Spaces:
Running
Running
import torch | |
from torch import Tensor | |
from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _dispatch_sqrt, | |
_stack_if_compiling, _get_scalar_dtype, _capturable_doc, _differentiable_doc, | |
_foreach_doc, _fused_doc, _maximize_doc, _default_to_fused_or_foreach, | |
ParamsT, _view_as_real) | |
from typing import List, Optional, Tuple, Union | |
from torch.utils._foreach_utils import _get_fused_kernels_supported_devices | |
__all__ = ["AdamW", "adamw"] | |
class AdamW(Optimizer): | |
def __init__( | |
self, | |
params: ParamsT, | |
lr: Union[float, Tensor] = 1e-3, | |
betas: Tuple[float, float] = (0.9, 0.999), | |
eps: float = 1e-8, | |
weight_decay: float = 1e-2, | |
amsgrad: bool = False, | |
*, | |
maximize: bool = False, | |
foreach: Optional[bool] = None, | |
capturable: bool = False, | |
differentiable: bool = False, | |
fused: Optional[bool] = None, | |
): | |
if not 0.0 <= lr: | |
raise ValueError(f"Invalid learning rate: {lr}") | |
if isinstance(lr, Tensor) and foreach and not capturable: | |
raise ValueError("lr as a Tensor is not supported for capturable=False and foreach=True") | |
if not 0.0 <= eps: | |
raise ValueError(f"Invalid epsilon value: {eps}") | |
if not 0.0 <= betas[0] < 1.0: | |
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") | |
if not 0.0 <= betas[1] < 1.0: | |
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") | |
if not 0.0 <= weight_decay: | |
raise ValueError(f"Invalid weight_decay value: {weight_decay}") | |
defaults = dict( | |
lr=lr, | |
betas=betas, | |
eps=eps, | |
weight_decay=weight_decay, | |
amsgrad=amsgrad, | |
foreach=foreach, | |
maximize=maximize, | |
capturable=capturable, | |
differentiable=differentiable, | |
fused=fused, | |
) | |
super().__init__(params, defaults) | |
if fused: | |
if differentiable: | |
raise RuntimeError("`fused` does not support `differentiable`") | |
self._step_supports_amp_scaling = True | |
# TODO(crcrpar): [low prec params & their higher prec copy] | |
# Suppor AMP with FP16/BF16 model params which would need | |
# higher prec copy of params to do update math in higher prec to | |
# alleviate the loss of information. | |
fused_supported_devices = _get_fused_kernels_supported_devices() | |
if not all( | |
p.device.type in fused_supported_devices and | |
torch.is_floating_point(p) | |
for pg in self.param_groups for p in pg['params'] | |
): | |
raise RuntimeError("`fused=True` requires all the params to be floating point Tensors of " | |
f"supported devices: {fused_supported_devices}.") | |
if foreach: | |
raise RuntimeError("`fused` and `foreach` cannot be `True` together.") | |
def __setstate__(self, state): | |
super().__setstate__(state) | |
for group in self.param_groups: | |
group.setdefault("amsgrad", False) | |
group.setdefault("maximize", False) | |
group.setdefault("foreach", None) | |
group.setdefault("capturable", False) | |
group.setdefault("differentiable", False) | |
fused = group.setdefault("fused", None) | |
for p in group["params"]: | |
p_state = self.state.get(p, []) | |
if len(p_state) != 0 and not torch.is_tensor(p_state['step']): | |
step_val = float(p_state["step"]) | |
p_state["step"] = (torch.tensor(step_val, dtype=_get_scalar_dtype(is_fused=fused), device=p.device) | |
if group['capturable'] or group['fused'] | |
else torch.tensor(step_val, dtype=_get_scalar_dtype())) | |
def _init_group( | |
self, | |
group, | |
params_with_grad, | |
grads, | |
amsgrad, | |
exp_avgs, | |
exp_avg_sqs, | |
max_exp_avg_sqs, | |
state_steps, | |
): | |
has_complex = False | |
for p in group["params"]: | |
if p.grad is None: | |
continue | |
has_complex |= torch.is_complex(p) | |
params_with_grad.append(p) | |
if p.grad.is_sparse: | |
raise RuntimeError("AdamW does not support sparse gradients") | |
grads.append(p.grad) | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
# note(crcrpar): Deliberately host `step` on CPU if both capturable and fused are off. | |
# This is because kernel launches are costly on CUDA and XLA. | |
state["step"] = ( | |
torch.zeros((), dtype=_get_scalar_dtype(is_fused=group["fused"]), device=p.device) | |
if group["capturable"] or group["fused"] | |
else torch.tensor(0.0, dtype=_get_scalar_dtype()) | |
) | |
# Exponential moving average of gradient values | |
state["exp_avg"] = torch.zeros_like( | |
p, memory_format=torch.preserve_format | |
) | |
# Exponential moving average of squared gradient values | |
state["exp_avg_sq"] = torch.zeros_like( | |
p, memory_format=torch.preserve_format | |
) | |
if amsgrad: | |
# Maintains max of all exp. moving avg. of sq. grad. values | |
state["max_exp_avg_sq"] = torch.zeros_like( | |
p, memory_format=torch.preserve_format | |
) | |
exp_avgs.append(state["exp_avg"]) | |
exp_avg_sqs.append(state["exp_avg_sq"]) | |
if group['amsgrad']: | |
max_exp_avg_sqs.append(state["max_exp_avg_sq"]) | |
if group['differentiable'] and state['step'].requires_grad: | |
raise RuntimeError('`requires_grad` is not supported for `step` in differentiable mode') | |
# Foreach without capturable does not support a tensor lr | |
if group['foreach'] and isinstance(group['lr'], Tensor) and not group['capturable']: | |
raise RuntimeError('lr as a Tensor is not supported for capturable=False and foreach=True') | |
state_steps.append(state["step"]) | |
return has_complex | |
def step(self, closure=None): | |
"""Perform a single optimization step. | |
Args: | |
closure (Callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
self._cuda_graph_capture_health_check() | |
loss = None | |
if closure is not None: | |
with torch.enable_grad(): | |
loss = closure() | |
for group in self.param_groups: | |
params_with_grad = [] | |
grads = [] | |
exp_avgs = [] | |
exp_avg_sqs = [] | |
max_exp_avg_sqs = [] | |
state_steps = [] | |
amsgrad = group["amsgrad"] | |
beta1, beta2 = group["betas"] | |
has_complex = self._init_group( | |
group, | |
params_with_grad, | |
grads, | |
amsgrad, | |
exp_avgs, | |
exp_avg_sqs, | |
max_exp_avg_sqs, | |
state_steps, | |
) | |
adamw( | |
params_with_grad, | |
grads, | |
exp_avgs, | |
exp_avg_sqs, | |
max_exp_avg_sqs, | |
state_steps, | |
amsgrad=amsgrad, | |
beta1=beta1, | |
beta2=beta2, | |
lr=group["lr"], | |
weight_decay=group["weight_decay"], | |
eps=group["eps"], | |
maximize=group["maximize"], | |
foreach=group["foreach"], | |
capturable=group["capturable"], | |
differentiable=group["differentiable"], | |
fused=group["fused"], | |
grad_scale=getattr(self, "grad_scale", None), | |
found_inf=getattr(self, "found_inf", None), | |
has_complex=has_complex, | |
) | |
return loss | |
AdamW.__doc__ = r"""Implements AdamW algorithm. | |
.. math:: | |
\begin{aligned} | |
&\rule{110mm}{0.4pt} \\ | |
&\textbf{input} : \gamma \text{(lr)}, \: \beta_1, \beta_2 | |
\text{(betas)}, \: \theta_0 \text{(params)}, \: f(\theta) \text{(objective)}, | |
\: \epsilon \text{ (epsilon)} \\ | |
&\hspace{13mm} \lambda \text{(weight decay)}, \: \textit{amsgrad}, | |
\: \textit{maximize} \\ | |
&\textbf{initialize} : m_0 \leftarrow 0 \text{ (first moment)}, v_0 \leftarrow 0 | |
\text{ ( second moment)}, \: \widehat{v_0}^{max}\leftarrow 0 \\[-1.ex] | |
&\rule{110mm}{0.4pt} \\ | |
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ | |
&\hspace{5mm}\textbf{if} \: \textit{maximize}: \\ | |
&\hspace{10mm}g_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \\ | |
&\hspace{5mm}\textbf{else} \\ | |
&\hspace{10mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ | |
&\hspace{5mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1} \\ | |
&\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ | |
&\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\ | |
&\hspace{5mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \\ | |
&\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\ | |
&\hspace{5mm}\textbf{if} \: amsgrad \\ | |
&\hspace{10mm}\widehat{v_t}^{max} \leftarrow \mathrm{max}(\widehat{v_t}^{max}, | |
\widehat{v_t}) \\ | |
&\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/ | |
\big(\sqrt{\widehat{v_t}^{max}} + \epsilon \big) \\ | |
&\hspace{5mm}\textbf{else} \\ | |
&\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/ | |
\big(\sqrt{\widehat{v_t}} + \epsilon \big) \\ | |
&\rule{110mm}{0.4pt} \\[-1.ex] | |
&\bf{return} \: \theta_t \\[-1.ex] | |
&\rule{110mm}{0.4pt} \\[-1.ex] | |
\end{aligned} | |
For further details regarding the algorithm we refer to `Decoupled Weight Decay Regularization`_. | |
""" + fr""" | |
Args: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
lr (float, Tensor, optional): learning rate (default: 1e-3). A tensor LR | |
is not yet supported for all our implementations. Please use a float | |
LR if you are not also specifying fused=True or capturable=True. | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square (default: (0.9, 0.999)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability (default: 1e-8) | |
weight_decay (float, optional): weight decay coefficient (default: 1e-2) | |
amsgrad (bool, optional): whether to use the AMSGrad variant of this | |
algorithm from the paper `On the Convergence of Adam and Beyond`_ | |
(default: False) | |
{_maximize_doc} | |
{_foreach_doc} | |
{_capturable_doc} | |
{_differentiable_doc} | |
{_fused_doc} | |
.. _Decoupled Weight Decay Regularization: | |
https://arxiv.org/abs/1711.05101 | |
.. _On the Convergence of Adam and Beyond: | |
https://openreview.net/forum?id=ryQu7f-RZ | |
""" | |
def adamw( | |
params: List[Tensor], | |
grads: List[Tensor], | |
exp_avgs: List[Tensor], | |
exp_avg_sqs: List[Tensor], | |
max_exp_avg_sqs: List[Tensor], | |
state_steps: List[Tensor], | |
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 | |
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim | |
foreach: Optional[bool] = None, | |
capturable: bool = False, | |
differentiable: bool = False, | |
fused: Optional[bool] = None, | |
grad_scale: Optional[Tensor] = None, | |
found_inf: Optional[Tensor] = None, | |
has_complex: bool = False, | |
*, | |
amsgrad: bool, | |
beta1: float, | |
beta2: float, | |
lr: Union[float, Tensor], | |
weight_decay: float, | |
eps: float, | |
maximize: bool, | |
): | |
r"""Functional API that performs AdamW algorithm computation. | |
See :class:`~torch.optim.AdamW` for details. | |
""" | |
if not torch._utils.is_compiling() and not all(isinstance(t, torch.Tensor) for t in state_steps): | |
raise RuntimeError( | |
"API has changed, `state_steps` argument must contain a list of singleton tensors" | |
) | |
# Respect when the user inputs False/True for foreach or fused. We only want to change | |
# the default when neither have been user-specified. Note that we default to foreach | |
# and pass False to use_fused. This is not a mistake--we want to give the fused impl | |
# bake-in time before making it the default, even if it is typically faster. | |
if fused is None and foreach is None: | |
_, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False) | |
# Do not flip on foreach for the unsupported case where lr is a Tensor and capturable=False. | |
if foreach and isinstance(lr, Tensor) and not capturable: | |
foreach = False | |
if fused is None: | |
fused = False | |
if foreach is None: | |
foreach = False | |
if foreach and torch.jit.is_scripting(): | |
raise RuntimeError("torch.jit.script not supported with foreach optimizers") | |
if fused and torch.jit.is_scripting(): | |
raise RuntimeError("torch.jit.script not supported with fused optimizers") | |
if fused and not torch.jit.is_scripting(): | |
func = _fused_adamw | |
elif foreach and not torch.jit.is_scripting(): | |
func = _multi_tensor_adamw | |
else: | |
func = _single_tensor_adamw | |
func( | |
params, | |
grads, | |
exp_avgs, | |
exp_avg_sqs, | |
max_exp_avg_sqs, | |
state_steps, | |
amsgrad=amsgrad, | |
beta1=beta1, | |
beta2=beta2, | |
lr=lr, | |
weight_decay=weight_decay, | |
eps=eps, | |
maximize=maximize, | |
capturable=capturable, | |
differentiable=differentiable, | |
grad_scale=grad_scale, | |
found_inf=found_inf, | |
has_complex=has_complex, | |
) | |
def _single_tensor_adamw( | |
params: List[Tensor], | |
grads: List[Tensor], | |
exp_avgs: List[Tensor], | |
exp_avg_sqs: List[Tensor], | |
max_exp_avg_sqs: List[Tensor], | |
state_steps: List[Tensor], | |
grad_scale: Optional[Tensor], | |
found_inf: Optional[Tensor], | |
*, | |
amsgrad: bool, | |
beta1: float, | |
beta2: float, | |
lr: Union[Tensor, float], | |
weight_decay: float, | |
eps: float, | |
maximize: bool, | |
capturable: bool, | |
differentiable: bool, | |
has_complex: bool, | |
): | |
assert grad_scale is None and found_inf is None | |
if torch.jit.is_scripting(): | |
# this assert is due to JIT being dumb and not realizing that the ops below | |
# have overloads to handle both float and Tensor lrs, so we just assert it's | |
# a float since most people using JIT are using floats | |
assert isinstance(lr, float) | |
for i, param in enumerate(params): | |
grad = grads[i] if not maximize else -grads[i] | |
exp_avg = exp_avgs[i] | |
exp_avg_sq = exp_avg_sqs[i] | |
step_t = state_steps[i] | |
# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] | |
if not torch._utils.is_compiling() and capturable: | |
assert ( | |
(param.is_cuda and step_t.is_cuda) or (param.is_xla and step_t.is_xla) | |
), "If capturable=True, params and state_steps must be CUDA or XLA tensors." | |
if torch.is_complex(param): | |
grad = torch.view_as_real(grad) | |
exp_avg = torch.view_as_real(exp_avg) | |
exp_avg_sq = torch.view_as_real(exp_avg_sq) | |
if amsgrad: | |
max_exp_avg_sqs[i] = torch.view_as_real(max_exp_avg_sqs[i]) | |
param = torch.view_as_real(param) | |
# update step | |
step_t += 1 | |
# Perform stepweight decay | |
param.mul_(1 - lr * weight_decay) | |
# Decay the first and second moment running average coefficient | |
exp_avg.lerp_(grad, 1 - beta1) | |
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) | |
if capturable or differentiable: | |
step = step_t | |
bias_correction1 = 1 - beta1 ** step | |
bias_correction2 = 1 - beta2 ** step | |
step_size = lr / bias_correction1 | |
step_size_neg = step_size.neg() | |
bias_correction2_sqrt = bias_correction2.sqrt() | |
if amsgrad: | |
# Maintains the maximum of all 2nd moment running avg. till now | |
if differentiable: | |
max_exp_avg_sq = max_exp_avg_sqs[i].clone() | |
else: | |
max_exp_avg_sq = max_exp_avg_sqs[i] | |
max_exp_avg_sqs[i].copy_(torch.maximum(max_exp_avg_sq, exp_avg_sq)) | |
# Uses the max. for normalizing running avg. of gradient | |
# Folds in (admittedly ugly) 1-elem step_size math here to avoid extra param-set-sized read+write | |
# (can't fold it into addcdiv_ below because addcdiv_ requires value is a Number, not a Tensor) | |
denom = ( | |
max_exp_avg_sqs[i].sqrt() / (bias_correction2_sqrt * step_size_neg) | |
).add_(eps / step_size_neg) | |
else: | |
denom = ( | |
exp_avg_sq.sqrt() / (bias_correction2_sqrt * step_size_neg) | |
).add_(eps / step_size_neg) | |
param.addcdiv_(exp_avg, denom) | |
else: | |
step = _get_value(step_t) | |
bias_correction1 = 1 - beta1 ** step | |
bias_correction2 = 1 - beta2 ** step | |
step_size = lr / bias_correction1 | |
bias_correction2_sqrt = _dispatch_sqrt(bias_correction2) | |
if amsgrad: | |
# Maintains the maximum of all 2nd moment running avg. till now | |
torch.maximum(max_exp_avg_sqs[i], exp_avg_sq, out=max_exp_avg_sqs[i]) | |
# Use the max. for normalizing running avg. of gradient | |
denom = (max_exp_avg_sqs[i].sqrt() / bias_correction2_sqrt).add_(eps) | |
else: | |
denom = (exp_avg_sq.sqrt() / bias_correction2_sqrt).add_(eps) | |
param.addcdiv_(exp_avg, denom, value=-step_size) | |
# Lastly, switch back to complex view | |
if amsgrad and torch.is_complex(params[i]): | |
max_exp_avg_sqs[i] = torch.view_as_complex(max_exp_avg_sqs[i]) | |
def _multi_tensor_adamw( | |
params: List[Tensor], | |
grads: List[Tensor], | |
exp_avgs: List[Tensor], | |
exp_avg_sqs: List[Tensor], | |
max_exp_avg_sqs: List[Tensor], | |
state_steps: List[Tensor], | |
grad_scale: Optional[Tensor], | |
found_inf: Optional[Tensor], | |
*, | |
amsgrad: bool, | |
beta1: float, | |
beta2: float, | |
lr: Union[Tensor, float], | |
weight_decay: float, | |
eps: float, | |
maximize: bool, | |
capturable: bool, | |
differentiable: bool, | |
has_complex: bool, | |
): | |
if len(params) == 0: | |
return | |
if isinstance(lr, Tensor) and not capturable: | |
raise RuntimeError("lr as a Tensor is not supported for capturable=False and foreach=True") | |
# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] | |
if not torch._utils.is_compiling() and capturable: | |
assert all( | |
p.is_cuda and step.is_cuda for p, step in zip(params, state_steps) | |
), "If capturable=True, params and state_steps must be CUDA tensors." | |
assert not differentiable, "_foreach ops don't support autograd" | |
assert grad_scale is None and found_inf is None | |
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype([ | |
params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps]) | |
for (( | |
device_params, | |
device_grads, | |
device_exp_avgs, | |
device_exp_avg_sqs, | |
device_max_exp_avg_sqs, | |
device_state_steps, | |
), _) in grouped_tensors.values(): | |
if has_complex: | |
if amsgrad: | |
_view_as_real(device_params, device_grads, device_exp_avgs, device_exp_avg_sqs, device_max_exp_avg_sqs) | |
else: | |
_view_as_real(device_params, device_grads, device_exp_avgs, device_exp_avg_sqs) | |
if maximize: | |
device_grads = torch._foreach_neg(device_grads) | |
# Update steps | |
# If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over | |
# and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just | |
# wrapped it once now. The alpha is required to assure we go to the right overload. | |
if device_state_steps[0].is_cpu: | |
torch._foreach_add_(device_state_steps, torch.tensor(1.0, device='cpu'), alpha=1.0) | |
else: | |
torch._foreach_add_(device_state_steps, 1) | |
# Perform stepweight decay | |
if weight_decay != 0: | |
torch._foreach_mul_(device_params, 1 - lr * weight_decay) | |
# Decay the first and second moment running average coefficient | |
torch._foreach_lerp_(device_exp_avgs, device_grads, 1 - beta1) | |
torch._foreach_mul_(device_exp_avg_sqs, beta2) | |
torch._foreach_addcmul_(device_exp_avg_sqs, device_grads, device_grads, 1 - beta2) | |
# Delete the local intermediate since it won't be used anymore to save on peak memory | |
del device_grads | |
if capturable: | |
bias_correction1 = torch._foreach_pow(beta1, device_state_steps) | |
bias_correction2 = torch._foreach_pow(beta2, device_state_steps) | |
# foreach_sub doesn't allow a scalar as the first arg | |
torch._foreach_sub_(bias_correction1, 1) | |
torch._foreach_sub_(bias_correction2, 1) | |
# we do not negate bias_correction1 as it'll need to be negated later anyway | |
torch._foreach_neg_(bias_correction2) | |
# foreach_div doesn't allow a scalar as the first arg | |
torch._foreach_div_(bias_correction1, lr) | |
torch._foreach_reciprocal_(bias_correction1) | |
torch._foreach_sqrt_(bias_correction2) | |
# Re-assign for clarity as we maintain minimal intermediates: we'll have | |
# step_size = - lr / (1 - beta1 ^ t) where t = num_steps | |
# bias_correction2_sqrt = sqrt(1 - beta2 ^ t) | |
step_size = bias_correction1 | |
bias_correction2_sqrt = bias_correction2 | |
if amsgrad: | |
# Maintains the maximum of all 2nd moment running avg. till now | |
torch._foreach_maximum_(device_max_exp_avg_sqs, device_exp_avg_sqs) | |
# Use the max. for normalizing running avg. of gradient | |
exp_avg_sq_sqrt = torch._foreach_sqrt(device_max_exp_avg_sqs) | |
else: | |
exp_avg_sq_sqrt = torch._foreach_sqrt(device_exp_avg_sqs) | |
torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt) | |
torch._foreach_add_(exp_avg_sq_sqrt, eps) | |
torch._foreach_div_(exp_avg_sq_sqrt, step_size) | |
# at this point, exp_avg_sq_sqrt = - (1 - beta^t) * [sqrt(exp_avg_sq / (1 - beta2^t)) + eps] / lr | |
torch._foreach_addcdiv_(device_params, device_exp_avgs, exp_avg_sq_sqrt) | |
else: | |
bias_correction1 = [1 - beta1 ** _get_value(step) for step in device_state_steps] | |
bias_correction2 = [1 - beta2 ** _get_value(step) for step in device_state_steps] | |
step_size = _stack_if_compiling([(lr / bc) * -1 for bc in bias_correction1]) | |
bias_correction2_sqrt = [_dispatch_sqrt(bc) for bc in bias_correction2] | |
if amsgrad: | |
# Maintains the maximum of all 2nd moment running avg. till now | |
torch._foreach_maximum_(device_max_exp_avg_sqs, device_exp_avg_sqs) | |
# Use the max. for normalizing running avg. of gradient | |
exp_avg_sq_sqrt = torch._foreach_sqrt(device_max_exp_avg_sqs) | |
else: | |
exp_avg_sq_sqrt = torch._foreach_sqrt(device_exp_avg_sqs) | |
torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt) | |
torch._foreach_add_(exp_avg_sq_sqrt, eps) | |
torch._foreach_addcdiv_(device_params, device_exp_avgs, exp_avg_sq_sqrt, step_size) | |
def _fused_adamw( | |
params: List[Tensor], | |
grads: List[Tensor], | |
exp_avgs: List[Tensor], | |
exp_avg_sqs: List[Tensor], | |
max_exp_avg_sqs: List[Tensor], | |
state_steps: List[Tensor], | |
grad_scale: Optional[Tensor], | |
found_inf: Optional[Tensor], | |
*, | |
amsgrad: bool, | |
beta1: float, | |
beta2: float, | |
lr: Union[float, Tensor], | |
weight_decay: float, | |
eps: float, | |
maximize: bool, | |
capturable: bool, # Needed for consistency. | |
differentiable: bool, | |
has_complex: bool, | |
) -> None: | |
if not params: | |
return | |
if differentiable: | |
raise RuntimeError("Adam with fused=True does not support differentiable=True") | |
grad_scale_dict = {grad_scale.device: grad_scale} if grad_scale is not None else None | |
found_inf_dict = {found_inf.device: found_inf} if found_inf is not None else None | |
# We only shuffle around the lr when it is a Tensor and on CUDA, otherwise, we prefer | |
# treating it as a scalar. | |
lr_dict = {lr.device: lr} if isinstance(lr, Tensor) and str(lr.device) != "cpu" else None | |
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( | |
[params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps]) | |
for (device, _), ((device_params, | |
device_grads, | |
device_exp_avgs, | |
device_exp_avg_sqs, | |
device_max_exp_avg_sqs, | |
device_state_steps,), _) in grouped_tensors.items(): | |
device_grad_scale, device_found_inf = None, None | |
if grad_scale is not None: | |
if device not in grad_scale_dict: | |
grad_scale_dict[device] = grad_scale.to(device, non_blocking=True) | |
device_grad_scale = grad_scale_dict[device] | |
if found_inf is not None: | |
if found_inf not in found_inf_dict: | |
found_inf_dict[device] = found_inf.to(device, non_blocking=True) | |
device_found_inf = found_inf_dict[device] | |
if lr_dict is not None and device not in lr_dict: | |
lr_dict[device] = lr.to(device=device, non_blocking=True) | |
lr = lr_dict[device] | |
torch._foreach_add_(device_state_steps, 1) | |
torch._fused_adamw_( | |
device_params, | |
device_grads, | |
device_exp_avgs, | |
device_exp_avg_sqs, | |
device_max_exp_avg_sqs, | |
device_state_steps, | |
amsgrad=amsgrad, | |
lr=lr, | |
beta1=beta1, | |
beta2=beta2, | |
weight_decay=weight_decay, | |
eps=eps, | |
maximize=maximize, | |
grad_scale=device_grad_scale, | |
found_inf=device_found_inf, | |
) | |
if device_found_inf is not None: | |
torch._foreach_sub_(device_state_steps, [device_found_inf] * len(device_state_steps)) | |