Kano001's picture
Upload 5252 files
c61ccee verified
raw
history blame
5.52 kB
from numbers import Number
import torch
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.transformed_distribution import TransformedDistribution
from torch.distributions.transforms import SigmoidTransform
from torch.distributions.utils import (
broadcast_all,
clamp_probs,
lazy_property,
logits_to_probs,
probs_to_logits,
)
__all__ = ["LogitRelaxedBernoulli", "RelaxedBernoulli"]
class LogitRelaxedBernoulli(Distribution):
r"""
Creates a LogitRelaxedBernoulli distribution parameterized by :attr:`probs`
or :attr:`logits` (but not both), which is the logit of a RelaxedBernoulli
distribution.
Samples are logits of values in (0, 1). See [1] for more details.
Args:
temperature (Tensor): relaxation temperature
probs (Number, Tensor): the probability of sampling `1`
logits (Number, Tensor): the log-odds of sampling `1`
[1] The Concrete Distribution: A Continuous Relaxation of Discrete Random
Variables (Maddison et al, 2017)
[2] Categorical Reparametrization with Gumbel-Softmax
(Jang et al, 2017)
"""
arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real}
support = constraints.real
def __init__(self, temperature, probs=None, logits=None, validate_args=None):
self.temperature = temperature
if (probs is None) == (logits is None):
raise ValueError(
"Either `probs` or `logits` must be specified, but not both."
)
if probs is not None:
is_scalar = isinstance(probs, Number)
(self.probs,) = broadcast_all(probs)
else:
is_scalar = isinstance(logits, Number)
(self.logits,) = broadcast_all(logits)
self._param = self.probs if probs is not None else self.logits
if is_scalar:
batch_shape = torch.Size()
else:
batch_shape = self._param.size()
super().__init__(batch_shape, validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(LogitRelaxedBernoulli, _instance)
batch_shape = torch.Size(batch_shape)
new.temperature = self.temperature
if "probs" in self.__dict__:
new.probs = self.probs.expand(batch_shape)
new._param = new.probs
if "logits" in self.__dict__:
new.logits = self.logits.expand(batch_shape)
new._param = new.logits
super(LogitRelaxedBernoulli, new).__init__(batch_shape, validate_args=False)
new._validate_args = self._validate_args
return new
def _new(self, *args, **kwargs):
return self._param.new(*args, **kwargs)
@lazy_property
def logits(self):
return probs_to_logits(self.probs, is_binary=True)
@lazy_property
def probs(self):
return logits_to_probs(self.logits, is_binary=True)
@property
def param_shape(self):
return self._param.size()
def rsample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
probs = clamp_probs(self.probs.expand(shape))
uniforms = clamp_probs(
torch.rand(shape, dtype=probs.dtype, device=probs.device)
)
return (
uniforms.log() - (-uniforms).log1p() + probs.log() - (-probs).log1p()
) / self.temperature
def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
logits, value = broadcast_all(self.logits, value)
diff = logits - value.mul(self.temperature)
return self.temperature.log() + diff - 2 * diff.exp().log1p()
class RelaxedBernoulli(TransformedDistribution):
r"""
Creates a RelaxedBernoulli distribution, parametrized by
:attr:`temperature`, and either :attr:`probs` or :attr:`logits`
(but not both). This is a relaxed version of the `Bernoulli` distribution,
so the values are in (0, 1), and has reparametrizable samples.
Example::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = RelaxedBernoulli(torch.tensor([2.2]),
... torch.tensor([0.1, 0.2, 0.3, 0.99]))
>>> m.sample()
tensor([ 0.2951, 0.3442, 0.8918, 0.9021])
Args:
temperature (Tensor): relaxation temperature
probs (Number, Tensor): the probability of sampling `1`
logits (Number, Tensor): the log-odds of sampling `1`
"""
arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real}
support = constraints.unit_interval
has_rsample = True
def __init__(self, temperature, probs=None, logits=None, validate_args=None):
base_dist = LogitRelaxedBernoulli(temperature, probs, logits)
super().__init__(base_dist, SigmoidTransform(), validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(RelaxedBernoulli, _instance)
return super().expand(batch_shape, _instance=new)
@property
def temperature(self):
return self.base_dist.temperature
@property
def logits(self):
return self.base_dist.logits
@property
def probs(self):
return self.base_dist.probs