Spaces:
Running
Running
# mypy: ignore-errors | |
import operator | |
from typing import Dict, List | |
import torch | |
from torch._dynamo.source import GetItemSource | |
from .. import variables | |
from ..exc import unimplemented, UserError, UserErrorType | |
from ..guards import GuardBuilder, install_guard | |
from ..utils import common_constant_types, istype, np | |
from .base import typestr, VariableTracker | |
_type_to_assert_reason = { | |
# NB - We CAN have ConstantVariable.create(set) because of how sets interact with guards. | |
# A locally created set should always become a SetVariable, as the items in the set will already either be sourced | |
# from somewhere else, or unsourced. An input set would imply sources derived from set contents. For example, an | |
# input list's contents will have a source like some_list[0], some_list[1][1], etc. For a set, arbitrary access is | |
# not possible. This is a solvable problem, but one we have not taken on yet. As such, input sets are not allowed to | |
# become SetVariables. The solution here is to create a ConstantSetVariable that is more like a ConstantVariable. | |
# As this does not exist, we cannot add sets to this invariant. | |
list: "List types must use ListVariable.", | |
dict: "Dict types must use ConstDictVariable.", | |
torch.Tensor: "Tensor types must use TensorVariable.", | |
torch.SymInt: "SymInts must use SymNodeVariable. " | |
"If the underlying value is static, we will create a ConstantVariable and specialize.", | |
torch.SymFloat: "SymInts must use SymNodeVariable", | |
} | |
class ConstantVariable(VariableTracker): | |
def create(value, **kwargs) -> VariableTracker: | |
source = kwargs.get("source", None) | |
is_literal = ConstantVariable.is_literal(value) | |
if not is_literal: | |
for disallowed_type, reason in _type_to_assert_reason.items(): | |
assert not isinstance(value, disallowed_type), reason | |
# Routing for list and tuple literals. | |
if is_literal and isinstance(value, (list, tuple)): | |
items = [] | |
for i, x in enumerate(value): | |
item_source = GetItemSource(source, i) if source else None | |
if item_source: | |
install_guard(item_source.make_guard(GuardBuilder.CONSTANT_MATCH)) | |
items.append( | |
ConstantVariable.create( | |
x, | |
source=item_source, | |
) | |
) | |
return variables.BaseListVariable.cls_for(type(value))(items, **kwargs) | |
return ConstantVariable(value, **kwargs) | |
def __init__(self, value, **kwargs): | |
super().__init__(**kwargs) | |
if not ConstantVariable.is_literal(value): | |
for disallowed_type, reason in _type_to_assert_reason.items(): | |
assert not isinstance(value, disallowed_type), reason | |
assert not isinstance( | |
value, (list, tuple) | |
), "ConstantVariable(list) is banned - please create a ListVariable(items)" | |
if np is not None and isinstance(value, np.number): | |
self.value = value.item() | |
else: | |
self.value = value | |
def as_proxy(self): | |
return self.value | |
def __str__(self): | |
return f"ConstantVariable({type(self.value).__name__}: {repr(self.value)})" | |
def python_type(self): | |
return type(self.value) | |
def as_python_constant(self): | |
return self.value | |
def items(self): | |
""" | |
Need this when adding a BaseListVariable and a ConstantVariable together. | |
Happens in detectron2. | |
""" | |
return self.unpack_var_sequence(tx=None) | |
def getitem_const(self, arg: VariableTracker): | |
return ConstantVariable.create( | |
self.value[arg.as_python_constant()], | |
) | |
def is_literal(obj): | |
if type(obj) in common_constant_types: | |
return True | |
# The structure within is_literal get routed to variables.BaseListVariable | |
if type(obj) in (list, tuple, set, frozenset, torch.Size): | |
return all(ConstantVariable.is_literal(x) for x in obj) | |
return False | |
def unpack_var_sequence(self, tx): | |
try: | |
return [ConstantVariable.create(x) for x in self.as_python_constant()] | |
except TypeError as e: | |
raise NotImplementedError from e | |
def const_getattr(self, tx, name): | |
if isinstance(self.value, type): | |
raise UserError( | |
UserErrorType.ANTI_PATTERN, | |
"Can't access members of type(obj) for a generated custom object. " | |
"Please use __class__ instead", | |
case_name="type_reflection_method", | |
) | |
member = getattr(self.value, name) | |
if callable(member): | |
raise NotImplementedError() | |
return member | |
def call_method( | |
self, | |
tx, | |
name, | |
args: "List[VariableTracker]", | |
kwargs: "Dict[str, VariableTracker]", | |
) -> "VariableTracker": | |
from .tensor import SymNodeVariable | |
if name == "format" and istype(self.value, str): | |
return variables.BuiltinVariable(str.format).call_function( | |
tx, [self, *args], kwargs | |
) | |
if any(isinstance(x, SymNodeVariable) for x in args): | |
# Promote to SymNodeVariable for operations involving dynamic shapes. | |
return variables.SymNodeVariable(self.as_proxy(), self.value).call_method( | |
tx, name, args, kwargs | |
) | |
try: | |
const_args = [a.as_python_constant() for a in args] | |
const_kwargs = {k: v.as_python_constant() for k, v in kwargs.items()} | |
except NotImplementedError: | |
return super().call_method(tx, name, args, kwargs) | |
def has_arith_binop(num_ty): | |
return ( | |
isinstance(self.value, num_ty) | |
and hasattr(operator, name) | |
and len(args) == 1 | |
and args[0].is_python_constant() | |
) | |
if isinstance(self.value, str) and name in str.__dict__.keys(): | |
method = getattr(self.value, name) | |
return ConstantVariable.create(method(*const_args, **const_kwargs)) | |
elif has_arith_binop(int) or has_arith_binop(float): | |
op = getattr(operator, name) | |
add_target = const_args[0] | |
if isinstance(add_target, (torch.SymInt, torch.SymFloat)): | |
from .tensor import SymNodeVariable | |
# Addition between a non sym and sym makes a sym | |
# sym_num = tx.output.register_attr_or_module( | |
# add_target, f"sym_shape_{add_target}", source=None | |
# ) | |
proxy = tx.output.create_proxy( | |
"call_function", op, (self.value, add_target), {} | |
) | |
return SymNodeVariable.create(tx, proxy, add_target) | |
return ConstantVariable.create(op(self.value, add_target)) | |
elif name == "__len__" and not (args or kwargs): | |
return ConstantVariable.create(len(self.value)) | |
elif name == "__contains__" and len(args) == 1 and args[0].is_python_constant(): | |
assert not kwargs | |
search = args[0].as_python_constant() | |
result = search in self.value | |
return ConstantVariable.create(result) | |
unimplemented(f"const method call {typestr(self.value)}.{name}") | |
def call_hasattr(self, tx, name: str) -> "VariableTracker": | |
result = hasattr(self.value, name) | |
return variables.ConstantVariable.create(result) | |
class EnumVariable(VariableTracker): | |
def __init__(self, value, **kwargs): | |
super().__init__(**kwargs) | |
self.value = value | |
def as_proxy(self): | |
return self.value | |
def __str__(self): | |
return f"EnumVariable({type(self.value)})" | |
def python_type(self): | |
return type(self.value) | |
def as_python_constant(self): | |
return self.value | |
def const_getattr(self, tx, name): | |
member = getattr(self.value, name) | |
if callable(member): | |
raise NotImplementedError() | |
return member | |