Spaces:
Running
Running
import torch | |
from torch.distributions import constraints | |
from torch.distributions.exponential import Exponential | |
from torch.distributions.gumbel import euler_constant | |
from torch.distributions.transformed_distribution import TransformedDistribution | |
from torch.distributions.transforms import AffineTransform, PowerTransform | |
from torch.distributions.utils import broadcast_all | |
__all__ = ["Weibull"] | |
class Weibull(TransformedDistribution): | |
r""" | |
Samples from a two-parameter Weibull distribution. | |
Example: | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> m = Weibull(torch.tensor([1.0]), torch.tensor([1.0])) | |
>>> m.sample() # sample from a Weibull distribution with scale=1, concentration=1 | |
tensor([ 0.4784]) | |
Args: | |
scale (float or Tensor): Scale parameter of distribution (lambda). | |
concentration (float or Tensor): Concentration parameter of distribution (k/shape). | |
""" | |
arg_constraints = { | |
"scale": constraints.positive, | |
"concentration": constraints.positive, | |
} | |
support = constraints.positive | |
def __init__(self, scale, concentration, validate_args=None): | |
self.scale, self.concentration = broadcast_all(scale, concentration) | |
self.concentration_reciprocal = self.concentration.reciprocal() | |
base_dist = Exponential( | |
torch.ones_like(self.scale), validate_args=validate_args | |
) | |
transforms = [ | |
PowerTransform(exponent=self.concentration_reciprocal), | |
AffineTransform(loc=0, scale=self.scale), | |
] | |
super().__init__(base_dist, transforms, validate_args=validate_args) | |
def expand(self, batch_shape, _instance=None): | |
new = self._get_checked_instance(Weibull, _instance) | |
new.scale = self.scale.expand(batch_shape) | |
new.concentration = self.concentration.expand(batch_shape) | |
new.concentration_reciprocal = new.concentration.reciprocal() | |
base_dist = self.base_dist.expand(batch_shape) | |
transforms = [ | |
PowerTransform(exponent=new.concentration_reciprocal), | |
AffineTransform(loc=0, scale=new.scale), | |
] | |
super(Weibull, new).__init__(base_dist, transforms, validate_args=False) | |
new._validate_args = self._validate_args | |
return new | |
def mean(self): | |
return self.scale * torch.exp(torch.lgamma(1 + self.concentration_reciprocal)) | |
def mode(self): | |
return ( | |
self.scale | |
* ((self.concentration - 1) / self.concentration) | |
** self.concentration.reciprocal() | |
) | |
def variance(self): | |
return self.scale.pow(2) * ( | |
torch.exp(torch.lgamma(1 + 2 * self.concentration_reciprocal)) | |
- torch.exp(2 * torch.lgamma(1 + self.concentration_reciprocal)) | |
) | |
def entropy(self): | |
return ( | |
euler_constant * (1 - self.concentration_reciprocal) | |
+ torch.log(self.scale * self.concentration_reciprocal) | |
+ 1 | |
) | |