Spaces:
Running
Running
import math | |
from numbers import Number | |
import torch | |
from torch.distributions import constraints | |
from torch.distributions.transformed_distribution import TransformedDistribution | |
from torch.distributions.transforms import AffineTransform, ExpTransform | |
from torch.distributions.uniform import Uniform | |
from torch.distributions.utils import broadcast_all, euler_constant | |
__all__ = ["Gumbel"] | |
class Gumbel(TransformedDistribution): | |
r""" | |
Samples from a Gumbel Distribution. | |
Examples:: | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> m = Gumbel(torch.tensor([1.0]), torch.tensor([2.0])) | |
>>> m.sample() # sample from Gumbel distribution with loc=1, scale=2 | |
tensor([ 1.0124]) | |
Args: | |
loc (float or Tensor): Location parameter of the distribution | |
scale (float or Tensor): Scale parameter of the distribution | |
""" | |
arg_constraints = {"loc": constraints.real, "scale": constraints.positive} | |
support = constraints.real | |
def __init__(self, loc, scale, validate_args=None): | |
self.loc, self.scale = broadcast_all(loc, scale) | |
finfo = torch.finfo(self.loc.dtype) | |
if isinstance(loc, Number) and isinstance(scale, Number): | |
base_dist = Uniform(finfo.tiny, 1 - finfo.eps, validate_args=validate_args) | |
else: | |
base_dist = Uniform( | |
torch.full_like(self.loc, finfo.tiny), | |
torch.full_like(self.loc, 1 - finfo.eps), | |
validate_args=validate_args, | |
) | |
transforms = [ | |
ExpTransform().inv, | |
AffineTransform(loc=0, scale=-torch.ones_like(self.scale)), | |
ExpTransform().inv, | |
AffineTransform(loc=loc, scale=-self.scale), | |
] | |
super().__init__(base_dist, transforms, validate_args=validate_args) | |
def expand(self, batch_shape, _instance=None): | |
new = self._get_checked_instance(Gumbel, _instance) | |
new.loc = self.loc.expand(batch_shape) | |
new.scale = self.scale.expand(batch_shape) | |
return super().expand(batch_shape, _instance=new) | |
# Explicitly defining the log probability function for Gumbel due to precision issues | |
def log_prob(self, value): | |
if self._validate_args: | |
self._validate_sample(value) | |
y = (self.loc - value) / self.scale | |
return (y - y.exp()) - self.scale.log() | |
def mean(self): | |
return self.loc + self.scale * euler_constant | |
def mode(self): | |
return self.loc | |
def stddev(self): | |
return (math.pi / math.sqrt(6)) * self.scale | |
def variance(self): | |
return self.stddev.pow(2) | |
def entropy(self): | |
return self.scale.log() + (1 + euler_constant) | |