass_batch_mm",
"torch._C._jit_pass_canonicalize_graph_fuser_ops",
"torch._C._jit_pass_canonicalize",
"torch._C._jit_pass_complete_shape_analysis",
"torch._C._jit_pass_concat_frozen_linear",
"torch._C._jit_pass_constant_loop_unrolling",
"torch._C._jit_pass_constant_pooling",
"torch._C._jit_pass_constant_propagation_immutable_types",
"torch._C._jit_pass_constant_propagation",
"torch._C._jit_pass_convert_frozen_ops_to_mkldnn",
"torch._C._jit_pass_create_autodiff_subgraphs",
"torch._C._jit_pass_create_functional_graphs",
"torch._C._jit_pass_cse",
"torch._C._jit_pass_custom_pattern_based_rewrite_graph",
"torch._C._jit_pass_custom_pattern_based_rewrite",
"torch._C._jit_pass_dbr_quant_remove_redundant_aliases",
"torch._C._jit_pass_dce_allow_deleting_nodes_with_side_effects",
"torch._C._jit_pass_dce",
"torch._C._jit_pass_decompose_ops",
"torch._C._jit_pass_dedup_module_uses",
"torch._C._jit_pass_erase_number_types",
"torch._C._jit_pass_erase_shape_information",
"torch._C._jit_pass_filter_non_tensor_arguments",
"torch._C._jit_pass_fixup_onnx_controlflow_node",
"torch._C._jit_pass_fold_convbn",
"torch._C._jit_pass_fold_frozen_conv_add_or_sub",
"torch._C._jit_pass_fold_frozen_conv_bn",
"torch._C._jit_pass_fold_frozen_conv_mul_or_div",
"torch._C._jit_pass_fold_frozen_linear_bn",
"torch._C._jit_pass_fold_prepacking_ops",
"torch._C._jit_pass_functional_to_inplace_activation",
"torch._C._jit_pass_fuse_add_relu",
"torch._C._jit_pass_fuse_addmm",
"torch._C._jit_pass_fuse_clamp_w_prepacked_linear_conv",
"torch._C._jit_pass_fuse_frozen_conv_add_relu",
"torch._C._jit_pass_fuse_linear",
"torch._C._jit_pass_fuse_quantized_add_relu",
"torch._C._jit_pass_fuse_tensorexprs",
"torch._C._jit_pass_fuse",
"torch._C._jit_pass_inline_fork_wait",
"torch._C._jit_pass_inline_functional_graphs",
"torch._C._jit_pass_inline",
"torch._C._jit_pass_inplace_to_functional_activation",
"torch._C._jit_pass_insert_observer_method_for_ondevice_ptq",
"torch._C._jit_pass_insert_observers",
"torch._C._jit_pass_insert_prepack_unpack",
"torch._C._jit_pass_insert_prepacked_ops",
"torch._C._jit_pass_insert_quant_dequant_for_ondevice_ptq",
"torch._C._jit_pass_insert_quant_dequant",
"torch._C._jit_pass_integer_value_refinement",
"torch._C._jit_pass_lint",
"torch._C._jit_pass_loop_unrolling",
"torch._C._jit_pass_lower_all_tuples",
"torch._C._jit_pass_lower_graph",
"torch._C._jit_pass_metal_fold_prepacking_ops",
"torch._C._jit_pass_metal_fuse_clamp_w_prepacked_conv",
"torch._C._jit_pass_metal_insert_prepacked_ops",
"torch._C._jit_pass_metal_optimize_for_mobile",
"torch._C._jit_pass_onnx_assign_output_shape",
"torch._C._jit_pass_onnx_assign_scoped_names_for_node_and_value",
"torch._C._jit_pass_onnx_autograd_function_process",
"torch._C._jit_pass_onnx_block",
"torch._C._jit_pass_onnx_cast_all_constant_to_floating",
"torch._C._jit_pass_onnx_clear_scope_records",
"torch._C._jit_pass_onnx_constant_fold",
"torch._C._jit_pass_onnx_deduplicate_initializers",
"torch._C._jit_pass_onnx_eliminate_unused_items",
"torch._C._jit_pass_onnx_eval_peephole",
"torch._C._jit_pass_onnx_function_extraction",
"torch._C._jit_pass_onnx_function_substitution",
"torch._C._jit_pass_onnx_graph_shape_type_inference",
"torch._C._jit_pass_onnx_lint",
"torch._C._jit_pass_onnx_node_shape_type_inference",
"torch._C._jit_pass_onnx_peephole",
"torch._C._jit_pass_onnx_preprocess_caffe2",
"torch._C._jit_pass_onnx_preprocess",
"torch._C._jit_pass_onnx_quantization_insert_permutes",
"torch._C._jit_pass_onnx_remove_inplace_ops_for_onnx",
"torch._C._jit_pass_onnx_remove_print",
"torch._C._jit_pass_onnx_scalar_type_analysis",
"torch._C._jit_pass_onnx_set_dynamic_input_shape",
"torch._C._jit_pass_onnx_track_scope_attributes",
"torch._C._jit_pass_onnx_unpack_quantized_weights",
"torch._C._jit_pass_onnx",
"torch._C._jit_pass_optimize_for_inference",
"torch._C._jit_pass_optimize_for_mobile",
"torch._C._jit_pass_optimize_frozen_graph",
"torch._C._jit_pass_pattern_based_rewrite",
"torch._C._jit_pass_peephole_list_idioms",
"torch._C._jit_pass_peephole",
"torch._C._jit_pass_prepare_division_for_onnx",
"torch._C._jit_pass_propagate_device",
"torch._C._jit_pass_propagate_dtype",
"torch._C._jit_pass_propagate_shapes_on_graph_and_build_compute",
"torch._C._jit_pass_propagate_shapes_on_graph",
"torch._C._jit_pass_quant_finalize_for_ondevice_ptq",
"torch._C._jit_pass_quant_finalize",
"torch._C._jit_pass_quant_fusion",
"torch._C._jit_pass_refine_integer_values",
"torch._C._jit_pass_refine_tuple_types",
"torch._C._jit_pass_remove_dropout",
"torch._C._jit_pass_remove_expands",
"torch._C._jit_pass_remove_inplace_ops",
"torch._C._jit_pass_remove_mutation",
"torch._C._jit_pass_replace_old_ops_with_upgraders",
"torch._C._jit_pass_replicate_dequantize",
"torch._C._jit_pass_run_decompositions",
"torch._C._jit_pass_specialize_autogradzero",
"torch._C._jit_pass_swap_functional_linear",
"torch._C._jit_pass_transform_conv1d_to_conv2d",
"torch._C._jit_pass_transpose_frozen_linear",
"torch._C._jit_pass_vulkan_fold_prepacking_ops",
"torch._C._jit_pass_vulkan_fuse_clamp_w_prepacked_conv",
"torch._C._jit_pass_vulkan_insert_prepacked_ops",
"torch._C._jit_pass_vulkan_optimize_for_mobile",
"torch._C._jit_register_decomposition_for_schema",
"torch._C._jit_register_shape_compute_graph_for_node",
"torch._C._jit_resolve_packet",
"torch._C._jit_run_cpp_tests",
"torch._C._jit_script_class_compile",
"torch._C._jit_script_compile_overload",
"torch._C._jit_script_compile",
"torch._C._jit_script_interface_compile",
"torch._C._jit_set_autocast_mode",
"torch._C._jit_set_bailout_depth",
"torch._C._jit_set_emit_hooks",
"torch._C._jit_set_fusion_strategy",
"torch._C._jit_set_inline_everything_mode",
"torch._C._jit_set_llga_enabled",
"torch._C._jit_set_logging_option",
"torch._C._jit_set_logging_stream",
"torch._C._jit_set_num_profiled_runs",
"torch._C._jit_set_nvfuser_enabled",
"torch._C._jit_set_nvfuser_guard_mode",
"torch._C._jit_set_nvfuser_horizontal_mode",
"torch._C._jit_set_nvfuser_single_node_mode",
"torch._C._jit_set_nvfuser_skip_node_kind",
"torch._C._jit_set_onnx_log_enabled",
"torch._C._jit_set_onnx_log_output_stream",
"torch._C._jit_set_profiling_executor",
"torch._C._jit_set_profiling_mode",
"torch._C._jit_set_symbolic_shapes_test_mode",
"torch._C._jit_set_te_cuda_pointwise_block_count",
"torch._C._jit_set_te_cuda_pointwise_block_size",
"torch._C._jit_set_te_cuda_pointwise_loop_levels",
"torch._C._jit_set_te_generate_block_code",
"torch._C._jit_set_te_must_use_llvm_cpu",
"torch._C._jit_set_texpr_dynamic_shape_enabled",
"torch._C._jit_set_texpr_fuser_enabled",
"torch._C._jit_set_texpr_reductions_enabled",
"torch._C._jit_set_tracer_state_warn",
"torch._C._jit_set_utf8_decoding_ignore",
"torch._C._jit_shape_compute_graph_for_node",
"torch._C._jit_symbolic_shapes_test_mode_enabled",
"torch._C._jit_texpr_dynamic_shape_enabled",
"torch._C._jit_texpr_fallback_allowed",
"torch._C._jit_texpr_fuser_enabled",
"torch._C._jit_texpr_reductions_enabled",
"torch._C._jit_texpr_set_fallback_allowed",
"torch._C._jit_to_backend_selective",
"torch._C._jit_to_backend",
"torch._C._jit_to_static_module",
"torch._C._jit_trace_graph",
"torch._C._jit_trace_module",
"torch._C._jit_tree_views.FalseLiteral",
"torch._C._jit_tree_views.NoneLiteral",
"torch._C._jit_tree_views.TrueLiteral",
"torch._C._jit_try_infer_type",
"torch._C._jit_unflatten",
"torch._C._last_executed_optimized_graph",
"torch._C._len_torch_dispatch_stack",
"torch._C._len_torch_function_stack",
"torch._C._linalg._linalg_eigvals",
"torch._C._linalg.linalg_cholesky_ex",
"torch._C._linalg.linalg_cholesky",
"torch._C._linalg.linalg_cond",
"torch._C._linalg.linalg_cross",
"torch._C._linalg.linalg_det",
"torch._C._linalg.linalg_diagonal",
"torch._C._linalg.linalg_eig",
"torch._C._linalg.linalg_eigh",
"torch._C._linalg.linalg_eigvals",
"torch._C._linalg.linalg_eigvalsh",
"torch._C._linalg.linalg_householder_product",
"torch._C._linalg.linalg_inv_ex",
"torch._C._linalg.linalg_inv",
"torch._C._linalg.linalg_ldl_factor_ex",
"torch._C._linalg.linalg_ldl_factor",
"torch._C._linalg.linalg_ldl_solve",
"torch._C._linalg.linalg_lstsq",
"torch._C._linalg.linalg_lu_factor_ex",
"torch._C._linalg.linalg_lu_factor",
"torch._C._linalg.linalg_lu_solve",
"torch._C._linalg.linalg_lu",
"torch._C._linalg.linalg_matmul",
"torch._C._linalg.linalg_matrix_exp",
"torch._C._linalg.linalg_matrix_norm",
"torch._C._linalg.linalg_matrix_power",
"torch._C._linalg.linalg_matrix_rank",
"torch._C._linalg.linalg_multi_dot",
"torch._C._linalg.linalg_norm",
"torch._C._linalg.linalg_pinv",
"torch._C._linalg.linalg_qr",
"torch._C._linalg.linalg_slogdet",
"torch._C._linalg.linalg_solve_ex",
"torch._C._linalg.linalg_solve_triangular",
"torch._C._linalg.linalg_solve",
"torch._C._linalg.linalg_svd",
"torch._C._linalg.linalg_svdvals",
"torch._C._linalg.linalg_tensorinv",
"torch._C._linalg.linalg_tensorsolve",
"torch._C._linalg.linalg_vander",
"torch._C._linalg.linalg_vecdot",
"torch._C._linalg.linalg_vector_norm",
"torch._C._llvm_enabled",
"torch._C._load_for_lite_interpreter_from_buffer",
"torch._C._load_for_lite_interpreter",
"torch._C._load_jit_module_from_bytes",
"torch._C._load_jit_module_from_file",
"torch._C._load_mobile_module_from_bytes",
"torch._C._load_mobile_module_from_file",
"torch._C._log_api_usage_metadata",
"torch._C._log_api_usage_once",
"torch._C._logging_set_logger",
"torch._C._meta_in_tls_dispatch_include",
"torch._C._mps_acquireEvent",
"torch._C._mps_currentAllocatedMemory",
"torch._C._mps_deviceSynchronize",
"torch._C._mps_driverAllocatedMemory",
"torch._C._mps_elapsedTimeOfEvents",
"torch._C._mps_emptyCache",
"torch._C._mps_get_default_generator",
"torch._C._mps_is_available",
"torch._C._mps_is_in_bad_fork",
"torch._C._mps_is_on_macos_13_or_newer",
"torch._C._mps_profilerStartTrace",
"torch._C._mps_profilerStopTrace",
"torch._C._mps_queryEvent",
"torch._C._mps_recordEvent",
"torch._C._mps_releaseEvent",
"torch._C._mps_setMemoryFraction",
"torch._C._mps_synchronizeEvent",
"torch._C._mps_waitForEvent",
"torch._C._multiprocessing_init",
"torch._C._nccl_all_gather",
"torch._C._nccl_all_reduce",
"torch._C._nccl_broadcast",
"torch._C._nccl_init_rank",
"torch._C._nccl_reduce_scatter",
"torch._C._nccl_reduce",
"torch._C._nccl_unique_id",
"torch._C._nccl_version_suffix",
"torch._C._nccl_version",
"torch._C._nested.nested_tensor",
"torch._C._nested.nested_to_padded_tensor",
"torch._C._new_symbolic_shape_symbol",
"torch._C._nn_module_to_mobile",
"torch._C._nn._conv_depthwise2d",
"torch._C._nn._pad_circular",
"torch._C._nn._pad_enum",
"torch._C._nn._parse_to",
"torch._C._nn._test_ambiguous_defaults",
"torch._C._nn._test_optional_filled_intlist",
"torch._C._nn._test_optional_floatlist",
"torch._C._nn._test_optional_intlist",
"torch._C._nn._test_string_default",
"torch._C._nn._test_warn_in_autograd",
"torch._C._nn._upsample_bicubic2d_aa",
"torch._C._nn._upsample_bilinear2d_aa",
"torch._C._nn._upsample_nearest_exact1d",
"torch._C._nn._upsample_nearest_exact2d",
"torch._C._nn._upsample_nearest_exact3d",
"torch._C._nn.adaptive_avg_pool2d",
"torch._C._nn.adaptive_avg_pool3d",
"torch._C._nn.adaptive_max_pool2d",
"torch._C._nn.adaptive_max_pool3d",
"torch._C._nn.avg_pool2d",
"torch._C._nn.avg_pool3d",
"torch._C._nn.binary_cross_entropy",
"torch._C._nn.col2im",
"torch._C._nn.conv_depthwise3d",
"torch._C._nn.cross_entropy_loss",
"torch._C._nn.elu_",
"torch._C._nn.elu",
"torch._C._nn.flatten_dense_tensors",
"torch._C._nn.fractional_max_pool2d",
"torch._C._nn.fractional_max_pool3d",
"torch._C._nn.gelu_",
"torch._C._nn.gelu",
"torch._C._nn.glu",
"torch._C._nn.hardsigmoid_",
"torch._C._nn.hardsigmoid",
"torch._C._nn.hardswish_",
"torch._C._nn.hardswish",
"torch._C._nn.hardtanh_",
"torch._C._nn.hardtanh",
"torch._C._nn.huber_loss",
"torch._C._nn.im2col",
"torch._C._nn.l1_loss",
"torch._C._nn.leaky_relu_",
"torch._C._nn.leaky_relu",
"torch._C._nn.linear",
"torch._C._nn.log_sigmoid",
"torch._C._nn.max_pool2d_with_indices",
"torch._C._nn.max_pool3d_with_indices",
"torch._C._nn.max_unpool2d",
"torch._C._nn.max_unpool3d",
"torch._C._nn.mish_",
"torch._C._nn.mish",
"torch._C._nn.mkldnn_linear",
"torch._C._nn.mkldnn_reorder_conv2d_weight",
"torch._C._nn.mkldnn_reorder_conv3d_weight",
"torch._C._nn.mse_loss",
"torch._C._nn.multi_margin_loss",
"torch._C._nn.multilabel_margin_loss",
"torch._C._nn.nll_loss_nd",
"torch._C._nn.nll_loss",
"torch._C._nn.nll_loss2d",
"torch._C._nn.one_hot",
"torch._C._nn.pad_sequence",
"torch._C._nn.pad",
"torch._C._nn.reflection_pad1d",
"torch._C._nn.reflection_pad2d",
"torch._C._nn.reflection_pad3d",
"torch._C._nn.relu6_",
"torch._C._nn.relu6",
"torch._C._nn.replication_pad1d",
"torch._C._nn.replication_pad2d",
"torch._C._nn.replication_pad3d",
"torch._C._nn.rrelu_with_noise_",
"torch._C._nn.rrelu_with_noise",
"torch._C._nn.scaled_dot_product_attention",
"torch._C._nn.silu_",
"torch._C._nn.silu",
"torch._C._nn.slow_conv_dilated2d",
"torch._C._nn.slow_conv_dilated3d",
"torch._C._nn.slow_conv_transpose2d",
"torch._C._nn.slow_conv_transpose3d",
"torch._C._nn.slow_conv3d",
"torch._C._nn.smooth_l1_loss",
"torch._C._nn.soft_margin_loss",
"torch._C._nn.softplus",
"torch._C._nn.softshrink",
"torch._C._nn.thnn_conv2d",
"torch._C._nn.unflatten_dense_tensors",
"torch._C._nn.upsample_bicubic2d",
"torch._C._nn.upsample_bilinear2d",
"torch._C._nn.upsample_linear1d",
"torch._C._nn.upsample_nearest1d",
"torch._C._nn.upsample_nearest2d",
"torch._C._nn.upsample_nearest3d",
"torch._C._nn.upsample_trilinear3d",
"torch._C._non_sym_sizes",
"torch._C._overlaps",
"torch._C._parallel_info",
"torch._C._parse_dispatch_key",
"torch._C._parse_source_def",
"torch._C._pop_torch_dispatch_stack",
"torch._C._pop_torch_function_stack",
"torch._C._propagate_and_assign_input_shapes",
"torch._C._propagate_shapes",
"torch._C._propagate_xla_data",
"torch._C._push_on_torch_dispatch_stack",
"torch._C._push_on_torch_function_stack",
"torch._C._quantize_ondevice_ptq_dynamic",
"torch._C._register_py_class_for_device",
"torch._C._remove_cached_tensor",
"torch._C._remove_worker_pids",
"torch._C._rename_privateuse1_backend",
"torch._C._replace_",
"torch._C._replace_overloaded_method_decl",
"torch._C._resolve_type_from_object",
"torch._C._resolve_type",
"torch._C._rocm_is_backward_pass",
"torch._C._rpc_init",
"torch._C._run_emit_module_hook",
"torch._C._save_jit_module_to_bytes",
"torch._C._save_jit_module",
"torch._C._save_mobile_module_to_bytes",
"torch._C._save_mobile_module",
"torch._C._save_parameters",
"torch._C._scatter_out",
"torch._C._scatter",
"torch._C._select_conv_backend",
"torch._C._set_autograd_fallback_mode",
"torch._C._set_backcompat_broadcast_warn",
"torch._C._set_backcompat_keepdim_warn",
"torch._C._set_cached_tensors_enabled",
"torch._C._set_check_sparse_tensor_invariants",
"torch._C._set_conj",
"torch._C._set_cublas_allow_bf16_reduced_precision_reduction",
"torch._C._set_cublas_allow_fp16_reduced_precision_reduction",
"torch._C._set_cublas_allow_tf32",
"torch._C._set_cudnn_allow_tf32",
"torch._C._set_cudnn_benchmark",
"torch._C._set_cudnn_deterministic",
"torch._C._set_cudnn_enabled",
"torch._C._set_default_dtype",
"torch._C._set_default_mobile_cpu_allocator",
"torch._C._set_default_tensor_type",
"torch._C._set_deterministic_algorithms",
"torch._C._set_deterministic_fill_uninitialized_memory",
"torch._C._set_dispatch_mode",
"torch._C._set_float32_matmul_precision",
"torch._C._set_fwd_grad_enabled",
"torch._C._set_grad_enabled",
"torch._C._set_graph_executor_optimize",
"torch._C._set_linalg_preferred_backend",
"torch._C._set_meta_in_tls_dispatch_include",
"torch._C._set_mkldnn_enabled",
"torch._C._set_multithreading_enabled",
"torch._C._set_neg",
"torch._C._set_nnpack_enabled",
"torch._C._set_print_stack_traces_on_fatal_signal",
"torch._C._set_qengine",
"torch._C._set_sdp_use_flash",
"torch._C._set_sdp_use_math",
"torch._C._set_sdp_use_mem_efficient",
"torch._C._set_should_use_format_with_string_table",
"torch._C._set_storage_access_error_msg",
"torch._C._set_tensor_metadata",
"torch._C._set_tracing_state",
"torch._C._set_value_trace",
"torch._C._set_view_replay_enabled",
"torch._C._set_warnAlways",
"torch._C._set_worker_pids",
"torch._C._set_worker_signal_handlers",
"torch._C._should_allow_numbers_as_tensors",
"torch._C._show_config",
"torch._C._sparse._sparse_addmm",
"torch._C._sparse._sparse_log_softmax",
"torch._C._sparse._sparse_mm_reduce_impl",
"torch._C._sparse._sparse_mm",
"torch._C._sparse._sparse_softmax",
"torch._C._sparse._spdiags",
"torch._C._sparse.sparse_sampled_addmm",
"torch._C._special.special_airy_ai",
"torch._C._special.special_bessel_j0",
"torch._C._special.special_bessel_j1",
"torch._C._special.special_bessel_y0",
"torch._C._special.special_bessel_y1",
"torch._C._special.special_chebyshev_polynomial_t",
"torch._C._special.special_chebyshev_polynomial_u",
"torch._C._special.special_chebyshev_polynomial_v",
"torch._C._special.special_chebyshev_polynomial_w",
"torch._C._special.special_digamma",
"torch._C._special.special_entr",
"torch._C._special.special_erf",
"torch._C._special.special_erfc",
"torch._C._special.special_erfcx",
"torch._C._special.special_erfinv",
"torch._C._special.special_exp2",
"torch._C._special.special_expit",
"torch._C._special.special_expm1",
"torch._C._special.special_gammainc",
"torch._C._special.special_gammaincc",
"torch._C._special.special_gammaln",
"torch._C._special.special_hermite_polynomial_h",
"torch._C._special.special_hermite_polynomial_he",
"torch._C._special.special_i0",
"torch._C._special.special_i0e",
"torch._C._special.special_i1",
"torch._C._special.special_i1e",
"torch._C._special.special_laguerre_polynomial_l",
"torch._C._special.special_legendre_polynomial_p",
"torch._C._special.special_log_ndtr",
"torch._C._special.special_log_softmax",
"torch._C._special.special_log1p",
"torch._C._special.special_logit",
"torch._C._special.special_logsumexp",
"torch._C._special.special_modified_bessel_i0",
"torch._C._special.special_modified_bessel_i1",
"torch._C._special.special_modified_bessel_k0",
"torch._C._special.special_modified_bessel_k1",
"torch._C._special.special_multigammaln",
"torch._C._special.special_ndtr",
"torch._C._special.special_ndtri",
"torch._C._special.special_polygamma",
"torch._C._special.special_psi",
"torch._C._special.special_round",
"torch._C._special.special_scaled_modified_bessel_k0",
"torch._C._special.special_scaled_modified_bessel_k1",
"torch._C._special.special_shifted_chebyshev_polynomial_t",
"torch._C._special.special_shifted_chebyshev_polynomial_u",
"torch._C._special.special_shifted_chebyshev_polynomial_v",
"torch._C._special.special_shifted_chebyshev_polynomial_w",
"torch._C._special.special_sinc",
"torch._C._special.special_softmax",
"torch._C._special.special_spherical_bessel_j0",
"torch._C._special.special_xlog1py",
"torch._C._special.special_xlogy",
"torch._C._special.special_zeta",
"torch._C._stash_obj_in_tls",
"torch._C._storage_id",
"torch._C._storage_Use_Count",
"torch._C._supported_qengines",
"torch._C._te.abs",
"torch._C._te.acos",
"torch._C._te.annotate_input_shapes",
"torch._C._te.asin",
"torch._C._te.atan",
"torch._C._te.atan2",
"torch._C._te.ceil",
"torch._C._te.Compute",
"torch._C._te.Compute2",
"torch._C._te.construct_codegen",
"torch._C._te.cos",
"torch._C._te.cosh",
"torch._C._te.erf",
"torch._C._te.erfc",
"torch._C._te.exp",
"torch._C._te.expm1",
"torch._C._te.fixup_missing_shape_info",
"torch._C._te.floor",
"torch._C._te.fmod",
"torch._C._te.frac",
"torch._C._te.ifThenElse",
"torch._C._te.is_graph_compilable",
"torch._C._te.isnan",
"torch._C._te.lgamma",
"torch._C._te.log",
"torch._C._te.log10",
"torch._C._te.log1p",
"torch._C._te.log2",
"torch._C._te.lower",
"torch._C._te.make_shapes_symbolic",
"torch._C._te.pow",
"torch._C._te.Reduce",
"torch._C._te.remainder",
"torch._C._te.remove_graph_output",
"torch._C._te.remove_unused_self_argument",
"torch._C._te.replace_list_output_with_tuple",
"torch._C._te.round",
"torch._C._te.rsqrt",
"torch._C._te.sigmoid",
"torch._C._te.simplify",
"torch._C._te.sin",
"torch._C._te.sinh",
"torch._C._te.sqrt",
"torch._C._te.tan",
"torch._C._te.tanh",
"torch._C._te.trim_graph",
"torch._C._te.trunc",
"torch._C._tensor_impl_raw_handle",
"torch._C._test_only_add_entry_to_op_version_map",
"torch._C._test_only_populate_upgraders",
"torch._C._test_only_remove_entry_to_op_version_map",
"torch._C._test_only_remove_upgraders",
"torch._C._to_dlpack",
"torch._C._to_functionality_key",
"torch._C._tracer_set_force_outplace",
"torch._C._tracer_set_get_unique_name_fn",
"torch._C._tracer_warn_use_python",
"torch._C._unset_default_mobile_cpu_allocator",
"torch._C._unset_dispatch_mode",
"torch._C._valgrind_supported_platform",
"torch._C._valgrind_toggle_and_dump_stats",
"torch._C._valgrind_toggle",
"torch._C._verbose.mkl_set_verbose",
"torch._C._verbose.mkldnn_set_verbose",
"torch._C._vmapmode_decrement_nesting",
"torch._C._vmapmode_increment_nesting",
"torch._C._warn_deprecation",
"torch._C._warn",
"torch._C._will_engine_execute_node",
"torch._C._wrap_tensor_impl",
"torch._C.fork",
"torch._C.get_autocast_cpu_dtype",
"torch._C.get_autocast_gpu_dtype",
"torch._C.get_autocast_ipu_dtype",
"torch._C.get_autocast_xla_dtype",
"torch._C.get_default_dtype",
"torch._C.get_num_interop_threads",
"torch._C.get_num_threads",
"torch._C.import_ir_module_from_buffer",
"torch._C.import_ir_module",
"torch._C.init_num_threads",
"torch._C.is_anomaly_check_nan_enabled",
"torch._C.is_anomaly_enabled",
"torch._C.is_autocast_cache_enabled",
"torch._C.is_autocast_cpu_enabled",
"torch._C.is_autocast_enabled",
"torch._C.is_autocast_ipu_enabled",
"torch._C.is_autocast_xla_enabled",
"torch._C.is_grad_enabled",
"torch._C.is_inference_mode_enabled",
"torch._C.merge_type_from_type_comment",
"torch._C.parse_ir",
"torch._C.parse_schema",
"torch._C.parse_type_comment",
"torch._C.read_vitals",
"torch._C.set_flush_denormal",
"torch._C.set_num_interop_threads",
"torch._C.set_num_threads",
"torch._C.set_vital",
"torch._C.unify_type_list",
"torch._C.vitals_enabled",
"torch._C.wait",
"torch._cast_Byte",
"torch._cast_Char",
"torch._cast_Double",
"torch._cast_Float",
"torch._cast_Half",
"torch._cast_Int",
"torch._cast_Long",
"torch._cast_Short",
"torch._choose_qparams_per_tensor",
"torch._chunk_cat",
"torch._coalesce",
"torch._compute_linear_combination",
"torch._conj_copy",
"torch._conj_physical",
"torch._conj",
"torch._convert_indices_from_coo_to_csr",
"torch._convert_indices_from_csr_to_coo",
"torch._convert_weight_to_int4pack",
"torch._convolution_mode",
"torch._convolution",
"torch._copy_from_and_resize",
"torch._copy_from",
"torch._cslt_compress",
"torch._cslt_sparse_mm",
"torch._ctc_loss",
"torch._cudnn_ctc_loss",
"torch._cudnn_init_dropout_state",
"torch._cudnn_rnn_flatten_weight",
"torch._cudnn_rnn",
"torch._cufft_clear_plan_cache",
"torch._cufft_get_plan_cache_max_size",
"torch._cufft_get_plan_cache_size",
"torch._cufft_set_plan_cache_max_size",
"torch._cummax_helper",
"torch._cummin_helper",
"torch._debug_has_internal_overlap",
"torch._dim_arange",
"torch._dirichlet_grad",
"torch._disable_functionalization",
"torch._efficientzerotensor",
"torch._embedding_bag_forward_only",
"torch._embedding_bag",
"torch._empty_affine_quantized",
"torch._empty_per_channel_affine_quantized",
"torch._enable_functionalization",
"torch._euclidean_dist",
"torch._fake_quantize_learnable_per_channel_affine",
"torch._fake_quantize_learnable_per_tensor_affine",
"torch._fake_quantize_per_tensor_affine_cachemask_tensor_qparams",
"torch._fft_c2c",
"torch._fft_c2r",
"torch._fft_r2c",
"torch._fill_mem_eff_dropout_mask_",
"torch._foobar",
"torch._foreach_abs_",
"torch._foreach_abs",
"torch._foreach_acos_",
"torch._foreach_acos",
"torch._foreach_add_",
"torch._foreach_add",
"torch._foreach_addcdiv_",
"torch._foreach_addcdiv",
"torch._foreach_addcmul_",
"torch._foreach_addcmul",
"torch._foreach_asin_",
"torch._foreach_asin",
"torch._foreach_atan_",
"torch._foreach_atan",
"torch._foreach_ceil_",
"torch._foreach_ceil",
"torch._foreach_clamp_max_",
"torch._foreach_clamp_max",
"torch._foreach_clamp_min_",
"torch._foreach_clamp_min",
"torch._foreach_copy_",
"torch._foreach_cos_",
"torch._foreach_cos",
"torch._foreach_cosh_",
"torch._foreach_cosh",
"torch._foreach_div_",
"torch._foreach_div",
"torch._foreach_erf_",
"torch._foreach_erf",
"torch._foreach_erfc_",
"torch._foreach_erfc",
"torch._foreach_exp_",
"torch._foreach_exp",
"torch._foreach_expm1_",
"torch._foreach_expm1",
"torch._foreach_floor_",
"torch._foreach_floor",
"torch._foreach_frac_",
"torch._foreach_frac",
"torch._foreach_lerp_",
"torch._foreach_lerp",
"torch._foreach_lgamma_",
"torch._foreach_lgamma",
"torch._foreach_log_",
"torch._foreach_log",
"torch._foreach_log10_",
"torch._foreach_log10",
"torch._foreach_log1p_",
"torch._foreach_log1p",
"torch._foreach_log2_",
"torch._foreach_log2",
"torch._foreach_maximum_",
"torch._foreach_maximum",
"torch._foreach_minimum_",
"torch._foreach_minimum",
"torch._foreach_mul_",
"torch._foreach_mul",
"torch._foreach_neg_",
"torch._foreach_neg",
"torch._foreach_norm",
"torch._foreach_pow_",
"torch._foreach_pow",
"torch._foreach_reciprocal_",
"torch._foreach_reciprocal",
"torch._foreach_round_",
"torch._foreach_round",
"torch._foreach_sigmoid_",
"torch._foreach_sigmoid",
"torch._foreach_sign_",
"torch._foreach_sign",
"torch._foreach_sin_",
"torch._foreach_sin",
"torch._foreach_sinh_",
"torch._foreach_sinh",
"torch._foreach_sqrt_",
"torch._foreach_sqrt",
"torch._foreach_sub_",
"torch._foreach_sub",
"torch._foreach_tan_",
"torch._foreach_tan",
"torch._foreach_tanh_",
"torch._foreach_tanh",
"torch._foreach_trunc_",
"torch._foreach_trunc",
"torch._foreach_zero_",
"torch._freeze_functional_tensor",
"torch._from_functional_tensor",
"torch._functional_assert_async",
"torch._functional_sym_constrain_range_for_size",
"torch._functional_sym_constrain_range",
"torch._functionalize_are_all_mutations_hidden_from_autograd",
"torch._functionalize_commit_update",
"torch._functionalize_enable_reapply_views",
"torch._functionalize_has_data_mutation",
"torch._functionalize_has_metadata_mutation",
"torch._functionalize_is_multi_output_view",
"torch._functionalize_mark_mutation_hidden_from_autograd",
"torch._functionalize_replace",
"torch._functionalize_sync",
"torch._functionalize_was_storage_changed",
"torch._fused_adam_",
"torch._fused_adamw_",
"torch._fused_dropout",
"torch._fused_moving_avg_obs_fq_helper",
"torch._fused_sdp_choice",
"torch._fw_primal_copy",
"torch._grid_sampler_2d_cpu_fallback",
"torch._has_compatible_shallow_copy_type",
"torch._histogramdd_bin_edges",
"torch._histogramdd_from_bin_cts",
"torch._histogramdd_from_bin_tensors",
"torch._index_put_impl_",
"torch._indices_copy",
"torch._int_mm",
"torch._is_all_true",
"torch._is_any_true",
"torch._is_functional_tensor",
"torch._is_zerotensor",
"torch._linalg_check_errors",
"torch._linalg_det",
"torch._linalg_eigh",
"torch._linalg_slogdet",
"torch._linalg_solve_ex",
"torch._linalg_svd",
"torch._log_softmax_backward_data",
"torch._log_softmax",
"torch._logcumsumexp",
"torch._lstm_mps",
"torch._lu_with_info",
"torch._make_dep_token",
"torch._make_dual_copy",
"torch._make_dual",
"torch._make_per_channel_quantized_tensor",
"torch._make_per_tensor_quantized_tensor",
"torch._masked_scale",
"torch._masked_softmax",
"torch._mirror_autograd_meta_to",
"torch._mixed_dtypes_linear",
"torch._mkldnn_reshape",
"torch._mkldnn_transpose_",
"torch._mkldnn_transpose",
"torch._mps_convolution_transpose",
"torch._mps_convolution",
"torch._native_batch_norm_legit_no_training",
"torch._native_batch_norm_legit",
"torch._native_multi_head_attention",
"torch._neg_view_copy",
"torch._neg_view",
"torch._nested_from_padded_and_nested_example",
"torch._nested_tensor_from_mask_left_aligned",
"torch._nested_tensor_from_tensor_list",
"torch._nested_tensor_softmax_with_shape",
"torch._nested_view_from_buffer_copy",
"torch._nested_view_from_buffer",
"torch._nnpack_available",
"torch._nnpack_spatial_convolution",
"torch._pack_padded_sequence",
"torch._pad_packed_sequence",
"torch._pin_memory",
"torch._prelu_kernel",
"torch._propagate_xla_data",
"torch._remove_batch_dim",
"torch._reshape_alias_copy",
"torch._reshape_from_tensor",
"torch._resize_output_",
"torch._rowwise_prune",
"torch._sample_dirichlet",
"torch._saturate_weight_to_fp16",
"torch._scaled_dot_product_attention_math",
"torch._scaled_dot_product_efficient_attention",
"torch._scaled_dot_product_flash_attention",
"torch._scaled_dot_product_flash_attention_for_cpu",
"torch._scaled_dot_product_cudnn_attention",
"torch._scaled_mm",
"torch._shape_as_tensor",
"torch._sobol_engine_draw",
"torch._sobol_engine_ff_",
"torch._sobol_engine_initialize_state_",
"torch._sobol_engine_scramble_",
"torch._softmax_backward_data",
"torch._softmax",
"torch._sparse_broadcast_to_copy",
"torch._sparse_broadcast_to",
"torch._sparse_csr_prod",
"torch._sparse_csr_sum",
"torch._sparse_log_softmax_backward_data",
"torch._sparse_semi_structured_linear",
"torch._sparse_softmax_backward_data",
"torch._sparse_sparse_matmul",
"torch._sparse_sum",
"torch._stack",
"torch._standard_gamma_grad",
"torch._standard_gamma",
"torch._test_autograd_multiple_dispatch_view_copy",
"torch._test_autograd_multiple_dispatch_view",
"torch._test_autograd_multiple_dispatch",
"torch._test_check_tensor",
"torch._test_functorch_fallback",
"torch._test_serialization_subcmul",
"torch._to_cpu",
"torch._to_functional_tensor",
"torch._to_sparse_semi_structured",
"torch._transform_bias_rescale_qkv",
"torch._transformer_encoder_layer_fwd",
"torch._trilinear",
"torch._triton_multi_head_attention",
"torch._triton_scaled_dot_attention",
"torch._unique",
"torch._unique2",
"torch._unpack_dual",
"torch._unsafe_index_put",
"torch._unsafe_index",
"torch._use_cudnn_ctc_loss",
"torch._use_cudnn_rnn_flatten_weight",
"torch._values_copy",
"torch._weight_int4pack_mm",
"torch._weight_int8pack_mm",
"torch._weight_norm_interface",
"torch._weight_norm",
"torch.abs_",
"torch.abs",
"torch.absolute",
"torch.acos_",
"torch.acos",
"torch.acosh_",
"torch.acosh",
"torch.adaptive_avg_pool1d",
"torch.adaptive_max_pool1d",
"torch.add",
"torch.addbmm",
"torch.addcdiv",
"torch.addcmul",
"torch.addmm",
"torch.addmv_",
"torch.addmv",
"torch.addr",
"torch.adjoint",
"torch.affine_grid_generator",
"torch.alias_copy",
"torch.all",
"torch.allclose",
"torch.alpha_dropout_",
"torch.alpha_dropout",
"torch.amax",
"torch.amin",
"torch.aminmax",
"torch.angle",
"torch.any",
"torch.arange",
"torch.arccos_",
"torch.arccos",
"torch.arccosh_",
"torch.arccosh",
"torch.arcsin_",
"torch.arcsin",
"torch.arcsinh_",
"torch.arcsinh",
"torch.arctan_",
"torch.arctan",
"torch.arctan2",
"torch.arctanh_",
"torch.arctanh",
"torch.argmax",
"torch.argmin",
"torch.argsort",
"torch.argwhere",
"torch.as_strided_",
"torch.as_strided_copy",
"torch.as_strided_scatter",
"torch.as_strided",
"torch.as_tensor",
"torch.asarray",
"torch.asin_",
"torch.asin",
"torch.asinh_",
"torch.asinh",
"torch.atan_",
"torch.atan",
"torch.atan2",
"torch.atanh_",
"torch.atanh",
"torch.avg_pool1d",
"torch.baddbmm",
"torch.bartlett_window",
"torch.batch_norm_backward_elemt",
"torch.batch_norm_backward_reduce",
"torch.batch_norm_elemt",
"torch.batch_norm_gather_stats_with_counts",
"torch.batch_norm_gather_stats",
"torch.batch_norm_stats",
"torch.batch_norm_update_stats",
"torch.batch_norm",
"torch.bernoulli",
"torch.bilinear",
"torch.binary_cross_entropy_with_logits",
"torch.bincount",
"torch.binomial",
"torch.bitwise_and",
"torch.bitwise_left_shift",
"torch.bitwise_not",
"torch.bitwise_or",
"torch.bitwise_right_shift",
"torch.bitwise_xor",
"torch.blackman_window",
"torch.bmm",
"torch.broadcast_to",
"torch.bucketize",
"torch.can_cast",
"torch.cat",
"torch.ccol_indices_copy",
"torch.ceil_",
"torch.ceil",
"torch.celu_",
"torch.celu",
"torch.channel_shuffle",
"torch.cholesky_inverse",
"torch.cholesky_solve",
"torch.cholesky",
"torch.choose_qparams_optimized",
"torch.chunk",
"torch.clamp_",
"torch.clamp_max_",
"torch.clamp_max",
"torch.clamp_min_",
"torch.clamp_min",
"torch.clamp",
"torch.clip_",
"torch.clip",
"torch.clone",
"torch.col_indices_copy",
"torch.column_stack",
"torch.combinations",
"torch.complex",
"torch.concat",
"torch.concatenate",
"torch.conj_physical_",
"torch.conj_physical",
"torch.conj",
"torch.constant_pad_nd",
"torch.conv_tbc",
"torch.conv_transpose1d",
"torch.conv_transpose2d",
"torch.conv_transpose3d",
"torch.conv1d",
"torch.conv2d",
"torch.conv3d",
"torch.convolution",
"torch.copysign",
"torch.corrcoef",
"torch.cos_",
"torch.cos",
"torch.cosh_",
"torch.cosh",
"torch.cosine_embedding_loss",
"torch.cosine_similarity",
"torch.count_nonzero",
"torch.cov",
"torch.cross",
"torch.crow_indices_copy",
"torch.ctc_loss",
"torch.cudnn_affine_grid_generator",
"torch.cudnn_batch_norm",
"torch.cudnn_convolution_add_relu",
"torch.cudnn_convolution_relu",
"torch.cudnn_convolution_transpose",
"torch.cudnn_convolution",
"torch.cudnn_grid_sampler",
"torch.cudnn_is_acceptable",
"torch.cummax",
"torch.cummin",
"torch.cumprod",
"torch.cumsum",
"torch.cumulative_trapezoid",
"torch.deg2rad_",
"torch.deg2rad",
"torch.dequantize",
"torch.det",
"torch.detach_",
"torch.detach_copy",
"torch.detach",
"torch.diag_embed",
"torch.diag",
"torch.diagflat",
"torch.diagonal_copy",
"torch.diagonal_scatter",
"torch.diagonal",
"torch.diff",
"torch.digamma",
"torch.dist",
"torch.div",
"torch.divide",
"torch.dot",
"torch.dropout_",
"torch.dropout",
"torch.dsmm",
"torch.dsplit",
"torch.dstack",
"torch.embedding_bag",
"torch.embedding_renorm_",
"torch.embedding",
"torch.empty_like",
"torch.empty_permuted",
"torch.empty_quantized",
"torch.empty_strided",
"torch.empty",
"torch.eq",
"torch.equal",
"torch.erf_",
"torch.erf",
"torch.erfc_",
"torch.erfc",
"torch.erfinv",
"torch.exp_",
"torch.exp",
"torch.exp2_",
"torch.exp2",
"torch.expand_copy",
"torch.expm1_",
"torch.expm1",
"torch.eye",
"torch.fake_quantize_per_channel_affine",
"torch.fake_quantize_per_tensor_affine",
"torch.fbgemm_linear_fp16_weight_fp32_activation",
"torch.fbgemm_linear_fp16_weight",
"torch.fbgemm_linear_int8_weight_fp32_activation",
"torch.fbgemm_linear_int8_weight",
"torch.fbgemm_linear_quantize_weight",
"torch.fbgemm_pack_gemm_matrix_fp16",
"torch.fbgemm_pack_quantized_matrix",
"torch.feature_alpha_dropout_",
"torch.feature_alpha_dropout",
"torch.feature_dropout_",
"torch.feature_dropout",
"torch.fill_",
"torch.fill",
"torch.fix_",
"torch.fix",
"torch.flatten",
"torch.flip",
"torch.fliplr",
"torch.flipud",
"torch.float_power",
"torch.floor_",
"torch.floor_divide",
"torch.floor",
"torch.fmax",
"torch.fmin",
"torch.fmod",
"torch.frac_",
"torch.frac",
"torch.frexp",
"torch.frobenius_norm",
"torch.from_file",
"torch.from_numpy",
"torch.frombuffer",
"torch.full_like",
"torch.full",
"torch.fused_moving_avg_obs_fake_quant",
"torch.gather",
"torch.gcd_",
"torch.gcd",
"torch.ge",
"torch.geqrf",
"torch.ger",
"torch.get_device",
"torch.gradient",
"torch.greater_equal",
"torch.greater",
"torch.grid_sampler_2d",
"torch.grid_sampler_3d",
"torch.grid_sampler",
"torch.group_norm",
"torch.gru_cell",
"torch.gru",
"torch.gt",
"torch.hamming_window",
"torch.hann_window",
"torch.hardshrink",
"torch.heaviside",
"torch.hinge_embedding_loss",
"torch.histc",
"torch.histogram",
"torch.histogramdd",
"torch.hsmm",
"torch.hsplit",
"torch.hspmm",
"torch.hstack",
"torch.hypot",
"torch.i0_",
"torch.i0",
"torch.igamma",
"torch.igammac",
"torch.imag",
"torch.index_add",
"torch.index_copy",
"torch.index_fill",
"torch.index_put_",
"torch.index_put",
"torch.index_reduce",
"torch.index_select",
"torch.indices_copy",
"torch.inner",
"torch.instance_norm",
"torch.int_repr",
"torch.inverse",
"torch.is_complex",
"torch.is_conj",
"torch.is_distributed",
"torch.is_floating_point",
"torch.is_inference",
"torch.is_neg",
"torch.is_nonzero",
"torch.is_same_size",
"torch.is_signed",
"torch.is_vulkan_available",
"torch.isclose",
"torch.isfinite",
"torch.isin",
"torch.isinf",
"torch.isnan",
"torch.isneginf",
"torch.isposinf",
"torch.isreal",
"torch.istft",
"torch.kaiser_window",
"torch.kl_div",
"torch.kron",
"torch.kthvalue",
"torch.layer_norm",
"torch.lcm_",
"torch.lcm",
"torch.ldexp_",
"torch.ldexp",
"torch.le",
"torch.lerp",
"torch.less_equal",
"torch.less",
"torch.lgamma",
"torch.linspace",
"torch.log_",
"torch.log_softmax",
"torch.log",
"torch.log10_",
"torch.log10",
"torch.log1p_",
"torch.log1p",
"torch.log2_",
"torch.log2",
"torch.logaddexp",
"torch.logaddexp2",
"torch.logcumsumexp",
"torch.logdet",
"torch.logical_and",
"torch.logical_not",
"torch.logical_or",
"torch.logical_xor",
"torch.logit_",
"torch.logit",
"torch.logspace",
"torch.logsumexp",
"torch.lstm_cell",
"torch.lstm",
"torch.lt",
"torch.lu_solve",
"torch.lu_unpack",
"torch.margin_ranking_loss",
"torch.masked_fill",
"torch.masked_scatter",
"torch.masked_select",
"torch.matmul",
"torch.matrix_exp",
"torch.matrix_power",
"torch.max_pool1d_with_indices",
"torch.max_pool1d",
"torch.max_pool2d",
"torch.max_pool3d",
"torch.max",
"torch.maximum",
"torch.mean",
"torch.median",
"torch.min",
"torch.minimum",
"torch.miopen_batch_norm",
"torch.miopen_convolution_add_relu",
"torch.miopen_convolution_relu",
"torch.miopen_convolution_transpose",
"torch.miopen_convolution",
"torch.miopen_depthwise_convolution",
"torch.miopen_rnn",
"torch.mkldnn_adaptive_avg_pool2d",
"torch.mkldnn_convolution",
"torch.mkldnn_linear_backward_weights",
"torch.mkldnn_max_pool2d",
"torch.mkldnn_max_pool3d",
"torch.mkldnn_rnn_layer",
"torch.mm",
"torch.mode",
"torch.moveaxis",
"torch.movedim",
"torch.msort",
"torch.mul",
"torch.multinomial",
"torch.multiply",
"torch.mv",
"torch.mvlgamma",
"torch.nan_to_num_",
"torch.nan_to_num",
"torch.nanmean",
"torch.nanmedian",
"torch.nanquantile",
"torch.nansum",
"torch.narrow_copy",
"torch.narrow",
"torch.native_batch_norm",
"torch.native_channel_shuffle",
"torch.native_dropout",
"torch.native_group_norm",
"torch.native_layer_norm",
"torch.native_norm",
"torch.ne",
"torch.neg_",
"torch.neg",
"torch.negative_",
"torch.negative",
"torch.nextafter",
"torch.nonzero_static",
"torch.nonzero",
"torch.norm_except_dim",
"torch.normal",
"torch.not_equal",
"torch.nuclear_norm",
"torch.numel",
"torch.obj",
"torch.ones_like",
"torch.ones",
"torch.orgqr",
"torch.ormqr",
"torch.outer",
"torch.pairwise_distance",
"torch.pdist",
"torch.permute_copy",
"torch.permute",
"torch.pinverse",
"torch.pixel_shuffle",
"torch.pixel_unshuffle",
"torch.poisson_nll_loss",
"torch.poisson",
"torch.polar",
"torch.polygamma",
"torch.positive",
"torch.pow",
"torch.prelu",
"torch._print",
"torch.prod",
"torch.promote_types",
"torch.put",
"torch.q_per_channel_axis",
"torch.q_per_channel_scales",
"torch.q_per_channel_zero_points",
"torch.q_scale",
"torch.q_zero_point",
"torch.qr",
"torch.quantile",
"torch.quantize_per_channel",
"torch.quantize_per_tensor_dynamic",
"torch.quantize_per_tensor",
"torch.quantized_batch_norm",
"torch.quantized_gru_cell",
"torch.quantized_lstm_cell",
"torch.quantized_max_pool1d",
"torch.quantized_max_pool2d",
"torch.quantized_max_pool3d",
"torch.quantized_rnn_relu_cell",
"torch.quantized_rnn_tanh_cell",
"torch.rad2deg_",
"torch.rad2deg",
"torch.rand_like",
"torch.rand",
"torch.randint_like",
"torch.randint",
"torch.randn_like",
"torch.randn",
"torch.randperm",
"torch.range",
"torch.ravel",
"torch.real",
"torch.reciprocal_",
"torch.reciprocal",
"torch.relu_",
"torch.relu",
"torch.remainder",
"torch.renorm",
"torch.repeat_interleave",
"torch.reshape",
"torch.resolve_conj",
"torch.resolve_neg",
"torch.result_type",
"torch.rnn_relu_cell",
"torch.rnn_relu",
"torch.rnn_tanh_cell",
"torch.rnn_tanh",
"torch.roll",
"torch.rot90",
"torch.round_",
"torch.round",
"torch.row_indices_copy",
"torch.row_stack",
"torch.rrelu_",
"torch.rrelu",
"torch.rsqrt_",
"torch.rsqrt",
"torch.rsub",
"torch.saddmm",
"torch.scalar_tensor",
"torch.scatter_add",
"torch.scatter_reduce",
"torch.scatter",
"torch.searchsorted",
"torch.segment_reduce",
"torch.select_copy",
"torch.select_scatter",
"torch.select",
"torch.selu_",
"torch.selu",
"torch.sgn",
"torch.sigmoid_",
"torch.sigmoid",
"torch.sign",
"torch.signal.windows.windows.sqrt",
"torch.signbit",
"torch.sin_",
"torch.sin",
"torch.sinc_",
"torch.sinc",
"torch.sinh_",
"torch.sinh",
"torch.slice_copy",
"torch.slice_scatter",
"torch.slogdet",
"torch.smm",
"torch.softmax",
"torch.sort",
"torch.split_copy",
"torch.split_with_sizes_copy",
"torch.split_with_sizes",
"torch.spmm",
"torch.sqrt_",
"torch.sqrt",
"torch.square_",
"torch.square",
"torch.squeeze_copy",
"torch.squeeze",
"torch.sspaddmm",
"torch.stack",
"torch.std_mean",
"torch.std",
"torch.sub",
"torch.subtract",
"torch.sum",
"torch.svd",
"torch.swapaxes",
"torch.swapdims",
"torch.sym_constrain_range_for_size",
"torch.sym_constrain_range",
"torch.t_copy",
"torch.t",
"torch.take_along_dim",
"torch.take",
"torch.tan_",
"torch.tan",
"torch.tanh_",
"torch.tanh",
"torch.tensor_split",
"torch.tensor",
"torch.threshold_",
"torch.threshold",
"torch.tile",
"torch.topk",
"torch.trace",
"torch.transpose_copy",
"torch.transpose",
"torch.trapezoid",
"torch.trapz",
"torch.triangular_solve",
"torch.tril_indices",
"torch.tril",
"torch.triplet_margin_loss",
"torch.triu_indices",
"torch.triu",
"torch.true_divide",
"torch.trunc_",
"torch.trunc",
"torch.unbind_copy",
"torch.unbind",
"torch.unflatten",
"torch.unfold_copy",
"torch.unsafe_chunk",
"torch.unsafe_split_with_sizes",
"torch.unsafe_split",
"torch.unsqueeze_copy",
"torch.unsqueeze",
"torch.values_copy",
"torch.vander",
"torch.var_mean",
"torch.var",
"torch.vdot",
"torch.view_as_complex_copy",
"torch.view_as_complex",
"torch.view_as_real_copy",
"torch.view_as_real",
"torch.view_copy",
"torch.vsplit",
"torch.vstack",
"torch.where",
"torch.xlogy_",
"torch.xlogy",
"torch.zero_",
"torch.zeros",
"torch._fused_sgd_",
"torch.slice_inverse",
"torch._assert_scalar",
"torch._functional_assert_scalar",
],
TorchInGraphFunctionVariable,
)
if sys.version_info >= (3, 9):
torch_c_binding_in_graph_functions["math.lcm"] = TorchInGraphFunctionVariable
if sys.version_info >= (3, 11):
torch_c_binding_in_graph_functions["math.exp2"] = TorchInGraphFunctionVariable
torch_c_binding_in_graph_functions["math.cbrt"] = TorchInGraphFunctionVariable
# In graph functions (including constant folding) that are not C bindings
torch_non_c_binding_in_graph_functions = dict.fromkeys(
[
"torch.__future__.get_overwrite_module_params_on_conversion",
"torch.__future__.set_overwrite_module_params_on_conversion",
"torch.__getattr__",
"torch._assert",
"torch._check_index",
"torch._check_is_size",
"torch._check_not_implemented",
"torch._check_tensor_all_with",
"torch._check_tensor_all",
"torch._check_type",
"torch._check_value",
"torch._check_with",
"torch._check",
"torch._compile._disable_dynamo",
"torch._functorch.apis.chunk_vmap",
"torch._functorch.autograd_function.custom_function_call_functionalize",
"torch._functorch.autograd_function.custom_function_call_grad",
"torch._functorch.autograd_function.custom_function_call_vmap_generate_rule",
"torch._functorch.autograd_function.custom_function_call_vmap",
"torch._functorch.autograd_function.generate_single_level_function",
"torch._functorch.autograd_function.get_tangents_in_dims",
"torch._functorch.autograd_function.has_overriden_vmap_rule",
"torch._functorch.autograd_function.reductify_leaf",
"torch._functorch.autograd_function.reductify",
"torch._functorch.autograd_function.validate_vmap_returns_tuple_of_two_elements",
"torch._functorch.autograd_function.vmapify_autograd_function",
"torch._functorch.autograd_function.wrap_outputs_maintaining_identity",
"torch._functorch.batch_norm_replacement.batch_norm_without_running_stats",
"torch._functorch.batch_norm_replacement.replace_all_batch_norm_modules_",
"torch._functorch.deprecated.combine_state_for_ensemble",
"torch._functorch.deprecated.functionalize",
"torch._functorch.deprecated.get_warning",
"torch._functorch.deprecated.grad_and_value",
"torch._functorch.deprecated.hessian",
"torch._functorch.deprecated.jacfwd",
"torch._functorch.deprecated.jacrev",
"torch._functorch.deprecated.jvp",
"torch._functorch.deprecated.make_functional_with_buffers",
"torch._functorch.deprecated.make_functional",
"torch._functorch.deprecated.setup_docs",
"torch._functorch.deprecated.vjp",
"torch._functorch.deprecated.warn_deprecated",
"torch._functorch.eager_transforms._any_differentiable",
"torch._functorch.eager_transforms._autograd_grad",
"torch._functorch.eager_transforms._construct_standard_basis_for",
"torch._functorch.eager_transforms._vjp_treespec_compare",
"torch._functorch.eager_transforms._set_tensor_requires_grad",
"torch._functorch.eager_transforms._is_differentiable",
"torch._functorch.eager_transforms._jvp_with_argnums",
"torch._functorch.eager_transforms._maybe_unwrap_functional_tensor",
"torch._functorch.eager_transforms._maybe_wrap_functional_tensor",
"torch._functorch.eager_transforms._replace_args",
"torch._functorch.eager_transforms._unwrap_all_tensors_from_functional",
"torch._functorch.eager_transforms._wrap_all_tensors_to_functional",
"torch._functorch.eager_transforms.assert_flat_tuple_of_tensors",
"torch._functorch.eager_transforms.assert_non_empty_list_of_tensors",
"torch._functorch.eager_transforms.assert_output_is_tensor_or_tensors",
"torch._functorch.eager_transforms.functionalize",
"torch._functorch.eager_transforms.hessian",
"torch._functorch.eager_transforms.jacfwd",
"torch._functorch.eager_transforms.jvp",
"torch._functorch.eager_transforms.lazy_dynamo_disable",
"torch._functorch.eager_transforms.linearize",
"torch._functorch.eager_transforms.noop",
"torch._functorch.eager_transforms.safe_unflatten",
"torch._functorch.eager_transforms.safe_unpack_dual",
"torch._functorch.functional_call.construct_stacked_leaf",
"torch._functorch.functional_call.functional_call",
"torch._functorch.functional_call.stack_module_state",
"torch._functorch.pyfunctorch.coerce_cinterpreter",
"torch._functorch.pyfunctorch.dispatch_functorch",
"torch._functorch.pyfunctorch.nested",
"torch._functorch.pyfunctorch.retrieve_current_functorch_interpreter",
"torch._functorch.pyfunctorch.temporarily_pop_interpreter_stack",
"torch._functorch.utils.enable_single_level_autograd_function",
"torch._functorch.utils.exposed_in",
"torch._functorch.utils.unwrap_dead_wrappers",
"torch._functorch.vmap.lazy_load_decompositions",
"torch._guards.compile_context",
"torch._guards.detect_fake_mode",
"torch._guards.tracing",
"torch._higher_order_ops.map._has_potential_branch_input_alias",
"torch._higher_order_ops.map._has_potential_branch_input_mutation",
"torch._higher_order_ops.map._stack_pytree",
"torch._higher_order_ops.map._unstack_pytree",
"torch._higher_order_ops.map.create_fw_bw_graph",
"torch._higher_order_ops.map.map_autograd",
"torch._higher_order_ops.map.map_dense",
"torch._higher_order_ops.map.map_fake_tensor_mode",
"torch._higher_order_ops.map.map_functionalize",
"torch._higher_order_ops.map.map_proxy_torch_dispatch_mode",
"torch._higher_order_ops.map.map_wrapper",
"torch._higher_order_ops.map.trace_map",
"torch._higher_order_ops.out_dtype.elementwise_dtypes",
"torch._higher_order_ops.out_dtype.is_int_mm",
"torch._higher_order_ops.out_dtype.out_dtype_dense",
"torch._higher_order_ops.out_dtype.out_dtype_fake_tensor_mode",
"torch._higher_order_ops.out_dtype.out_dtype_fallback",
"torch._higher_order_ops.out_dtype.out_dtype_func",
"torch._higher_order_ops.out_dtype.out_dtype_proxy",
"torch._higher_order_ops.out_dtype.trace_out_dtype",
"torch._higher_order_ops.utils.autograd_not_implemented_inner",
"torch._higher_order_ops.utils.autograd_not_implemented",
"torch._linalg_utils._symeig",
"torch._linalg_utils.basis",
"torch._linalg_utils.bform",
"torch._linalg_utils.conjugate",
"torch._linalg_utils.eig",
"torch._linalg_utils.get_floating_dtype",
"torch._linalg_utils.is_sparse",
"torch._linalg_utils.lstsq",
"torch._linalg_utils.matmul",
"torch._linalg_utils.matrix_rank",
"torch._linalg_utils.qform",
"torch._linalg_utils.solve",
"torch._linalg_utils.symeig",
"torch._linalg_utils.transjugate",
"torch._linalg_utils.transpose",
"torch._load_global_deps",
"torch._lowrank._svd_lowrank",
"torch._lowrank.get_approximate_basis",
"torch._lowrank.pca_lowrank",
"torch._lowrank.svd_lowrank",
"torch._ops._compute_keyset",
"torch._ops._get_tensors",
"torch._ops._to_flat_tuple",
"torch._ops.add_cached_op",
"torch._ops.dl_open_guard",
"torch._ops.get_cached_ops",
"torch._ops.key_extractor",
"torch._ops.reset_cached_ops",
"torch._ops.resolve_key",
"torch._preload_cuda_deps",
"torch._register_device_module",
"torch._running_with_deploy",
"torch._utils._dummy_type",
"torch._weights_only_unpickler._get_allowed_globals",
"torch._weights_only_unpickler.load",
"torch.align_tensors",
"torch.amp.autocast_mode._enter_autocast",
"torch.amp.autocast_mode._exit_autocast",
"torch.amp.autocast_mode.autocast_decorator",
"torch.are_deterministic_algorithms_enabled",
"torch.atleast_1d",
"torch.atleast_2d",
"torch.atleast_3d",
"torch.autograd._calculate_shape",
"torch.autograd._is_checkpoint_valid",
"torch.autograd._make_grads",
"torch.autograd._register_py_tensor_class_for_device",
"torch.autograd._tensor_or_tensors_to_tuple",
"torch.autograd.backward",
"torch.autograd.forward_ad.enter_dual_level",
"torch.autograd.forward_ad.exit_dual_level",
"torch.autograd.forward_ad.make_dual",
"torch.autograd.forward_ad.unpack_dual",
"torch.autograd.function._iter_filter",
"torch.autograd.function._iter_jit_values",
"torch.autograd.function._iter_None_tensors",
"torch.autograd.function._iter_tensors_permissive",
"torch.autograd.function._iter_tensors",
"torch.autograd.function._jit_unwrap_structured",
"torch.autograd.function._map_tensor_data",
"torch.autograd.function._nested_map",
"torch.autograd.function._unflatten",
"torch.autograd.function.once_differentiable",
"torch.autograd.function.traceable",
"torch.autograd.functional._as_tuple_nocheck",
"torch.autograd.functional._as_tuple",
"torch.autograd.functional._autograd_grad",
"torch.autograd.functional._check_requires_grad",
"torch.autograd.functional._construct_standard_basis_for",
"torch.autograd.functional._fill_in_zeros",
"torch.autograd.functional._grad_postprocess",
"torch.autograd.functional._grad_preprocess",
"torch.autograd.functional._jacfwd",
"torch.autograd.functional._tuple_postprocess",
"torch.autograd.functional._validate_v",
"torch.autograd.functional.hessian",
"torch.autograd.functional.hvp",
"torch.autograd.functional.jacobian",
"torch.autograd.functional.jvp",
"torch.autograd.functional.vhp",
"torch.autograd.functional.vjp",
"torch.autograd.grad_mode._enter_inference_mode",
"torch.autograd.grad_mode._exit_inference_mode",
"torch.autograd.graph._get_sid",
"torch.autograd.graph._get_tid",
"torch.autograd.graph.allow_mutation_on_saved_tensors",
"torch.autograd.graph.get_gradient_edge",
"torch.autograd.graph.increment_version",
"torch.autograd.graph.register_multi_grad_hook",
"torch.autograd.variable",
"torch.backends.__allow_nonbracketed_mutation",
"torch.backends.cpu.get_cpu_capability",
"torch.backends.cuda.can_use_efficient_attention",
"torch.backends.cuda.can_use_flash_attention",
"torch.backends.cuda.enable_flash_sdp",
"torch.backends.cuda.enable_math_sdp",
"torch.backends.cuda.enable_mem_efficient_sdp",
"torch.backends.cuda.flash_sdp_enabled",
"torch.backends.cuda.is_built",
"torch.backends.cuda.math_sdp_enabled",
"torch.backends.cuda.mem_efficient_sdp_enabled",
"torch.backends.cuda.cudnn_sdp_enabled",
"torch.backends.cuda.enable_cudnn_sdp",
"torch.backends.cuda.preferred_linalg_library",
"torch.backends.cuda.sdp_kernel",
"torch.backends.cudnn._init",
"torch.backends.cudnn.flags",
"torch.backends.cudnn.is_acceptable",
"torch.backends.cudnn.is_available",
"torch.backends.cudnn.set_flags",
"torch.backends.cudnn.version",
"torch.backends.disable_global_flags",
"torch.backends.flags_frozen",
"torch.backends.mkl.is_available",
"torch.backends.mkldnn.flags",
"torch.backends.mkldnn.is_available",
"torch.backends.mkldnn.set_flags",
"torch.backends.mps._init",
"torch.backends.mps.is_available",
"torch.backends.mps.is_built",
"torch.backends.mps.is_macos13_or_newer",
"torch.backends.openmp.is_available",
"torch.backends.quantized._get_qengine_id",
"torch.backends.quantized._get_qengine_str",
"torch.block_diag",
"torch.broadcast_tensors",
"torch.cartesian_prod",
"torch.cdist",
"torch.chain_matmul",
"torch.compile",
"torch.compiled_with_cxx11_abi",
"torch.cpu._is_cpu_support_vnni",
"torch.cpu.current_device",
"torch.cpu.current_stream",
"torch.cpu.device_count",
"torch.cpu.is_available",
"torch.cpu.set_device",
"torch.cpu.stream",
"torch.cpu.synchronize",
"torch.cuda._check_capability",
"torch.cuda._check_cubins",
"torch.cuda._device_count_nvml",
"torch.cuda._get_device",
"torch.cuda._get_generator",
"torch.cuda._get_nvml_device_index",
"torch.cuda._get_pynvml_handler",
"torch.cuda._get_rng_state_offset",
"torch.cuda._is_compiled",
"torch.cuda._lazy_call",
"torch.cuda._lazy_init",
"torch.cuda._memory_viz._block_extra_legacy",
"torch.cuda._memory_viz._block_extra",
"torch.cuda._memory_viz._format_size",
"torch.cuda._memory_viz._format_viz",
"torch.cuda._memory_viz._frame_filter",
"torch.cuda._memory_viz._frame_fmt",
"torch.cuda._memory_viz._frames_fmt",
"torch.cuda._memory_viz._profile_to_snapshot",
"torch.cuda._memory_viz._report_free",
"torch.cuda._memory_viz._write_blocks",
"torch.cuda._memory_viz.calc_active",
"torch.cuda._memory_viz.compare",
"torch.cuda._memory_viz.format_flamegraph",
"torch.cuda._memory_viz.memory",
"torch.cuda._memory_viz.profile_plot",
"torch.cuda._memory_viz.segment_plot",
"torch.cuda._memory_viz.segments",
"torch.cuda._memory_viz.segsum",
"torch.cuda._memory_viz.trace_plot",
"torch.cuda._memory_viz.trace",
"torch.cuda._nvml_based_avail",
"torch.cuda._parse_visible_devices",
"torch.cuda._raw_device_count_nvml",
"torch.cuda._raw_device_uuid_nvml",
"torch.cuda._register_triton_kernels",
"torch.cuda._set_rng_state_offset",
"torch.cuda._set_stream_by_id",
"torch.cuda._sleep",
"torch.cuda._transform_uuid_to_ordinals",
"torch.cuda._utils._get_device_index",
"torch.cuda.amp.autocast_mode._cast",
"torch.cuda.amp.autocast_mode.custom_bwd",
"torch.cuda.amp.autocast_mode.custom_fwd",
"torch.cuda.amp.common.amp_definitely_not_available",
"torch.amp.grad_scaler._refresh_per_optimizer_state",
"torch.cuda.can_device_access_peer",
"torch.cuda.check_error",
"torch.cuda.clock_rate",
"torch.cuda.cudart",
"torch.cuda.current_blas_handle",
"torch.cuda.current_stream",
"torch.cuda.default_stream",
"torch.cuda.device_count",
"torch.cuda.get_arch_list",
"torch.cuda.get_device_capability",
"torch.cuda.get_device_name",
"torch.cuda.get_device_properties",
"torch.cuda.get_gencode_flags",
"torch.cuda.get_sync_debug_mode",
"torch.cuda.graphs.graph_pool_handle",
"torch.cuda.graphs.is_current_stream_capturing",
"torch.cuda.graphs.make_graphed_callables",
"torch.cuda.init",
"torch.cuda.ipc_collect",
"torch.cuda.is_available",
"torch.cuda.is_bf16_supported",
"torch.cuda.is_initialized",
"torch.cuda.jiterator._create_jit_fn",
"torch.cuda.jiterator._create_multi_output_jit_fn",
"torch.cuda.memory_usage",
"torch.cuda.memory._dump_snapshot",
"torch.cuda.memory._free_mutex",
"torch.cuda.memory._get_current_allocator",
"torch.cuda.memory._host_allocator",
"torch.cuda.memory._record_memory_history_impl",
"torch.cuda.memory._record_memory_history_legacy",
"torch.cuda.memory._record_memory_history",
"torch.cuda.memory._save_memory_usage",
"torch.cuda.memory._save_segment_usage",
"torch.cuda.memory._set_allocator_settings",
"torch.cuda.memory._snapshot",
"torch.cuda.memory.caching_allocator_alloc",
"torch.cuda.memory.caching_allocator_delete",
"torch.cuda.memory.change_current_allocator",
"torch.cuda.memory.empty_cache",
"torch.cuda.memory.get_allocator_backend",
"torch.cuda.memory.list_gpu_processes",
"torch.cuda.memory.max_memory_allocated",
"torch.cuda.memory.max_memory_cached",
"torch.cuda.memory.max_memory_reserved",
"torch.cuda.memory.mem_get_info",
"torch.cuda.memory.memory_allocated",
"torch.cuda.memory.memory_cached",
"torch.cuda.memory.memory_reserved",
"torch.cuda.memory.memory_snapshot",
"torch.cuda.memory.memory_stats_as_nested_dict",
"torch.cuda.memory.memory_stats",
"torch.cuda.memory.memory_summary",
"torch.cuda.memory.reset_accumulated_memory_stats",
"torch.cuda.memory.reset_max_memory_allocated",
"torch.cuda.memory.reset_max_memory_cached",
"torch.cuda.memory.reset_peak_memory_stats",
"torch.cuda.memory.set_per_process_memory_fraction",
"torch.cuda.nccl._check_sequence_type",
"torch.cuda.nccl.all_gather",
"torch.cuda.nccl.all_reduce",
"torch.cuda.nccl.broadcast",
"torch.cuda.nccl.init_rank",
"torch.cuda.nccl.is_available",
"torch.cuda.nccl.reduce_scatter",
"torch.cuda.nccl.reduce",
"torch.cuda.nccl.unique_id",
"torch.cuda.nccl.version",
"torch.cuda.nvtx.mark",
"torch.cuda.nvtx.range_end",
"torch.cuda.nvtx.range_pop",
"torch.cuda.nvtx.range_push",
"torch.cuda.nvtx.range_start",
"torch.cuda.nvtx.range",
"torch.cuda.power_draw",
"torch.cuda.profiler.init",
"torch.cuda.profiler.profile",
"torch.cuda.profiler.start",
"torch.cuda.profiler.stop",
"torch.cuda.random.get_rng_state_all",
"torch.cuda.random.initial_seed",
"torch.cuda.random.manual_seed_all",
"torch.cuda.random.manual_seed",
"torch.cuda.random.seed_all",
"torch.cuda.random.seed",
"torch.cuda.random.set_rng_state_all",
"torch.cuda.set_stream",
"torch.cuda.set_sync_debug_mode",
"torch.cuda.stream",
"torch.cuda.synchronize",
"torch.cuda.temperature",
"torch.cuda.utilization",
"torch.einsum",
"torch.functional._check_list_size",
"torch.functional._consecutive_return_counts",
"torch.functional._consecutive_return_inverse_false",
"torch.functional._consecutive_return_inverse_true",
"torch.functional._consecutive_return_inverse",
"torch.functional._consecutive_return_output",
"torch.functional._lu_impl",
"torch.functional._lu_no_infos",
"torch.functional._lu_with_infos",
"torch.functional._meshgrid",
"torch.functional._return_counts",
"torch.functional._return_inverse_false",
"torch.functional._return_inverse_true",
"torch.functional._return_inverse",
"torch.functional._return_output",
"torch.functional._unique_consecutive_impl",
"torch.functional._unique_impl",
"torch.functional._unravel_index",
"torch.functional.broadcast_shapes",
"torch.functional.lu",
"torch.functional.unique",
"torch.functional.unravel_index",
"torch.futures.collect_all",
"torch.futures.wait_all",
"torch.get_deterministic_debug_mode",
"torch.get_float32_matmul_precision",
"torch.is_deterministic_algorithms_warn_only_enabled",
"torch.is_storage",
"torch.is_tensor",
"torch.is_warn_always_enabled",
"torch.masked._ops._any",
"torch.masked._ops._apply_docstring_templates",
"torch.masked._ops._canonical_dim",
"torch.masked._ops._combine_input_and_mask",
"torch.masked._ops._generate_docstring",
"torch.masked._ops._input_mask",
"torch.masked._ops._output_mask",
"torch.masked._ops._reduction_identity",
"torch.masked._ops._sparse_coo_flatten_indices",
"torch.masked._ops._sparse_coo_scatter_reduction_helper",
"torch.masked._ops._sparse_coo_where",
"torch.masked._ops._sparse_csr_segment_reduction_helper",
"torch.masked._ops._sparse_csr_where",
"torch.masked._ops._std_var",
"torch.masked._ops._where",
"torch.masked._ops.amax",
"torch.masked._ops.amin",
"torch.masked._ops.argmax",
"torch.masked._ops.argmin",
"torch.masked._ops.corresponding_real_dtype",
"torch.masked._ops.cumprod",
"torch.masked._ops.cumsum",
"torch.masked._ops.log_softmax",
"torch.masked._ops.logaddexp",
"torch.masked._ops.logsumexp",
"torch.masked._ops.mean",
"torch.masked._ops.median",
"torch.masked._ops.norm",
"torch.masked._ops.normalize",
"torch.masked._ops.prod",
"torch.masked._ops.softmax",
"torch.masked._ops.softmin",
"torch.masked._ops.std",
"torch.masked._ops.sum",
"torch.masked._ops.var",
"torch.meshgrid",
"torch.mps._get_default_mps_generator",
"torch.mps.current_allocated_memory",
"torch.mps.driver_allocated_memory",
"torch.mps.empty_cache",
"torch.mps.get_rng_state",
"torch.mps.manual_seed",
"torch.mps.profiler.profile",
"torch.mps.profiler.start",
"torch.mps.profiler.stop",
"torch.mps.seed",
"torch.mps.set_per_process_memory_fraction",
"torch.mps.set_rng_state",
"torch.mps.synchronize",
"torch.nested._internal.nested_tensor.get_tensor_symint",
"torch.nested._internal.nested_tensor.is_expandable_to",
"torch.nested._internal.nested_tensor.jagged_from_list",
"torch.nested._internal.nested_tensor.jagged_from_tensor_and_lengths",
"torch.nested._internal.nested_tensor.nested_view_from_values_offsets",
"torch.nested._internal.nested_tensor.nested_view_from_values_offsets_lengths",
"torch.nested.as_nested_tensor",
"torch.nested.narrow",
"torch.nested.nested_tensor",
"torch.nn._reduction.get_enum",
"torch.nn._reduction.legacy_get_enum",
"torch.nn._reduction.legacy_get_string",
"torch.nn.factory_kwargs",
"torch.nn.functional._adaptive_max_pool1d",
"torch.nn.functional._adaptive_max_pool2d",
"torch.nn.functional._adaptive_max_pool3d",
"torch.nn.functional._canonical_mask",
"torch.nn.functional._fractional_max_pool2d",
"torch.nn.functional._fractional_max_pool3d",
"torch.nn.functional._get_softmax_dim",
"torch.nn.functional._in_projection_packed",
"torch.nn.functional._in_projection",
"torch.nn.functional._is_integer",
"torch.nn.functional._max_pool1d",
"torch.nn.functional._max_pool2d",
"torch.nn.functional._max_pool3d",
"torch.nn.functional._mha_shape_check",
"torch.nn.functional._no_grad_embedding_renorm_",
"torch.nn.functional._none_or_dtype",
"torch.nn.functional._threshold",
"torch.nn.functional._unpool_output_size",
"torch.nn.functional._verify_batch_size",
"torch.nn.functional._verify_spatial_size",
"torch.nn.functional.adaptive_avg_pool2d",
"torch.nn.functional.adaptive_avg_pool3d",
"torch.nn.functional.adaptive_max_pool1d_with_indices",
"torch.nn.functional.adaptive_max_pool1d",
"torch.nn.functional.adaptive_max_pool2d_with_indices",
"torch.nn.functional.adaptive_max_pool2d",
"torch.nn.functional.adaptive_max_pool3d_with_indices",
"torch.nn.functional.adaptive_max_pool3d",
"torch.nn.functional.affine_grid",
"torch.nn.functional.alpha_dropout",
"torch.nn.functional.assert_int_or_pair",
"torch.nn.functional.batch_norm",
"torch.nn.functional.binary_cross_entropy_with_logits",
"torch.nn.functional.binary_cross_entropy",
"torch.nn.functional.celu",
"torch.nn.functional.cosine_embedding_loss",
"torch.nn.functional.cross_entropy",
"torch.nn.functional.ctc_loss",
"torch.nn.functional.dropout",
"torch.nn.functional.dropout1d",
"torch.nn.functional.dropout2d",
"torch.nn.functional.dropout3d",
"torch.nn.functional.elu",
"torch.nn.functional.embedding_bag",
"torch.nn.functional.embedding",
"torch.nn.functional.feature_alpha_dropout",
"torch.nn.functional.fold",
"torch.nn.functional.fractional_max_pool2d_with_indices",
"torch.nn.functional.fractional_max_pool2d",
"torch.nn.functional.fractional_max_pool3d_with_indices",
"torch.nn.functional.fractional_max_pool3d",
"torch.nn.functional.gaussian_nll_loss",
"torch.nn.functional.glu",
"torch.nn.functional.grid_sample",
"torch.nn.functional.group_norm",
"torch.nn.functional.gumbel_softmax",
"torch.nn.functional.hardsigmoid",
"torch.nn.functional.hardswish",
"torch.nn.functional.hardtanh",
"torch.nn.functional.hinge_embedding_loss",
"torch.nn.functional.huber_loss",
"torch.nn.functional.instance_norm",
"torch.nn.functional.interpolate",
"torch.nn.functional.kl_div",
"torch.nn.functional.l1_loss",
"torch.nn.functional.layer_norm",
"torch.nn.functional.leaky_relu",
"torch.nn.functional.local_response_norm",
"torch.nn.functional.log_softmax",
"torch.nn.functional.lp_pool1d",
"torch.nn.functional.lp_pool2d",
"torch.nn.functional.margin_ranking_loss",
"torch.nn.functional.max_pool1d_with_indices",
"torch.nn.functional.max_pool1d",
"torch.nn.functional.max_pool2d_with_indices",
"torch.nn.functional.max_pool2d",
"torch.nn.functional.max_pool3d_with_indices",
"torch.nn.functional.max_pool3d",
"torch.nn.functional.max_unpool1d",
"torch.nn.functional.max_unpool2d",
"torch.nn.functional.max_unpool3d",
"torch.nn.functional.mish",
"torch.nn.functional.mse_loss",
"torch.nn.functional.multi_head_attention_forward",
"torch.nn.functional.multi_margin_loss",
"torch.nn.functional.multilabel_margin_loss",
"torch.nn.functional.multilabel_soft_margin_loss",
"torch.nn.functional.nll_loss",
"torch.nn.functional.normalize",
"torch.nn.functional.poisson_nll_loss",
"torch.nn.functional.relu",
"torch.nn.functional.relu6",
"torch.nn.functional.rrelu",
"torch.nn.functional.selu",
"torch.nn.functional.sigmoid",
"torch.nn.functional.silu",
"torch.nn.functional.smooth_l1_loss",
"torch.nn.functional.soft_margin_loss",
"torch.nn.functional.softmax",
"torch.nn.functional.softmin",
"torch.nn.functional.softsign",
"torch.nn.functional.tanh",
"torch.nn.functional.tanhshrink",
"torch.nn.functional.triplet_margin_loss",
"torch.nn.functional.unfold",
"torch.nn.functional.upsample_bilinear",
"torch.nn.functional.upsample_nearest",
"torch.nn.functional.upsample",
"torch.nn.grad._pair",
"torch.nn.grad._single",
"torch.nn.grad._triple",
"torch.nn.grad.conv1d_input",
"torch.nn.grad.conv1d_weight",
"torch.nn.grad.conv2d_input",
"torch.nn.grad.conv2d_weight",
"torch.nn.grad.conv3d_input",
"torch.nn.grad.conv3d_weight",
"torch.nn.modules.activation._arg_requires_grad",
"torch.nn.modules.activation._check_arg_device",
"torch.nn.modules.activation._is_make_fx_tracing",
"torch.nn.modules.container._addindent",
"torch.nn.modules.transformer._detect_is_causal_mask",
"torch.nn.modules.transformer._generate_square_subsequent_mask",
"torch.nn.modules.transformer._get_activation_fn",
"torch.nn.modules.transformer._get_clones",
"torch.nn.modules.transformer._get_seq_len",
"torch.nn.modules.utils._list_with_default",
"torch.nn.modules.utils._ntuple",
"torch.nn.modules.utils._quadruple",
"torch.nn.modules.utils._reverse_repeat_tuple",
"torch.nn.modules.utils.consume_prefix_in_state_dict_if_present",
"torch.nn.parameter.is_lazy",
"torch.norm",
"torch.quantization.default_eval_fn",
"torch.random._seed_custom_device",
"torch.random.fork_rng",
"torch.random.initial_seed",
"torch.random.seed",
"torch.return_types.pytree_register_structseq",
"torch.set_default_device",
"torch.set_default_dtype",
"torch.set_default_tensor_type",
"torch.set_deterministic_debug_mode",
"torch.set_float32_matmul_precision",
"torch.set_warn_always",
"torch.signal.windows.windows._add_docstr",
"torch.signal.windows.windows._window_function_checks",
"torch.signal.windows.windows.bartlett",
"torch.signal.windows.windows.blackman",
"torch.signal.windows.windows.cosine",
"torch.signal.windows.windows.exponential",
"torch.signal.windows.windows.gaussian",
"torch.signal.windows.windows.general_cosine",
"torch.signal.windows.windows.general_hamming",
"torch.signal.windows.windows.hamming",
"torch.signal.windows.windows.hann",
"torch.signal.windows.windows.kaiser",
"torch.signal.windows.windows.merge_dicts",
"torch.signal.windows.windows.nuttall",
"torch.signal.windows.windows.parse_kwargs",
"torch.sparse.semi_structured.to_sparse_semi_structured",
"torch.sparse.sum",
"torch.split",
"torch.stft",
"torch.sym_float",
"torch.sym_int",
"torch.sym_ite",
"torch.sym_max",
"torch.sym_min",
"torch.sym_not",
"torch.tensordot",
"torch.typename",
"torch.unique_consecutive",
"torch.use_deterministic_algorithms",
],
TorchInGraphFunctionVariable,
)
torch_name_rule_map = [
manual_torch_name_rule_map,
torch_c_binding_in_graph_functions,
torch_non_c_binding_in_graph_functions,
]
"""
Generate the torch object - Dynamo tracing rule (the wrapping variable) map.
"""
@functools.lru_cache(None)
def get_torch_obj_rule_map():
d: Dict[Any, VariableTracker] = dict()
for m in torch_name_rule_map:
for k, v in m.items(): # type: ignore[attr-defined]
obj = load_object(k)
if obj is not None:
if obj in d and d[obj] != v:
raise AssertionError(
f"Duplicate torch object {obj} with different rules: {v}, {d[obj]}"
)
else:
d[obj] = v
return d
def _load_obj_from_str(fully_qualified_name):
module, obj_name = fully_qualified_name.rsplit(".", maxsplit=1)
return getattr(importlib.import_module(module), obj_name)
"""
Load string represented torch objects.
"""
def load_object(name):
try:
x = name.split("#")
if len(x) == 2:
obj = _load_obj_from_str(x[0])
val = getattr(obj, x[1])
else:
assert len(x) == 1, f"Invalid obj name {name}"
val = _load_obj_from_str(x[0])
val = unwrap_if_wrapper(val)
except (AttributeError, ImportError):
val = None
return val
"""
Get all torch.Tensor methods which are allowed to be in graph functions.
"""
@functools.lru_cache(None)
def get_tensor_method():
s = set()
for name in dir(torch.Tensor):
method = getattr(torch.Tensor, name)
if isinstance(
method, (types.MethodDescriptorType, types.WrapperDescriptorType)
):
s.add(method)
return frozenset(s)
"""
Return if a torch object is ATen op or torch.Tensor method.
"""
def is_aten_op_or_tensor_method(obj):
return obj in get_tensor_method() or isinstance(
obj,
(torch._ops.OpOverloadPacket, torch._ops.OpOverload),
)
class FunctionIdSet:
"""
Track a set of `id()`s of objects which are either allowed or not
allowed to go into the generated FX graph. Use to test for torch.*,
numpy.*, builtins.*, etc.
Support user modification to permit customization of what can be
added to the graph and what will cause a graph break.
"""
function_ids: Optional[Set[int]] = None
function_names: Optional[Dict[int, str]] = None
def __init__(self, lazy_initializer: Callable[[], Union[Dict[int, str], Set[int]]]):
self.lazy_initializer = lazy_initializer
def __call__(self):
if self.function_ids is None:
value = self.lazy_initializer()
if isinstance(value, dict):
self.function_ids = set(value.keys())
self.function_names = value
else:
assert isinstance(value, set)
self.function_ids = value
return self.function_ids
def get_name(self, idx: int, default: str):
self() # lazy init
assert self.function_names is not None
return self.function_names.get(idx, default)
def add(self, idx: int):
function_ids = self() # lazy init
function_ids.add(idx)
def remove(self, idx: int):
function_ids = self()
if idx in function_ids:
function_ids.remove(idx)
def __contains__(self, idx: int):
return idx in self()
@FunctionIdSet
def _allowed_callable_ids() -> Dict[int, str]:
rv: Dict[int, str] = {}
return rv
@FunctionIdSet
def _disallowed_callable_ids() -> Dict[int, str]:
rv: Dict[int, str] = {}
return rv
@FunctionIdSet
def _builtin_function_ids() -> Dict[int, str]:
rv = {
id(v): f"builtins.{k}"
for k, v in builtins.__dict__.items()
if not k.startswith("_") and callable(v)
}
rv.update(
{
id(v): f"operator.{k}"
for k, v in operator.__dict__.items()
if not k.startswith("_") and callable(v)
}
)
rv.update(
{id(v): f"functools.{v.__name__}" for v in (itertools.chain, itertools.islice)}
)
rv.update(
{
id(cast): "typing.cast",
id(functools.reduce): "functools.reduce",
id(copy.deepcopy): "copy.deepcopy",
}
)
return rv
@FunctionIdSet
def _numpy_function_ids() -> Dict[int, str]:
rv = dict()
for mod in NP_SUPPORTED_MODULES:
rv.update(
{
id(v): f"{mod.__name__}.{k}"
for k, v in mod.__dict__.items()
if callable(v)
and (getattr(v, "__module__", None) or mod.__name__) == mod.__name__
}
)
return rv
@FunctionIdSet
def _builtin_constant_ids() -> Dict[int, str]:
"""
Collects constant builtins by eliminating callable items.
"""
rv = {
id(v): f"builtins.{k}"
for k, v in builtins.__dict__.items()
if not k.startswith("_") and not callable(v)
}
return rv
_lazy_module_init: Dict[str, List[Callable[[], None]]] = defaultdict(list)
def add_module_init_func(name: str, init_func: Callable[[], None]) -> None:
"""Register a module without eagerly importing it"""
# If the module is already imported, eagerly run init
assert "." not in name, f"Expected a root module name, but got {name}"
if name in sys.modules:
init_func()
# Module is not yet imported, delay processing until needed
assert name not in _lazy_module_init
_lazy_module_init[name].append(init_func)
def _maybe_init_lazy_module(obj: object) -> None:
module = getattr(obj, "__module__", None)
if module is None:
return
base_module = module.split(".")[0]
init_funcs = _lazy_module_init.pop(base_module, None)
if init_funcs is not None:
for fn in init_funcs:
fn()
def is_callable_allowed(obj) -> bool:
_maybe_init_lazy_module(obj)
return id(obj) in _allowed_callable_ids
def is_callable_disallowed(obj) -> bool:
_maybe_init_lazy_module(obj)
return id(obj) in _disallowed_callable_ids
def is_forbidden(obj) -> bool:
_maybe_init_lazy_module(obj)
return getattr(obj, "_dynamo_forbidden", False)
def is_builtin_callable(obj) -> bool:
return id(obj) in _builtin_function_ids
def is_builtin_constant(obj) -> bool:
return id(obj) in _builtin_constant_ids
def is_numpy(obj) -> bool:
if np is None:
return False
return isinstance(obj, (np.ndarray, np.generic)) or id(obj) in _numpy_function_ids
"""
A note on skip/inline rules:
Dynamo consults this file to determine whether function should be inlined or skipped.
A skip applies at the frame boundary, meaning dynamo either triggers a graph break
at the beginning of the frame or attempts to trace/inline the whole frame. When skipping
a frame, recursively called frames are still traced by dynamo unless also skipped.
Skipfiles (skipped at the file level instead of function level) still apply on a
frame-by-frame boundary as dynamo traces, but apply to all functions in that file.
@skip is a helper decorator that can be applied to your function to cause it to be
included here.
Dynamo skip/inline rules & priorities are defined as follows:
* Inline is the default behavior and will be used unless explicitly skipped.
* Dynamo has two SKIPLIST: BUILTIN_SKIPLIST and THIRDPARTY_SKIPLIST.
* BUILTIN_SKIPLIST contains builtin python modules, such as abc, collections, etc.
* THIRDPARTY_SKIPLIST contains common third party libraries, such as numpy, pandas, etc.
* Functions in these two SKIPLISTs are always skipped, except:
* They have explicitly defined rule in `manual_torch_name_rule_map`;
* The corresponding python module has been put into MOD_INLINELIST.
* PyTorch(torch) is in the BUILTIN_SKIPLIST by default, but there are many cases
where we want inline the functions under torch namespace.
We should specify inline for the functions in `manual_torch_name_rule_map` or
put the corresponding python module into MOD_INLINELIST to make dynamo inline them.
* If you call functions under skipped modules/files, Dynamo will wrap these functions
as SkipFunctionVariable. There are a few functions(e.g, collections.OrderedDict) that
we have special handling at SkipFunctionVariable.call_function.
Overall: *_INLINELIST has precedence over *_SKIPLIST has precedence over DEFAULT (inline)
To figure out what the behavior is, check the following list in order:
* `manual_torch_name_rule_map` (Inline if YES)
* MOD_INLINELIST (Inline if YES)
* BUILTIN_SKIPLIST & THIRDPARTY_SKIPLIST (Skip if YES)
* Inline by default
In general, if you want to force inline a function or module, please consider adding
the function's python module to MOD_INLINELIST first.
Use the `manual_torch_name_rule_map` only when there are other functions under the same module that
you don't want to inline them.
"""
BUILTIN_SKIPLIST = (
abc,
collections,
contextlib,
copy,
copyreg,
dataclasses,
enum,
functools,
importlib,
inspect,
linecache,
logging,
multiprocessing,
operator,
os,
posixpath,
random,
re,
selectors,
signal,
tempfile,
threading,
tokenize,
torch, # torch/* is skipped by default unless specified in FUNC_INLINELIST or MOD_INLINELIST
traceback,
types,
typing,
unittest,
weakref,
_collections_abc,
_weakrefset,
)
# third party libraries skiplist is defined by str, because users may not use these libraries.
# we should use lazy import & skip in the future.
THIRDPARTY_SKIPLIST = (
"fx2trt_oss",
"hypothesis",
"networkx",
"numpy",
"omegaconf",
"onnx",
"onnxruntime",
"onnx_tf",
"pandas",
"sklearn",
"tabulate",
"tensorflow",
"tensorrt",
"torch2trt",
"tqdm",
"tree",
"tvm",
"xarray",
)
def _strip_init_py(s):
# TODO: Once we require py3.9 use removesuffix instead.
suffix = "__init__.py"
if s.endswith(suffix):
return s[: -len(suffix)]
else:
return s
def _module_dir(m: types.ModuleType):
# Protect against a module not exporting __file__ - this can happen for
# frozen modules, for example.
file = getattr(m, "__file__", None)
return file and _strip_init_py(file)
# These are legacy workarounds, don't add new modules to this list.
# Please use the MOD_INLINELIST instead to force inline functions under particular modules.
LEGACY_MOD_INLINELIST = {
"torch._dynamo.external_utils",
"torch._export.db.examples",
"torch._export.wrappers",
"torch._functorch.apis",
"torch._functorch.deprecated",
"torch._higher_order_ops.cond",
"torch.ao.quantization.pt2e.export_utils",
"torch.ao.quantization.pt2e.qat_utils",
"torch.ao.quantization.pt2e.representation.rewrite",
"torch.ao.quantization.pt2e.utils",
"torch.ao.quantization.quantizer.xnnpack_quantizer",
"torch.optim",
}
if torch.distributed.is_available():
LEGACY_MOD_INLINELIST |= {
"torch.distributed._tensor.api",
"torch.distributed._tensor.device_mesh",
"torch.distributed.device_mesh",
"torch.distributed.algorithms._checkpoint.checkpoint_wrapper",
"torch.distributed.tensor.parallel._data_parallel_utils",
"torch.distributed.tensor.parallel._utils",
"torch.distributed.tensor.parallel.style",
# we have to add replicate to LEGACY_MOD_INLINELIST to ensure
# the forward_hook won't be ignored.
"torch.distributed._composable.replicate",
}
# Force inline functions under these modules, even they are in *_SKIPLIST.
# We are using python module name instead of file or directory object to avoid circular dependency.
# Please keep this sorted alphabetically.
MOD_INLINELIST = {
"torch._refs",
"torch._prims",
"torch._decomp",
"torch._dynamo._trace_wrapped_higher_order_op",
"torch._dynamo.comptime",
"torch._dynamo.polyfill",
"torch._functorch.vmap",
"torch._functorch.eager_transforms",
"torch._inductor.test_operators",
"torch.amp.autocast_mode",
"torch.ao.nn",
"torch.autograd.function",
"torch.backends.cuda",
"torch.cuda.amp.autocast_mode",
"torch.distributions",
"torch.fx._pytree",
"torch.fx.passes.shape_prop",
"torch.nn",
"torch.random",
"torch.sparse",
"torch.testing",
"torch.testing._internal.hypothesis_utils",
"torch.utils._content_store",
"torch.utils._contextlib",
"torch.utils._foreach_utils",
"torch.utils._pytree",
"torch.utils.hooks",
"torch._tensor",
"torch._higher_order_ops.strict_mode",
"torch._higher_order_ops.while_loop",
}
if torch.distributed.is_available():
MOD_INLINELIST.add("torch.distributed")
MOD_INLINELIST.add("torch.distributed._functional_collectives")
MOD_INLINELIST.add("torch.distributed._composable.replicate")
@functools.lru_cache(None)
def get_legacy_mod_inlinelist():
inlinelist = set()
for m in LEGACY_MOD_INLINELIST:
inlinelist.add(_module_dir(torch) + m[len("torch.") :].replace(".", "/"))
return inlinelist
@functools.lru_cache(None)
def get_mod_inlinelist():
inlinelist = set()
for m in MOD_INLINELIST:
inlinelist.add(_module_dir(torch) + m[len("torch.") :].replace(".", "/"))
return inlinelist
# skip some standard python builtin libs
SKIP_DIRS = [
"<frozen importlib",
"<__array_function__ internals>",
_config_module.__file__,
]
SKIP_DIRS.extend(filter(None, (_module_dir(m) for m in BUILTIN_SKIPLIST)))
SKIP_DIRS_RE = re.compile(r"match nothing^")
is_fbcode = importlib.import_module("torch._inductor.config").is_fbcode()
# Skip fbcode paths(including torch.package paths) containing
# one of the following strings.
FBCODE_SKIP_DIRS = {
"torchrec/distributed",
"torchrec/fb/distributed",
"caffe2/torch/fb/sparsenn/pooled_embeddings_modules.py",
}
FBCODE_SKIP_DIRS_RE = re.compile(f".*({'|'.join(map(re.escape, FBCODE_SKIP_DIRS))})")
def _recompile_re():
global SKIP_DIRS_RE
SKIP_DIRS_RE = re.compile(f"^({'|'.join(map(re.escape, SKIP_DIRS))})")
def add(import_name: str):
if isinstance(import_name, types.ModuleType):
return add(import_name.__name__)
assert isinstance(import_name, str)
from importlib.util import find_spec
module_spec = find_spec(import_name)
if not module_spec:
return
origin = module_spec.origin
if origin is None:
return
global SKIP_DIRS_RE
SKIP_DIRS.append(_strip_init_py(origin))
_recompile_re()
@dataclasses.dataclass
class SkipResult:
skipped: bool
reason: Optional[str]
def check_file(filename, is_inlined_call=False):
"""Should skip this file?"""
if filename is None:
return SkipResult(True, "filename is None")
if any(filename.startswith(d) for d in get_legacy_mod_inlinelist()):
return SkipResult(
False,
"inlined according trace_rules.LEGACY_MOD_INLINELIST",
)
if is_inlined_call and is_torch_inline_allowed(filename):
return SkipResult(
False,
"inlined according trace_rules.MOD_INLINELIST",
)
if is_fbcode and bool(FBCODE_SKIP_DIRS_RE.match(filename)):
return SkipResult(
True,
"skipped according trace_rules.FBCODE_SKIP_DIRS",
)
if bool(SKIP_DIRS_RE.match(filename)):
return SkipResult(True, "skipped according trace_rules.SKIP_DIRS")
else:
return SkipResult(False, "inlined by default")
@dataclasses.dataclass
class FunctionInfo:
py_obj: Optional[object]
name: Optional[str]
filename: str
code: Optional[types.CodeType]
"""
This is the main entry point to determine whether an object (function) should be inlined or skipped.
Let's illustrate the logic with an example:
@torch.compile
def f1(x, y):
......
f2(x, y)
......
def f2(x, y):
......
f3(x, y)
......
def f3(x, y):
......
There are mainly three call sites of check/check_verbose:
* The compile region entrance (like function f1), the correspoinding code is located at eval_frame.py.
* When tracing the recursively called functions (like function f2 and f3).
* Dynamo decides inline/skip everytime it encounters a new recursively function call, and the call site
is in InliningInstructionTranslator.check_inlineable of symbolic_convert.py.
* If f2 is skipped by Dynamo, when evaluating the frame of f3, Dynamo need the inline/skip check again
and the call site is in catch_errors_wrapper.catch_errors of convert_frame.py.
* For global variables and function arguments, Dynamo needs to decide if they are wrapped as SkipFunctionVariable in builder.py.
`is_inlined_call` is used to indicate if the current function call is inlined (f2 is inlined call if it passes check)
or not (f3 is not inlined call if f2 is skipped). Inside of the `check_verbose` function, there are more rules
to be checked if this `is_inlined_call`.
The reason to have this flag is that if the upper level function call (e.g, f2) is skipped,
we don't want to inline the lower level function call (e.g, f3) by default.
"""
def check_verbose(obj, is_inlined_call=False):
if isinstance(
obj, (UserFunctionVariable, UserMethodVariable, NestedUserFunctionVariable)
):
try:
py_obj = obj.get_function()
except NotImplementedError:
py_obj = None
fi = FunctionInfo(py_obj, obj.get_name(), obj.get_filename(), obj.get_code())
elif isinstance(obj, types.CodeType):
fi = FunctionInfo(None, obj.co_name, obj.co_filename, obj)
elif isinstance(obj, (types.FunctionType, types.MethodType)):
fi = FunctionInfo(
obj, obj.__name__, getfile(obj), obj.__code__ # type: ignore[union-attr] # FIXME Add MethodType.__code__ to typeshed
)
else:
fi = FunctionInfo(obj, None, getfile(obj), None)
# Consulte the central trace rules defined in torch._dynamo.trace_rules.
rule = torch._dynamo.trace_rules.lookup_inner(
fi.py_obj, fi.name, fi.filename, is_inlined_call
)
if rule in [UserFunctionVariable, FunctorchHigherOrderVariable]:
return SkipResult(
False,
"inlined according trace_rules.lookup",
)
else:
assert rule == SkipFunctionVariable, rule
return SkipResult(
True,
"skipped according trace_rules.lookup",
)
def check(obj, is_inlined_call=False):
return check_verbose(obj, is_inlined_call).skipped
# skip common third party libs
for _name in THIRDPARTY_SKIPLIST:
add(_name)
_recompile_re()
def is_torch_inline_allowed(filename):
return any(filename.startswith(d) for d in get_mod_inlinelist())
@functools.lru_cache(None)
def dynamo_dir():
import torch._dynamo
return _module_dir(torch._dynamo)
def is_torch(filename):
if filename.startswith(dynamo_dir()):
return False
return filename.startswith(_module_dir(torch))
"""
Main entry point for looking up the trace rule (the Dynamo variable) for a given callable object.
"""
def lookup_callable(obj):
if not hashable(obj):
return None
# Custom allow/disallow in graph takes precedence over the general lookup.
if is_callable_disallowed(obj):
return SkipFunctionVariable
if is_callable_allowed(obj):
return TorchInGraphFunctionVariable
if is_builtin_callable(obj):
return BuiltinVariable
"""
Main entry point for looking up the trace rule (the Dynamo variable) for a given function object.
E.g, the lookup result of `torch.sin` is `TorchInGraphFunctionVariable`.
"""
def lookup(obj):
return lookup_inner(obj)
def lookup_inner(obj, name=None, filename=None, is_direct_call=True):
# Step 1: lookup obj's tracing rule in `torch_name_rule_map`.
# The rules defined in `torch_name_rule_map` mainly includes two parts:
# - Manually defined rules for any functions.
# - The list of torch in graph functions.
if not hashable(obj):
return None
if obj is not None:
if is_aten_op_or_tensor_method(obj):
return TorchInGraphFunctionVariable
rule = get_torch_obj_rule_map().get(obj, None)
if rule is not None:
return rule
# Step 2: lookup obj's tracing rule by function name.
if is_direct_call:
if name == "patched_init":
return SkipFunctionVariable
elif name == "__torch_function__":
return UserFunctionVariable
# Step 3: lookup obj's tracing rule by filename.
if filename is None:
filename = getfile(obj)
if check_file(filename, is_direct_call).skipped:
return SkipFunctionVariable
else:
return UserFunctionVariable