Spaces:
Running
Running
import math | |
import torch | |
from torch import inf | |
from torch.distributions import constraints | |
from torch.distributions.cauchy import Cauchy | |
from torch.distributions.transformed_distribution import TransformedDistribution | |
from torch.distributions.transforms import AbsTransform | |
__all__ = ["HalfCauchy"] | |
class HalfCauchy(TransformedDistribution): | |
r""" | |
Creates a half-Cauchy distribution parameterized by `scale` where:: | |
X ~ Cauchy(0, scale) | |
Y = |X| ~ HalfCauchy(scale) | |
Example:: | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> m = HalfCauchy(torch.tensor([1.0])) | |
>>> m.sample() # half-cauchy distributed with scale=1 | |
tensor([ 2.3214]) | |
Args: | |
scale (float or Tensor): scale of the full Cauchy distribution | |
""" | |
arg_constraints = {"scale": constraints.positive} | |
support = constraints.nonnegative | |
has_rsample = True | |
def __init__(self, scale, validate_args=None): | |
base_dist = Cauchy(0, scale, validate_args=False) | |
super().__init__(base_dist, AbsTransform(), validate_args=validate_args) | |
def expand(self, batch_shape, _instance=None): | |
new = self._get_checked_instance(HalfCauchy, _instance) | |
return super().expand(batch_shape, _instance=new) | |
def scale(self): | |
return self.base_dist.scale | |
def mean(self): | |
return torch.full( | |
self._extended_shape(), | |
math.inf, | |
dtype=self.scale.dtype, | |
device=self.scale.device, | |
) | |
def mode(self): | |
return torch.zeros_like(self.scale) | |
def variance(self): | |
return self.base_dist.variance | |
def log_prob(self, value): | |
if self._validate_args: | |
self._validate_sample(value) | |
value = torch.as_tensor( | |
value, dtype=self.base_dist.scale.dtype, device=self.base_dist.scale.device | |
) | |
log_prob = self.base_dist.log_prob(value) + math.log(2) | |
log_prob = torch.where(value >= 0, log_prob, -inf) | |
return log_prob | |
def cdf(self, value): | |
if self._validate_args: | |
self._validate_sample(value) | |
return 2 * self.base_dist.cdf(value) - 1 | |
def icdf(self, prob): | |
return self.base_dist.icdf((prob + 1) / 2) | |
def entropy(self): | |
return self.base_dist.entropy() - math.log(2) | |