Kano001's picture
Upload 5252 files
c61ccee verified
raw
history blame
9.82 kB
"""This file exports ONNX ops for opset 14.
Note [ONNX operators that are added/updated in opset 14]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
New operators:
HardSwish, Trilu
Updated operators:
Reshape
Add, Sub, Mul, Div
GRU, LSTM, RNN
BatchNorm, Cumsum, Relu
"""
# EDITING THIS FILE? READ THIS FIRST!
# see Note [Edit Symbolic Files] in README.md
from __future__ import annotations
import functools
from typing import Optional
import torch
from torch.onnx import _constants, _type_utils, symbolic_helper
from torch.onnx._globals import GLOBALS
from torch.onnx._internal import _beartype, jit_utils, registration
__all__ = [
"hardswish",
"tril",
"triu",
"reshape",
"batch_norm",
"quantized_hardswish",
"scaled_dot_product_attention",
]
_onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=14)
@_onnx_symbolic("aten::hardswish")
@symbolic_helper.parse_args("v")
@_beartype.beartype
def hardswish(g: jit_utils.GraphContext, self):
return g.op("HardSwish", self)
@_onnx_symbolic("aten::tril")
@_beartype.beartype
def tril(g: jit_utils.GraphContext, self, diagonal, out=None):
return g.op("Trilu", self, diagonal, upper_i=0)
@_onnx_symbolic("aten::triu")
@_beartype.beartype
def triu(g: jit_utils.GraphContext, self, diagonal, out=None):
return g.op("Trilu", self, diagonal, upper_i=1)
@_onnx_symbolic("aten::reshape")
@symbolic_helper.quantized_args(True)
@symbolic_helper.parse_args("v", "v")
@_beartype.beartype
def reshape(g: jit_utils.GraphContext, self, shape):
# NOTE: Due to bug in ORT https://github.com/microsoft/onnxruntime/issues/10664
# Reshape export cannot utilize the new allowzero attribute introduced in opset 14.
return symbolic_helper._reshape_helper(g, self, shape, allowzero=0)
@_onnx_symbolic("aten::batch_norm")
@symbolic_helper.parse_args("v", "v", "v", "v", "v", "i", "f", "f", "i")
@_beartype.beartype
def batch_norm(
g: jit_utils.GraphContext,
input,
weight,
bias,
running_mean,
running_var,
training,
momentum,
eps,
cudnn_enabled,
):
if (
torch.is_autocast_enabled()
and not symbolic_helper.args_have_same_dtype(
[input, weight, bias, running_mean, running_var]
)
and GLOBALS.export_onnx_opset_version < 15
):
return symbolic_helper._onnx_opset_unsupported_detailed(
"BatchNormalization",
14,
15,
"All input tensors must have the same `dtype`."
" Turn off Autocast or export using opset version 15.",
input,
)
symbolic_helper.check_training_mode(training, "batch_norm")
weight, bias, running_mean, running_var = symbolic_helper._batchnorm_helper(
g, input, weight, bias, running_mean, running_var
)
out = g.op(
"BatchNormalization",
input,
weight,
bias,
running_mean,
running_var,
epsilon_f=eps,
momentum_f=1 - momentum,
training_mode_i=0 if not training else 1,
outputs=1 if not training else 3,
)
if not training:
return out
else:
res, new_running_mean, new_running_var = out
new_running_mean.setType(running_mean.type())
new_running_var.setType(running_var.type())
return res
@_onnx_symbolic("quantized::hardswish")
@_beartype.beartype
def quantized_hardswish(g: jit_utils.GraphContext, x, op_scale, op_zero_point):
x, _, _, _ = symbolic_helper.dequantize_helper(g, x)
output = hardswish(g, x)
return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
# Ported from
# https://github.com/microsoft/onnxscript/blob/6b1b81700b4523f31d8c6d3321e5d8ef5d42b764/onnxscript/function_libs/torch_aten/ops/nn.py#L1504
# aten_scaled_dot_product_attention
# NOTE: Need op.Trilu
@_onnx_symbolic("aten::scaled_dot_product_attention")
@symbolic_helper.parse_args("v", "v", "v", "v", "f", "b", "v")
@_beartype.beartype
def scaled_dot_product_attention(
g: jit_utils.GraphContext,
query: torch._C.Value,
key: torch._C.Value,
value: torch._C.Value,
attn_mask: Optional[torch._C.Value] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[torch._C.Value] = None,
):
assert (not is_causal) or (
is_causal and symbolic_helper._is_none(attn_mask)
), "is_causal and attn_mask cannot be set at the same time"
scale = symbolic_helper._maybe_get_const(scale, "f")
if symbolic_helper._is_none(scale):
scale = _attention_scale(g, query)
if is_causal:
attn_mask = _causal_attention_mask(g, query, key)
# Swap the last two axes of key
# NOTE: onnx-script has different logic here, because the attribute perms in
# transpose needs list of ints
key_shape_builtin = symbolic_helper._get_tensor_rank(key)
key_transposed_axes = list(range(key_shape_builtin))
key_transposed_axes[-1], key_transposed_axes[-2] = (
key_transposed_axes[-2],
key_transposed_axes[-1],
)
key_transposed = g.op("Transpose", key, perm_i=key_transposed_axes)
# https://github.com/pytorch/pytorch/blob/12da0c70378b5be9135c6fda62a9863bce4a4818/aten/src/ATen/native/transformers/attention.cpp#L653
# Scale q, k before matmul for stability see https://tinyurl.com/sudb9s96 for math
query_scaled = g.op("Mul", query, g.op("Sqrt", scale))
key_transposed_scaled = g.op("Mul", key_transposed, g.op("Sqrt", scale))
mul_qk = g.op("MatMul", query_scaled, key_transposed_scaled)
if symbolic_helper._is_none(attn_mask):
mul_qk_add = mul_qk
elif (
_type_utils.JitScalarType.from_value(attn_mask)
== _type_utils.JitScalarType.BOOL
):
# Turn the Boolean mask to float: attn_mask.masked_fill(not attn_mask, -float('inf'))
const_zero = g.op("Constant", value_t=torch.tensor([0.0]))
const_neg_inf = g.op("Constant", value_t=torch.tensor([-float("inf")]))
attn_mask = g.op("Where", attn_mask, const_zero, const_neg_inf)
mul_qk_add = g.op("Add", mul_qk, attn_mask)
elif _type_utils.JitScalarType.from_value(attn_mask) in (
_type_utils.JitScalarType.FLOAT,
_type_utils.JitScalarType.HALF,
_type_utils.JitScalarType.BFLOAT16,
):
mul_qk_add = g.op("Add", mul_qk, attn_mask)
else:
raise ValueError(
f"Unsupported type for attn_mask: {_type_utils.JitScalarType.from_value(attn_mask)}"
)
attn_weight = g.op("Softmax", mul_qk_add, axis_i=-1)
if dropout_p != 0:
attn_weight = g.op(
"Dropout",
attn_weight,
g.op("Constant", value_t=torch.tensor(dropout_p, dtype=torch.float)),
)
return g.op("MatMul", attn_weight, value)
@_beartype.beartype
def _attention_scale(
g: jit_utils.GraphContext, query: torch._C.Value
) -> torch._C.Value:
"""Calculate the scale factor for the attention result.
Args:
query: Tensor of shape [..., L, E]
Returns:
Scalar scale factor := 1 / math.sqrt(query.size(-1))
"""
query_shape = g.op("Shape", query)
query_shape_last = g.op(
"Slice",
query_shape,
g.op("Constant", value_t=torch.tensor([-1], dtype=torch.int64)),
g.op(
"Constant", value_t=torch.tensor([_constants.INT64_MAX], dtype=torch.int64)
),
)
embedding_size = g.op(
"Cast",
query_shape_last,
to_i=_type_utils.JitScalarType.from_value(query).onnx_type(),
)
const_one = g.op("Constant", value_t=torch.tensor([1.0], dtype=torch.float))
scale = g.op("Div", const_one, g.op("Sqrt", embedding_size))
# Add a Cast to convert the scale back to original type
scale = g.op(
"Cast",
scale,
to_i=_type_utils.JitScalarType.from_value(query).onnx_type(),
)
return scale
@_beartype.beartype
def _causal_attention_mask(
g: jit_utils.GraphContext, query: torch._C.Value, key: torch._C.Value
) -> torch._C.Value:
"""Create a causal mask for the given query and key tensors.
Equivalent to::
mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
attn_mask = torch.zeros(L, S, dtype=torch.float)
attn_mask = attn_mask.masked_fill(not mask, -float('inf'))
Args:
query: Tensor of shape [..., L, E]
key: Tensor of shape [..., S, E]
Returns:
Tensor of shape [L, S]
"""
query_shape = g.op("Shape", query)
key_shape = g.op("Shape", key)
last_idx = g.op("Constant", value_t=torch.tensor([-1], dtype=torch.int64))
second_last_idx = g.op("Constant", value_t=torch.tensor([-2], dtype=torch.int64))
target_length = g.op("Slice", query_shape, second_last_idx, last_idx)
source_length = g.op("Slice", key_shape, second_last_idx, last_idx)
# attn_mask = torch.ones(L, S) := {
size = g.op("Concat", target_length, source_length, axis_i=0)
const_one = g.op("Constant", value_t=torch.tensor([1.0]))
attn_mask = g.op("Expand", const_one, size)
# }
attn_mask = g.op("Trilu", attn_mask, upper_i=0)
# The causal mask has 0s in the lower triangle and -inf in the upper triangle.
const_zero = g.op("Constant", value_t=torch.tensor([0.0]))
const_neg_inf = g.op("Constant", value_t=torch.tensor([-float("inf")]))
attn_mask = g.op(
"Where", g.op("Equal", attn_mask, const_zero), const_neg_inf, const_zero
)
return attn_mask