Spaces:
Running
Running
from numbers import Number | |
import torch | |
from torch.distributions import constraints | |
from torch.distributions.distribution import Distribution | |
from torch.distributions.transformed_distribution import TransformedDistribution | |
from torch.distributions.transforms import SigmoidTransform | |
from torch.distributions.utils import ( | |
broadcast_all, | |
clamp_probs, | |
lazy_property, | |
logits_to_probs, | |
probs_to_logits, | |
) | |
__all__ = ["LogitRelaxedBernoulli", "RelaxedBernoulli"] | |
class LogitRelaxedBernoulli(Distribution): | |
r""" | |
Creates a LogitRelaxedBernoulli distribution parameterized by :attr:`probs` | |
or :attr:`logits` (but not both), which is the logit of a RelaxedBernoulli | |
distribution. | |
Samples are logits of values in (0, 1). See [1] for more details. | |
Args: | |
temperature (Tensor): relaxation temperature | |
probs (Number, Tensor): the probability of sampling `1` | |
logits (Number, Tensor): the log-odds of sampling `1` | |
[1] The Concrete Distribution: A Continuous Relaxation of Discrete Random | |
Variables (Maddison et al, 2017) | |
[2] Categorical Reparametrization with Gumbel-Softmax | |
(Jang et al, 2017) | |
""" | |
arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real} | |
support = constraints.real | |
def __init__(self, temperature, probs=None, logits=None, validate_args=None): | |
self.temperature = temperature | |
if (probs is None) == (logits is None): | |
raise ValueError( | |
"Either `probs` or `logits` must be specified, but not both." | |
) | |
if probs is not None: | |
is_scalar = isinstance(probs, Number) | |
(self.probs,) = broadcast_all(probs) | |
else: | |
is_scalar = isinstance(logits, Number) | |
(self.logits,) = broadcast_all(logits) | |
self._param = self.probs if probs is not None else self.logits | |
if is_scalar: | |
batch_shape = torch.Size() | |
else: | |
batch_shape = self._param.size() | |
super().__init__(batch_shape, validate_args=validate_args) | |
def expand(self, batch_shape, _instance=None): | |
new = self._get_checked_instance(LogitRelaxedBernoulli, _instance) | |
batch_shape = torch.Size(batch_shape) | |
new.temperature = self.temperature | |
if "probs" in self.__dict__: | |
new.probs = self.probs.expand(batch_shape) | |
new._param = new.probs | |
if "logits" in self.__dict__: | |
new.logits = self.logits.expand(batch_shape) | |
new._param = new.logits | |
super(LogitRelaxedBernoulli, new).__init__(batch_shape, validate_args=False) | |
new._validate_args = self._validate_args | |
return new | |
def _new(self, *args, **kwargs): | |
return self._param.new(*args, **kwargs) | |
def logits(self): | |
return probs_to_logits(self.probs, is_binary=True) | |
def probs(self): | |
return logits_to_probs(self.logits, is_binary=True) | |
def param_shape(self): | |
return self._param.size() | |
def rsample(self, sample_shape=torch.Size()): | |
shape = self._extended_shape(sample_shape) | |
probs = clamp_probs(self.probs.expand(shape)) | |
uniforms = clamp_probs( | |
torch.rand(shape, dtype=probs.dtype, device=probs.device) | |
) | |
return ( | |
uniforms.log() - (-uniforms).log1p() + probs.log() - (-probs).log1p() | |
) / self.temperature | |
def log_prob(self, value): | |
if self._validate_args: | |
self._validate_sample(value) | |
logits, value = broadcast_all(self.logits, value) | |
diff = logits - value.mul(self.temperature) | |
return self.temperature.log() + diff - 2 * diff.exp().log1p() | |
class RelaxedBernoulli(TransformedDistribution): | |
r""" | |
Creates a RelaxedBernoulli distribution, parametrized by | |
:attr:`temperature`, and either :attr:`probs` or :attr:`logits` | |
(but not both). This is a relaxed version of the `Bernoulli` distribution, | |
so the values are in (0, 1), and has reparametrizable samples. | |
Example:: | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> m = RelaxedBernoulli(torch.tensor([2.2]), | |
... torch.tensor([0.1, 0.2, 0.3, 0.99])) | |
>>> m.sample() | |
tensor([ 0.2951, 0.3442, 0.8918, 0.9021]) | |
Args: | |
temperature (Tensor): relaxation temperature | |
probs (Number, Tensor): the probability of sampling `1` | |
logits (Number, Tensor): the log-odds of sampling `1` | |
""" | |
arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real} | |
support = constraints.unit_interval | |
has_rsample = True | |
def __init__(self, temperature, probs=None, logits=None, validate_args=None): | |
base_dist = LogitRelaxedBernoulli(temperature, probs, logits) | |
super().__init__(base_dist, SigmoidTransform(), validate_args=validate_args) | |
def expand(self, batch_shape, _instance=None): | |
new = self._get_checked_instance(RelaxedBernoulli, _instance) | |
return super().expand(batch_shape, _instance=new) | |
def temperature(self): | |
return self.base_dist.temperature | |
def logits(self): | |
return self.base_dist.logits | |
def probs(self): | |
return self.base_dist.probs | |