Spaces:
Running
Running
import torch | |
from torch.distributions import constraints | |
from torch.distributions.distribution import Distribution | |
from torch.distributions.utils import ( | |
broadcast_all, | |
lazy_property, | |
logits_to_probs, | |
probs_to_logits, | |
) | |
__all__ = ["Binomial"] | |
def _clamp_by_zero(x): | |
# works like clamp(x, min=0) but has grad at 0 is 0.5 | |
return (x.clamp(min=0) + x - x.clamp(max=0)) / 2 | |
class Binomial(Distribution): | |
r""" | |
Creates a Binomial distribution parameterized by :attr:`total_count` and | |
either :attr:`probs` or :attr:`logits` (but not both). :attr:`total_count` must be | |
broadcastable with :attr:`probs`/:attr:`logits`. | |
Example:: | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> m = Binomial(100, torch.tensor([0 , .2, .8, 1])) | |
>>> x = m.sample() | |
tensor([ 0., 22., 71., 100.]) | |
>>> m = Binomial(torch.tensor([[5.], [10.]]), torch.tensor([0.5, 0.8])) | |
>>> x = m.sample() | |
tensor([[ 4., 5.], | |
[ 7., 6.]]) | |
Args: | |
total_count (int or Tensor): number of Bernoulli trials | |
probs (Tensor): Event probabilities | |
logits (Tensor): Event log-odds | |
""" | |
arg_constraints = { | |
"total_count": constraints.nonnegative_integer, | |
"probs": constraints.unit_interval, | |
"logits": constraints.real, | |
} | |
has_enumerate_support = True | |
def __init__(self, total_count=1, probs=None, logits=None, validate_args=None): | |
if (probs is None) == (logits is None): | |
raise ValueError( | |
"Either `probs` or `logits` must be specified, but not both." | |
) | |
if probs is not None: | |
( | |
self.total_count, | |
self.probs, | |
) = broadcast_all(total_count, probs) | |
self.total_count = self.total_count.type_as(self.probs) | |
else: | |
( | |
self.total_count, | |
self.logits, | |
) = broadcast_all(total_count, logits) | |
self.total_count = self.total_count.type_as(self.logits) | |
self._param = self.probs if probs is not None else self.logits | |
batch_shape = self._param.size() | |
super().__init__(batch_shape, validate_args=validate_args) | |
def expand(self, batch_shape, _instance=None): | |
new = self._get_checked_instance(Binomial, _instance) | |
batch_shape = torch.Size(batch_shape) | |
new.total_count = self.total_count.expand(batch_shape) | |
if "probs" in self.__dict__: | |
new.probs = self.probs.expand(batch_shape) | |
new._param = new.probs | |
if "logits" in self.__dict__: | |
new.logits = self.logits.expand(batch_shape) | |
new._param = new.logits | |
super(Binomial, new).__init__(batch_shape, validate_args=False) | |
new._validate_args = self._validate_args | |
return new | |
def _new(self, *args, **kwargs): | |
return self._param.new(*args, **kwargs) | |
def support(self): | |
return constraints.integer_interval(0, self.total_count) | |
def mean(self): | |
return self.total_count * self.probs | |
def mode(self): | |
return ((self.total_count + 1) * self.probs).floor().clamp(max=self.total_count) | |
def variance(self): | |
return self.total_count * self.probs * (1 - self.probs) | |
def logits(self): | |
return probs_to_logits(self.probs, is_binary=True) | |
def probs(self): | |
return logits_to_probs(self.logits, is_binary=True) | |
def param_shape(self): | |
return self._param.size() | |
def sample(self, sample_shape=torch.Size()): | |
shape = self._extended_shape(sample_shape) | |
with torch.no_grad(): | |
return torch.binomial( | |
self.total_count.expand(shape), self.probs.expand(shape) | |
) | |
def log_prob(self, value): | |
if self._validate_args: | |
self._validate_sample(value) | |
log_factorial_n = torch.lgamma(self.total_count + 1) | |
log_factorial_k = torch.lgamma(value + 1) | |
log_factorial_nmk = torch.lgamma(self.total_count - value + 1) | |
# k * log(p) + (n - k) * log(1 - p) = k * (log(p) - log(1 - p)) + n * log(1 - p) | |
# (case logit < 0) = k * logit - n * log1p(e^logit) | |
# (case logit > 0) = k * logit - n * (log(p) - log(1 - p)) + n * log(p) | |
# = k * logit - n * logit - n * log1p(e^-logit) | |
# (merge two cases) = k * logit - n * max(logit, 0) - n * log1p(e^-|logit|) | |
normalize_term = ( | |
self.total_count * _clamp_by_zero(self.logits) | |
+ self.total_count * torch.log1p(torch.exp(-torch.abs(self.logits))) | |
- log_factorial_n | |
) | |
return ( | |
value * self.logits - log_factorial_k - log_factorial_nmk - normalize_term | |
) | |
def entropy(self): | |
total_count = int(self.total_count.max()) | |
if not self.total_count.min() == total_count: | |
raise NotImplementedError( | |
"Inhomogeneous total count not supported by `entropy`." | |
) | |
log_prob = self.log_prob(self.enumerate_support(False)) | |
return -(torch.exp(log_prob) * log_prob).sum(0) | |
def enumerate_support(self, expand=True): | |
total_count = int(self.total_count.max()) | |
if not self.total_count.min() == total_count: | |
raise NotImplementedError( | |
"Inhomogeneous total count not supported by `enumerate_support`." | |
) | |
values = torch.arange( | |
1 + total_count, dtype=self._param.dtype, device=self._param.device | |
) | |
values = values.view((-1,) + (1,) * len(self._batch_shape)) | |
if expand: | |
values = values.expand((-1,) + self._batch_shape) | |
return values | |