Spaces:
Running
Running
from functools import update_wrapper | |
from numbers import Number | |
from typing import Any, Dict | |
import torch | |
import torch.nn.functional as F | |
from torch.overrides import is_tensor_like | |
euler_constant = 0.57721566490153286060 # Euler Mascheroni Constant | |
__all__ = [ | |
"broadcast_all", | |
"logits_to_probs", | |
"clamp_probs", | |
"probs_to_logits", | |
"lazy_property", | |
"tril_matrix_to_vec", | |
"vec_to_tril_matrix", | |
] | |
def broadcast_all(*values): | |
r""" | |
Given a list of values (possibly containing numbers), returns a list where each | |
value is broadcasted based on the following rules: | |
- `torch.*Tensor` instances are broadcasted as per :ref:`_broadcasting-semantics`. | |
- numbers.Number instances (scalars) are upcast to tensors having | |
the same size and type as the first tensor passed to `values`. If all the | |
values are scalars, then they are upcasted to scalar Tensors. | |
Args: | |
values (list of `numbers.Number`, `torch.*Tensor` or objects implementing __torch_function__) | |
Raises: | |
ValueError: if any of the values is not a `numbers.Number` instance, | |
a `torch.*Tensor` instance, or an instance implementing __torch_function__ | |
""" | |
if not all(is_tensor_like(v) or isinstance(v, Number) for v in values): | |
raise ValueError( | |
"Input arguments must all be instances of numbers.Number, " | |
"torch.Tensor or objects implementing __torch_function__." | |
) | |
if not all(is_tensor_like(v) for v in values): | |
options: Dict[str, Any] = dict(dtype=torch.get_default_dtype()) | |
for value in values: | |
if isinstance(value, torch.Tensor): | |
options = dict(dtype=value.dtype, device=value.device) | |
break | |
new_values = [ | |
v if is_tensor_like(v) else torch.tensor(v, **options) for v in values | |
] | |
return torch.broadcast_tensors(*new_values) | |
return torch.broadcast_tensors(*values) | |
def _standard_normal(shape, dtype, device): | |
if torch._C._get_tracing_state(): | |
# [JIT WORKAROUND] lack of support for .normal_() | |
return torch.normal( | |
torch.zeros(shape, dtype=dtype, device=device), | |
torch.ones(shape, dtype=dtype, device=device), | |
) | |
return torch.empty(shape, dtype=dtype, device=device).normal_() | |
def _sum_rightmost(value, dim): | |
r""" | |
Sum out ``dim`` many rightmost dimensions of a given tensor. | |
Args: | |
value (Tensor): A tensor of ``.dim()`` at least ``dim``. | |
dim (int): The number of rightmost dims to sum out. | |
""" | |
if dim == 0: | |
return value | |
required_shape = value.shape[:-dim] + (-1,) | |
return value.reshape(required_shape).sum(-1) | |
def logits_to_probs(logits, is_binary=False): | |
r""" | |
Converts a tensor of logits into probabilities. Note that for the | |
binary case, each value denotes log odds, whereas for the | |
multi-dimensional case, the values along the last dimension denote | |
the log probabilities (possibly unnormalized) of the events. | |
""" | |
if is_binary: | |
return torch.sigmoid(logits) | |
return F.softmax(logits, dim=-1) | |
def clamp_probs(probs): | |
eps = torch.finfo(probs.dtype).eps | |
return probs.clamp(min=eps, max=1 - eps) | |
def probs_to_logits(probs, is_binary=False): | |
r""" | |
Converts a tensor of probabilities into logits. For the binary case, | |
this denotes the probability of occurrence of the event indexed by `1`. | |
For the multi-dimensional case, the values along the last dimension | |
denote the probabilities of occurrence of each of the events. | |
""" | |
ps_clamped = clamp_probs(probs) | |
if is_binary: | |
return torch.log(ps_clamped) - torch.log1p(-ps_clamped) | |
return torch.log(ps_clamped) | |
class lazy_property: | |
r""" | |
Used as a decorator for lazy loading of class attributes. This uses a | |
non-data descriptor that calls the wrapped method to compute the property on | |
first call; thereafter replacing the wrapped method into an instance | |
attribute. | |
""" | |
def __init__(self, wrapped): | |
self.wrapped = wrapped | |
update_wrapper(self, wrapped) | |
def __get__(self, instance, obj_type=None): | |
if instance is None: | |
return _lazy_property_and_property(self.wrapped) | |
with torch.enable_grad(): | |
value = self.wrapped(instance) | |
setattr(instance, self.wrapped.__name__, value) | |
return value | |
class _lazy_property_and_property(lazy_property, property): | |
"""We want lazy properties to look like multiple things. | |
* property when Sphinx autodoc looks | |
* lazy_property when Distribution validate_args looks | |
""" | |
def __init__(self, wrapped): | |
property.__init__(self, wrapped) | |
def tril_matrix_to_vec(mat: torch.Tensor, diag: int = 0) -> torch.Tensor: | |
r""" | |
Convert a `D x D` matrix or a batch of matrices into a (batched) vector | |
which comprises of lower triangular elements from the matrix in row order. | |
""" | |
n = mat.shape[-1] | |
if not torch._C._get_tracing_state() and (diag < -n or diag >= n): | |
raise ValueError(f"diag ({diag}) provided is outside [{-n}, {n-1}].") | |
arange = torch.arange(n, device=mat.device) | |
tril_mask = arange < arange.view(-1, 1) + (diag + 1) | |
vec = mat[..., tril_mask] | |
return vec | |
def vec_to_tril_matrix(vec: torch.Tensor, diag: int = 0) -> torch.Tensor: | |
r""" | |
Convert a vector or a batch of vectors into a batched `D x D` | |
lower triangular matrix containing elements from the vector in row order. | |
""" | |
# +ve root of D**2 + (1+2*diag)*D - |diag| * (diag+1) - 2*vec.shape[-1] = 0 | |
n = ( | |
-(1 + 2 * diag) | |
+ ((1 + 2 * diag) ** 2 + 8 * vec.shape[-1] + 4 * abs(diag) * (diag + 1)) ** 0.5 | |
) / 2 | |
eps = torch.finfo(vec.dtype).eps | |
if not torch._C._get_tracing_state() and (round(n) - n > eps): | |
raise ValueError( | |
f"The size of last dimension is {vec.shape[-1]} which cannot be expressed as " | |
+ "the lower triangular part of a square D x D matrix." | |
) | |
n = round(n.item()) if isinstance(n, torch.Tensor) else round(n) | |
mat = vec.new_zeros(vec.shape[:-1] + torch.Size((n, n))) | |
arange = torch.arange(n, device=vec.device) | |
tril_mask = arange < arange.view(-1, 1) + (diag + 1) | |
mat[..., tril_mask] = vec | |
return mat | |