Spaces:
Running
Running
from collections import namedtuple | |
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Tuple, Type | |
import torch.return_types | |
from torch.utils._pytree import PyTree, TreeSpec | |
FlattenFuncSpec = Callable[[PyTree, TreeSpec], List] | |
FlattenFuncExactMatchSpec = Callable[[PyTree, TreeSpec], bool] | |
SUPPORTED_NODES: Dict[Type[Any], FlattenFuncSpec] = {} | |
SUPPORTED_NODES_EXACT_MATCH: Dict[Type[Any], Optional[FlattenFuncExactMatchSpec]] = {} | |
def register_pytree_flatten_spec( | |
cls: Type[Any], | |
flatten_fn_spec: FlattenFuncSpec, | |
flatten_fn_exact_match_spec: Optional[FlattenFuncExactMatchSpec] = None, | |
) -> None: | |
SUPPORTED_NODES[cls] = flatten_fn_spec | |
SUPPORTED_NODES_EXACT_MATCH[cls] = flatten_fn_exact_match_spec | |
def tree_flatten_spec( | |
pytree: PyTree, | |
spec: TreeSpec, | |
exact_structural_match=False, | |
) -> List[Any]: | |
if spec.is_leaf(): | |
return [pytree] | |
if spec.type not in SUPPORTED_NODES: | |
raise RuntimeError( | |
f"{type(pytree)} does not have a flatten_fn_spec associated with it. Please register one with " | |
"torch.fx._pytree.register_pytree_flatten_spec. If you have serialized your model, make " | |
"sure that any custom pytrees have been registered before loading it.", | |
) | |
flatten_fn_spec = SUPPORTED_NODES[spec.type] | |
child_pytrees = flatten_fn_spec(pytree, spec) | |
if exact_structural_match: | |
flatten_fn_exact_match_spec = SUPPORTED_NODES_EXACT_MATCH[spec.type] | |
if flatten_fn_exact_match_spec and not flatten_fn_exact_match_spec( | |
pytree, | |
spec, | |
): | |
raise RuntimeError(f"Cannot flatten pytree {pytree}, given spec: {spec}") | |
result = [] | |
for child, child_spec in zip(child_pytrees, spec.children_specs): | |
flat = tree_flatten_spec(child, child_spec, exact_structural_match) | |
result += flat | |
return result | |
def _dict_flatten_spec(d: Dict[Any, Any], spec: TreeSpec) -> List[Any]: | |
return [d[k] for k in spec.context] | |
def _list_flatten_spec(d: List[Any], spec: TreeSpec) -> List[Any]: | |
return [d[i] for i in range(spec.num_children)] | |
def _tuple_flatten_spec(d: Tuple[Any], spec: TreeSpec) -> List[Any]: | |
return [d[i] for i in range(spec.num_children)] | |
def _namedtuple_flatten_spec(d: NamedTuple, spec: TreeSpec) -> List[Any]: | |
return [d[i] for i in range(spec.num_children)] | |
def _dict_flatten_spec_exact_match(d: Dict[Any, Any], spec: TreeSpec) -> bool: | |
return len(d) == spec.num_children | |
def _list_flatten_spec_exact_match(d: List[Any], spec: TreeSpec) -> bool: | |
return len(d) == spec.num_children | |
def _tuple_flatten_spec_exact_match(d: Tuple[Any], spec: TreeSpec) -> bool: | |
return len(d) == spec.num_children | |
def _namedtuple_flatten_spec_exact_match(d: NamedTuple, spec: TreeSpec) -> bool: | |
return len(d) == spec.num_children | |
register_pytree_flatten_spec(dict, _dict_flatten_spec, _dict_flatten_spec_exact_match) | |
register_pytree_flatten_spec(list, _list_flatten_spec, _list_flatten_spec_exact_match) | |
register_pytree_flatten_spec( | |
tuple, | |
_tuple_flatten_spec, | |
_tuple_flatten_spec_exact_match, | |
) | |
for return_type in torch.return_types.all_return_types: | |
register_pytree_flatten_spec( | |
return_type, | |
_tuple_flatten_spec, | |
_tuple_flatten_spec_exact_match, | |
) | |
register_pytree_flatten_spec( | |
namedtuple, # type: ignore[arg-type] | |
_namedtuple_flatten_spec, | |
_namedtuple_flatten_spec_exact_match, | |
) | |