Spaces:
Running
Running
import torch | |
from torch.distributions import constraints | |
from torch.distributions.gamma import Gamma | |
from torch.distributions.transformed_distribution import TransformedDistribution | |
from torch.distributions.transforms import PowerTransform | |
__all__ = ["InverseGamma"] | |
class InverseGamma(TransformedDistribution): | |
r""" | |
Creates an inverse gamma distribution parameterized by :attr:`concentration` and :attr:`rate` | |
where:: | |
X ~ Gamma(concentration, rate) | |
Y = 1 / X ~ InverseGamma(concentration, rate) | |
Example:: | |
>>> # xdoctest: +IGNORE_WANT("non-deterinistic") | |
>>> m = InverseGamma(torch.tensor([2.0]), torch.tensor([3.0])) | |
>>> m.sample() | |
tensor([ 1.2953]) | |
Args: | |
concentration (float or Tensor): shape parameter of the distribution | |
(often referred to as alpha) | |
rate (float or Tensor): rate = 1 / scale of the distribution | |
(often referred to as beta) | |
""" | |
arg_constraints = { | |
"concentration": constraints.positive, | |
"rate": constraints.positive, | |
} | |
support = constraints.positive | |
has_rsample = True | |
def __init__(self, concentration, rate, validate_args=None): | |
base_dist = Gamma(concentration, rate, validate_args=validate_args) | |
neg_one = -base_dist.rate.new_ones(()) | |
super().__init__( | |
base_dist, PowerTransform(neg_one), validate_args=validate_args | |
) | |
def expand(self, batch_shape, _instance=None): | |
new = self._get_checked_instance(InverseGamma, _instance) | |
return super().expand(batch_shape, _instance=new) | |
def concentration(self): | |
return self.base_dist.concentration | |
def rate(self): | |
return self.base_dist.rate | |
def mean(self): | |
result = self.rate / (self.concentration - 1) | |
return torch.where(self.concentration > 1, result, torch.inf) | |
def mode(self): | |
return self.rate / (self.concentration + 1) | |
def variance(self): | |
result = self.rate.square() / ( | |
(self.concentration - 1).square() * (self.concentration - 2) | |
) | |
return torch.where(self.concentration > 2, result, torch.inf) | |
def entropy(self): | |
return ( | |
self.concentration | |
+ self.rate.log() | |
+ self.concentration.lgamma() | |
- (1 + self.concentration) * self.concentration.digamma() | |
) | |